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A B S T R A C T 

 

The micro-resistivity imaging log is a crucial tool for measuring the heterogeneous features of a formation. It objectively and quantitatively 
describes various reservoir characteristics, including fine structures, thin strata, fissures, and sedimentary facies. In these imaging tools, 
measurements from button arrays create an electrical image of the wellbore. However, gaps between tool pads limit coverage, and damaged 
buttons may compromise image quality. In this study, image log data are examined for factors impacting data acquisition, followed by 
processing for basic correction, image enhancement, static, and dynamic image log creation. To achieve 100% coverage, the Minimum 
Weighted Norm Interpolation (MWNI) algorithm fills gaps between tool pads. Finally, the Anisotropic Diffusion Filter (ADF) reduces noise 
and enhances image log quality in MATLAB, providing a comprehensive image from logging tools. As image logs play a crucial role in 
illustrating the wellbore and reservoir, this study suggests a new workflow to successfully tackle the challenges associated with acquiring 
comprehensive image log coverage. 
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1. Introduction 

The micro-resistivity imager stands as a preeminent and highly 
valuable advanced logging tool, offering real-time micro-resistivity 
formation images and dip data [1,2]. This sophisticated tool operates by 
transmitting an alternating current from the pusher plate. As the current 
traverses the borehole mud column and the formation, it subsequently 
returns to the circuit electrode positioned at the top of the tool [3]. The 
reflections of resistivity changes are meticulously measured from the 
current intensity on the electric buttons. This nuanced interplay 
between current and formation micro-resistivities provides invaluable 
insight into the structural and electrochemical nonhomogeneity of the 
formation itself [4]. Following a comprehensive processing stage, the 
information gleaned from the electric buttons undergoes 
transformation, resulting in a visually informative earth-colored or 
grayscale image [5,6]. 

The versatility of borehole images extends across various realms 
within the geosciences. In sedimentology, image logs are crucial for the 
analysis of facies [7], examination of formation fabric and structure 
[7,8], assessment of depositional environments [9], and exploration of 
geological body geometry and sequence stratigraphy [10,11]. Moreover, 
in the domain of structural geology and geomechanics, borehole image 
results are indispensable for determining structural dip, fault 
identification, fracture characterization, and in situ stress analysis [12, 
13, 14, 15]. In petrophysical studies, the interpretation of image logs  

 
 
 
plays a pivotal role in advancing reservoir characterization and 
conducting nuanced heterogeneity analyses [15,16]. 

Despite the numerous advantages associated with the use of image 
logs, ongoing research addresses certain limitations [3]. Frequently, the 
effects of hole conditions, mud types, and acquisition practices are 
addressed and compensated for through the application of various 
processing algorithms [9]. 

The contemporary landscape of petroleum engineering has witnessed 
a remarkable surge in the utilization of both intelligent and semi-
intelligent methods. This heightened adoption can be attributed to the 
notably favorable outcomes yielded by these approaches in tasks such as 
data estimation, lost data reconstruction, forecasting, and the 
production of precise datasets. The proliferation of these methodologies 
has become pervasive, evident in their application across a spectrum of 
functions, including estimating the Q factor, computing potential 
permeability maps, appraising fractures, and amalgamating meta-
attributes for 3D modeling [17, 18, 19, 20]. The widespread acceptance 
of these methods can be ascribed to their inherent capacity to produce 
highly accurate results. Hence, the focus of this article is to employ 
programming and intelligent methodologies for the reconstruction of 
lost data within the FMI dataset [21]. 

The Minimum Weighted Norm Interpolation (MWNI) method is a 
powerful mathematical technique widely employed in geophysics, 
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particularly in the domain of seismic data processing and well imaging 
[22,23]. Its primary purpose is to address the common challenge of 
incomplete or missing data points within spatial datasets. In the context 
of geophysics, such as seismic data acquisition, missing information can 
arise due to practical limitations or equipment malfunctions. MWNI 
steps in to fill these gaps by formulating an objective function that 
minimizes the difference between observed data and interpolated values 
at missing locations, all while incorporating a weighting scheme based 
on proximity to the missing points. 

The key strength of MWNI lies in its mathematical foundation, 
grounded in principles of optimization and linear algebra. The method 
seeks to find solutions to underdetermined linear systems, where the 
number of unknowns surpasses the available equations. The term 
"Minimum Norm" in MWNI underscores its preference for solutions 
with the smallest overall magnitude, promoting smooth and coherent 
interpolations that minimize abrupt changes or artifacts in the 
reconstructed data [24]. This optimization process involves iteratively 
adjusting values at missing locations, assigning higher weights to points 
closer to the gaps, and striving for a solution that balances the observed 
data and any additional constraints [25]. 

Initially designed for the regularization of seismic data at missing 
spatial locations, the MWNI method has evolved and found utility in 
recent studies, particularly in the interpolation of prestack and poststack 
seismic data [26]. Recent research efforts have sought to optimize the 
MWNI method through integration with complementary techniques 
[27, 28, 24]. The Anisotropic Diffusion Filter (ADF) is another notable 
method employed to reduce image noise while preserving crucial 
content and details for interpretation [29,30]. Widely acknowledged in 
image processing studies, the ADF method is regarded as a systematic 
procedure for noise reduction and quality improvement [31, 32]. 

The efficacy of image log tools in covering boreholes varies, 
contingent upon factors such as the number of pads and borehole size, 
resulting in coverage percentages ranging from 30% to 80% [33]. In the 
present study, the MWNI method is implemented with the explicit goal 
of maximizing borehole coverage to an impressive 100%. This 
interpolation method adeptly fills the gaps between pads and flaps, 
yielding a fully covered borehole image that significantly enhances the 
reliability of interpretation. Furthermore, the study employs the ADF to 
eliminate all noise and misadjustments from the generated fully covered 
image, culminating in a high-resolution borehole image. This 
meticulous noise reduction process not only refines image logs but also 
aids interpreters in identifying and discerning reliable geological 
features in the context of hydrocarbon reservoir studies [34]. 

The main goal of this study is to suggest a new workflow that 
effectively overcomes challenges related to obtaining high-quality, 
comprehensive coverage of image logs. This consideration is based on 
the crucial role of image logs in visualizing the wellbore and reservoir. 

2. Methodology 

A practical approach to establishing a well-founded image of reservoir 
intervals is offered by applying a sequence of processing functions, 
including MWNI and ADF (Figure 1). In the following section, a concise 
overview of the methodologies employed on image logs is provided. 
These methods have been systematically applied to fulfill the objectives 
of this study, contributing to a comprehensive understanding of 
reservoir characteristics and facilitating accurate analysis. 

2.1. Data Quality Assessment and Preparatory Steps for Analysis 

Before delving into the analysis of microresistivity data, it is 
imperative to assess the data quality, particularly with regard to tool-
related parameters, as these factors significantly influence both borehole 
survey data and image quality [35]. In this study, various data 
acquisition parameters, including pad pressure, gain selection, the ratio 
of formation to mud resistivity, logging speed, and pre-processing 
procedures, are meticulously examined and optimized. 

Subsequently, the crucial step of generating log quality cross plots is 

taken, aimed at validating the accuracy of data collected by the survey 
tool's magnetometer and accelerometer within the logging string. These 
plots serve as a robust indicator of the reliability of directional 
information obtained from these sensors. 

For the magnetometer data, an X versus Y log plot is employed, which 
ideally should exhibit a circular or arc distribution centered at the origin 
(0, 0). This distribution pattern aligns with the fact that image data is 
stored in a vertical well (as depicted in Figure 2). 

To further validate the directional information, accelerometer data is 
scrutinized using the ZX and ZY quality control crossplot, as presented 
in Figure 3. The Z-axis accelerometer gauges the strength of the gravity 
field along the tool axis, accounting for both upward and downward tool 
movements in vertical wells. In this vertical well, the Z-axis 
accelerometer reads at approximately (1g = 9.81m/s² = 32.2ft/s²). 

Moreover, considering the impact of borehole conditions, including 
washouts and variations in drill section size [30], is essential. To assess 
these conditions across the reservoir intervals, the borehole geometry 
profile derived from caliper logs is visualized, as illustrated in Figure 4. 

 

 
Figure 1. Schematic workflow describing the component steps in coverage and 
quality maximizing of image log. 

 

 
Figure 2. The magnetometer components of the image log tool (Fx vs Fy) cross 
plot. The arc distribution serves as confirmation that the directional information 
from the magnetometer is accurate. 



 Y. Moradi Chaleshtori et al.  / Int. J. Min. & Geo-Eng. (IJMGE), 58-3 (2024) 221-227191-199 223 

 

 
Figure 3. The accelerometer components of the image log tool (Ax vs Ay) cross 
plot. The arc distribution underscores the accuracy of the directional information 
from the magnetometer. 

 

 
Figure4. Evaluation of borehole geometry profile and its effects on well condition 
and data acquisition. 

 
Finally, as part of the quality control process, the microresistivity data 

recorded by various button arrays (rows) is inspected. Figure 5 
demonstrates that there are no significant irregularities in the pad data, 
ensuring that data processing can proceed smoothly without any 
impediments. 

This meticulous data quality assessment and preparatory phase lay 
the foundation for reliable and accurate analysis of microresistivity 
imaging logs in subsequent stages of this study.  

3. Processing of FMI Data 

In numerous image logs, distortions become apparent in the raw data, 
indicating a mismatch between cable speed and pre-processing speed. 

This study begins by applying a speed correction function to the raw 
data, specifically addressing image roughness in intervals where the tool 
came to a halt. Following this, image enhancement processing is 
conducted on the raw data through several steps, encompassing 
accenting correction, equalization, normalization, image filtering, and 
histogram upscaling. The objective is to enhance the visual quality of 
image logs. 

Eccentering correction generates a radius and rectifies tool 
eccentering errors. Equalization is essential to adjust the standard 
deviation and mean data of each column, ensuring consistent 
comparability with other columns [7]. To make optimal use of the color 
map, a normalization module is applied to the data distribution, 
enhancing visibility of details by re-binning the data either statically 
(over the entire log) or dynamically (over a sliding window) to match a 
predefined frequency distribution (Figure 6) [36]. 

Finally, pre-defined filters such as median, Gaussian, and Laplacian 
are employed to smooth the image log (Figure 7). The histogram 
upscaling involves a sliding window traversing through a log, calculating 
a histogram at each step. 

 

 

Figure5. Quality control of pad/flap raw data and comparison of microresistivity 

data obtained from button arrays. 
 

 
Figure 6. (a) The generated raw image log from recorded microresistivity data, (b) 
the adjusted image log after equalization, (c) static image log (normalized over the 
entire log), (d) Dynamic image log (normalized over sliding window). 
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4. Minimum Weighted Norm Interpolation (MWNI) 

A comprehensive image log offers more realistic information about 
the wellbore condition in various reservoir intervals. The consistent 
absence of data and empty spaces in image logs indicates a deficiency in 
data acquisition, attributed to limitations in the tool. The challenge of 
signal reconstruction or interpolation using common inverse equations 
arises from the necessity to solve a system of underdetermined 
equations, where there are more unknowns than observations. This issue 
has multiple potential solutions, and, in general, providing relevant prior 
information and constraining the range of solutions would be one of the 
most effective approaches to address this type of problem. 

One method that serves as an inversion-based solution is called 
minimum weighted norm interpolation (MWNI), as proposed by Liu 
and Sacchi in 2004. The reconstruction of data with missing samples can 
be summarized in the following inversion scheme, represented by 
Equation (1): 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒‖𝑥‖𝑤
2 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜𝑇𝑥 = 𝑦                                                         (1) 

 

In this equation, ‖. ‖𝑤 represents a specific weighted norm, and T is 
the sampling matrix that maps desired data samples (x) to available 
samples (y). The transpose of T is used to fill in the positions of missing 
samples with zeros. 

The specific weighted norm used in MWNI is derived from the 
wavenumber-domain term, as shown in Eq. 2: 

 

‖𝑥‖𝑤2 = 𝛴(𝑘 ∈ 𝜅)(𝑥𝑘
∗𝑥𝑘)/(𝑃𝑘

2)                                                          (2) 
 

Here, 𝑃𝑘
2 represents the weight of a spectral domain with a matching 

support and shape as the interpolated signal. The set of κ indexes defines 
the spectral support region of the signal, where 𝑃𝑘

2 ≠ 0 for 𝑘 ∈ 𝜅. The 
coefficient 𝑃𝑘

2 reflects the spectral power in the wavenumber index k. 
The minimum norm solution is obtained by minimizing a cost 

function, as described in Eq. 3: 
 

𝐽 = 𝑏𝑇(𝑇𝑥 − 𝑦) + ‖𝑥‖𝑤
2                                                                         (3) 

 

In this equation, 'b' represents the Lagrangian multiplication vector. 
By minimizing 'J' with respect to 'x' while subject to the constraint 𝑇𝑥 −
𝑦 =  0, a solution is derived that allows the reconstruction of missing 
data. 

In essence, MWNI is a powerful technique that leverages prior 
knowledge and wavenumber-domain information to effectively 
reconstruct missing data samples in image logs, providing a more 
comprehensive and accurate representation of wellbore conditions in 
various reservoir intervals. 

5. Anisotropic Diffusion Filter (ADF) 

The anisotropic diffusion method emerges as a highly effective 
solution, fulfilling the dual purpose of enhancing edges and minimizing 
noise in image processing. To elevate the quality of the image log for 
clear visualization and accurate interpretation, it becomes imperative to 
employ a method that diminishes noise while preserving intricate image 
details. To achieve this objective, the Perona-Malik model, incorporating 
the anisotropic diffusion algorithm, is utilized for noise removal [37]. 
Additionally, an edge-stopping approach is employed to enhance data 
quality. The utilization of an appropriate edge-stopping function 
ensures the clarity of small details and sharp edges (Eq. 4): 

 

𝜕𝑢/𝜕𝑡 = 𝑑𝑖𝑣(𝐶(|𝛻𝑢|))𝛻𝑢                                                                      (4) 
 

In Eq. 4, ′𝑢𝑡
′  represents the image obtained after a diffusion time 't,' 

while 'div' denotes the divergence operator, and '∇' signifies the gradient 
operator concerning the spatial variables 'x' and 'y.' The term '|∇|' 
represents the local gradient magnitude, and 'c(.)' serves as the diffusion 
coefficient or the edge stopping function. 

The key characteristic of the edge-stopping function lies in its ability 
to take on a zero or negligible value for gradients corresponding to edges 
(Eq. 5 and Eq. 6): 

𝐶1(|𝛻𝐼|) = 𝑒𝑥𝑝(−(|𝛻𝐼|/2)2)                                                                (5) 
 

𝐶2(|𝛻𝐼|) = 1/(1 + (|𝛻𝐼|/2)2)                                                              (6) 
 

In this context, the parameter 'K' serves as the threshold for the 
gradient magnitude, playing a crucial role in influencing the diffusion 
rate. The Perona-Malik model, through the utilization of either of the 
two edge functions, adeptly preserves the sharp edges and intricate 
details within the denoised image. 

Fundamentally, employing the anisotropic diffusion filter, 
particularly through the Perona-Malik model, proves to be a robust 
strategy for enhancing the quality of the image log. This technique not 
only diminishes noise but also safeguards the integrity of essential 
features, thereby contributing to clearer visualizations and more reliable 
interpretations. 

6. Results &discussion 

Image logs offer diverse information about carbonate and sandstone 
reservoirs. Through the accurate measurements of formation 
resistivities and conductivities, numerous structural and 
sedimentological features become visible after data processing (Figure 
8). The clarity of the image enables geoscientists to achieve reliable 
formation interpretation and reservoir characterization. 

 

 
Figure 8. Scale of geological features that could be displayed in borehole images, 
core and 3D seismic. 

In this study, Schlumberger's Fullbore Formation MicroImager (FMI) 
data, recorded in an 8.5-inch drilled borehole, undergoes thorough 
processing. The FMI is an imaging log tool capable of providing 
microresistivity data in wells using water-based drilling fluids. This tool 
consists of four arms, each equipped with a flap and pad. The image log 
data is recorded by an array of electrodes placed on each flap/pad 
(Figure 9). 

 

 
Figure 9. Sclumberger fullbore formation microimager tool (FMI). 
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Images of actual geological features differ from core appearances due 
to borehole geometry, the nature of tool measurements, well conditions, 
and limitations of coverage. In the framework of this study, efforts have 
been made to achieve maximum image quality and coverage by 
employing various methods, particularly novel approaches like the 
MWNI algorithm for optimal interpolation in image gaps and an 
anisotropic diffusion filter to minimize data acquisition and processing 
noise. 

In the first step, data quality is ensured through orientation checks, 
magnetic declination correction, speed correction, depth matching, and 
the alignment of buttons, pads, and flaps. FMI data is initially loaded 
into Geolog software, and quality control of magnetometer and 
accelerometer data confirms that image log data are recorded without 
significant problems. Borehole conditions are then examined to 
understand the impact of changes in borehole diameters, particularly 
the presence of washouts, rugosity, and mudcake throughout the 
reservoir. Finally, the application of buttons in recording data is 
separately compared. The analysis of pad/flap data provides information 
about potential physical tool problems, whether intermittent, actual 
equipment failure, or due to changes in formation properties. 

In the second step, image processing is initiated and carried out in 
several phases. Firstly, an image is generated in Geolog software to map 
all button traces and create color images of resistivity. During the image 
generation phase, considerations include the interpolation of curve data 
to form images, button equalization, and pad normalization (Figure 6). 
Subsequently, the quality of the generated image is enhanced through 
static and dynamic normalizations. A consistent color scale is applied to 
the entire log in static normalization, while a sliding window and 
histogram scaling to the middle sample are used to generate a 
dynamically normalized image (Figure 6). Lastly, a median filter is 
employed to reduce the noise in the generated dynamic image (Figure 
7). 

In the final steps, the array data of the dynamic image (192 
microresistivity data at each depth) is imported into MATLAB software, 
and the MWNI algorithm is applied to traces. The algorithm successfully 
recovers pad/flap gap data from periodically non-uniformly spaced 
button array data. Figure 10 compares the amplitude of the original data 
with the MWNI reconstructed data, illustrating the reliability of the 
correlation between the reconstructed data and the values of the original 
processed data, indicating an approved trend for interpolated data in the 
gaps. 

 

 
Figure 10. Comparison between the amplitude of original data and MWNI 
reconstructed data. 

 
The implementation of the MWNI algorithm significantly enhances 

the quality of image log data, with the number of image values at each 
depth increasing notably, from 192 to 240. This enhancement is crucial 
in effectively filling the gaps between the pads and flaps of each arm, 
considering the mean amplitudes of the data. Consequently, there is a 
substantial improvement in the coverage of the borehole image, 
escalating from the initial 80% to a full 100% in the 8.5-inch borehole, as 
visually depicted in Figure 11. 

Following the interpolation of missing data, the subsequent 

application of the Anisotropic Diffusion Filter (ADF) further 
contributes to refining the reconstructed image, as evidenced in Figure 
11. The ADF's noise reduction process plays a crucial role in eliminating 
nearly all unwanted microresistivity data fluctuations received from 
electrodes. Additionally, it effectively smoothens out random variations 
in brightness or color information that may arise during the image 
processing and reconstruction stages. 

Above all, the graphical representation in Figure 12 illustrates that the 
high-quality, fully covered image log can be visualized in a cylindrical 
shape using MATLAB software. This visualization not only provides 
valuable information but also proves to be comparable to core data, 
enhancing our understanding of subsurface formations and their 
intricate details. 

 

 
Figure 11: Image log after reconstruction and quality enhancement using MWNI 
and ADF method in MATLAB software. 

 

At the conclusion of this research, the fully covered image log is 
imported into Geolog software for visualization and comparison with 
other images within a specified software environment (Figure 13). The 
results illustrate how the MWNI and ADF approaches enhance the 
quality and coverage of image logs, creating an integrated borehole 
image where all formation features remain constant and can be 
distinctly identified. 

 

 

Figure 12. High quality full-covered cylindrical image logs in MATLAB software. 

7. Conclusion 

In this study, two approaches, MWNI and anisotropic diffusion, are 
delineated to improve the quality and coverage of FMI images post-
processing. These techniques have demonstrated success in efficiently 

 

 

 1 
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interpolating data gaps between tool arms and reducing noise in the 
processed image logs. Following a thorough examination of data for 
erratic tool movements and borehole wall characteristics, the data was 
prepared for image processing. Subsequently, processes such as image 
generation, button equalization, and pad normalization were 
implemented to instill confidence in image analysis. Image 
enhancements were then applied through static normalization (using 
the same color scale for the entire log) and dynamic normalization, 
involving the consideration of sliding color scaling windows on log data. 

 

 
 
The processed data in MATLAB is subjected to the MWNI method, 

which serves to interpolate missing data and mitigate tool weaknesses. 
This dual functionality ensures not only enhanced data completeness 
but also refined accuracy in reservoir understanding. Furthermore, noise 
reduction is achieved by the anisotropic diffusion filter, contributing to 
clearer images and aiding in the identification of subtle features. The 
combined use of MWNI and ADF results in reservoir interval images 
comparable to core data, providing comprehensive insights for reservoir 
evaluation. A high-quality, fully covered image log not only speeds up 
image log interpretation but also makes it more cohesive, facilitating 
seamless integration into reservoir modeling processes. The sequential 
application of these techniques to image logs highlights their value in 
enhancing image quality and contributing to a better understanding of 
sedimentological and structural features, ultimately optimizing 
decision-making in subsurface exploration and reservoir management. 
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