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A B S T R A C T 

 

Mass movements of land, such as landslides, pose significant threats to human safety and infrastructure. This study focuses on advancing the 
understanding of landslide dynamics through the application of geophysical surveys, specifically the Electrical Resistivity Tomography (ERT) 
and Seismic Refraction Tomography (SRT). Unstructured meshing, as a pivotal technique in geophysics simulation studies, provides flexibility 
in discretizing complex geological structures. This method allows for refined mesh elements where needed, optimizing computational 
resources. In the field of geophysics, unstructured meshing is particularly advantageous for accurately representing subsurface heterogeneities. 
This study employs pyGIMLi, a Geophysical Inversion and Modelling Python library. This Python programming library, although devoid of 
a GUI, offers a comprehensive suite of tools for geophysical data analysis and inversion. This library incorporates unstructured meshing 
capabilities. This feature enhances the accuracy of simulations, enabling researchers to model intricate geological formations with more 
precision. Using this library empowers users to seamlessly generate, manipulate, and analyze unstructured meshes, facilitating robust 
simulations and detailed investigations of subsurface properties in geophysics. In this study, we present a novel approach to simulate a three-
layered landslide using the ERT and SRT, coupled with inverse modelling through utilizing the unstructured meshing of the inversion area. 
The synthetic model produced has a depth of study extending to 65 meters. The SRT model reveals a dense coverage in layer 2, providing 
crucial information about the subsurface characteristics. The utilization of the ERT and SRT in tandem allows for a comprehensive 
understanding of the landslide structure, offering insights into detecting the slip surface of the landslide. The study's innovative methodology 
provides a robust framework for the analysis of complex geological scenarios. The results obtained from this simulation contribute to the 
broader knowledge of landslide dynamics and offer a valuable tool for assessing and mitigating landslide risks in similar geological settings. 
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1. Introduction 

Geohazard phenomena have the potential to harm or heighten the 
vulnerability of humans, assets, vital infrastructure, and the surrounding 
environment. These events may lead to the disruption of human 
endeavors, resulting in significant socioeconomic implications. Among 
various natural incidents, landslides are recognized as particularly 
destructive geohazards (Fig.1). Landslides fall under the category of 
"mass wasting," indicating the downward displacement of soil and rock 
influenced directly by gravity. Such incidents can manifest in diverse 
sizes and forms [1]. Landslides present intricate formations with diverse 
geological, geomorphological, and hydrogeological characteristics. 
Exploring these heterogeneous structures poses a significant challenge 
for near-surface geophysics. The advancement of both 2D and 3D 
geophysical methods has sparked increasing enthusiasm for evaluating 
landslide volume, delineating the physical attributes of the landslide 
material, and identifying groundwater movements within and 
surrounding the slide. In these varied structures, employing a 
combination of diverse geophysical methods has proven essential for 
achieving dependable outcomes. The selection of techniques is evidently 
influenced by the anticipated differences in physical parameters [2]. 

In the case of the use of geophysical methods in landslide studies, in 
2020, Whiteley put forth an elementary technique and systematic  

 
 
 
procedure to generate a dependable sequence of seismic velocity models 
through inversion over time [3]. In 2012, Carpentier collected data from 
trenches, GPS, electrical resistivity tomography, and Ground-
Penetrating Radar (GPR), unveiling detailed images depicting the 
composition and structure of historical and potential future landslides 
[4]. In 2021, Imani stated that the seismic refraction tomography 
method is proficient in delineating the slope material, the geometry of 
the sliding surface, the dynamics of landslide mass movement, the 
physical properties of the terrain, and the impact of water saturation on 
the slope [5]. In 2018, Pappalardo studied a landslide by conducting 
passive seismic surveys. Employing these surveys through ambient noise 
acquisition, facilitated the identification of impedance contrasts, 
particularly linked to distinctive features, such as the landslide body. 
These findings were subsequently supported by the results obtained 
from an electrical resistivity survey [6].  

In 2021, Whitely used three geophysical methods in order to study a 
landslide in the UK. Firstly, the topography data were collected by an 
Unmanned Aerial Vehicle (UAV) survey. Consequently, the 
heterogeneity of the landslide was studied using the unsupervised 
classification of electrical resistivity and seismic refraction surveys [7]. 
In 2019, Rezaei utilized the electrical resistivity tomography 2D imaging 
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in order to detect a landslide surface [8]. In 2021, Zainal used the SRT 
to explore the structural layout of the sliding area in the aftermath of a 
landslide incident in Indonesia [9]. In 2021, Rehman used both GPR and 
ERT as two non-invasive geophysical methods to asses a landslide 
subsurface [10]. In 2023, Yang employed elastic full waveform inversion 
to detect a landslide area in Peru [11]. In 2022, Damavandi studied a 
landslide slip surface by the ERT survey. The model is derived through 
an inversion using both structured and unstructured meshing [12]. In 
2019, Chen utilized an integration of ERT, SRT, and Seismic Scattered 
wave Imaging (SSI) to evaluate a landslide area [13]. In 2019, Pasierb 
detected a landslide slip surface using the ERT and geotechnical 
assessments, such as Cone Penetration Test (CPTU) and drilling [14]. 
In 2022, Himi obtained a 3D geological model of a landslide body 
utilizing ERT, SRT, and borehole data [15]. In 2019, Huntley 
investigated a very slow-moving landslide by employing a multi-
technique geophysical approach. This approach encompasses 
geophysical methods, such as ERT, frequency electromagnetic 
conductivity, GPR, primary-wave refraction, multispectral analysis of 
shear-waves, natural gamma radiation, induction conductivity, and 
magnetic susceptibility [16]. In 2023, Wróbel conducted the 
interpretation of a landslide by integrating various geophysical methods, 
such as ERT, SRT, and Multi-channel Analysis of the Surface Waves 
(MASW) with remote sensing data analysis [17]. In 2019, Pupatenko 
employed a study to interpret the GPR data in dip survey cases [18]. In 
2023, Zhang underscored the rapid and effective assessment of 
landslide-prone subsurface conditions. By employing the MASW and 
ERT techniques in tandem, the study provides valuable insights to 
evaluate landslide risks and proactively address the potential threats of 
debris flow [19]. In 2023, Hojat used the time-lapse ERT and Time-
Domain Reflectometry (TDR) in order to monitor a rainfall-triggered 
landslide [20]. In 2022, Hussain proposed an amalgamation of the 
Emitted Seismic and ambient noise based geophysical methods. A 
review of applicable UAV-based methods in landslide study is also 
presented [21]. In 2022, Adella Syavira Studied the slip surface geometry 
of a landslide by leveraging the GPR data [22]. 

To identify the optimal resistivity distribution aligning with 
experimentally derived apparent resistivity values, inverse techniques 
become imperative. In geophysical exploration, forward modelling plays 
a crucial role, enabling the computation of model responses throughout 
the inversion procedure. Various established algorithms address the 
inversion of geoelectrical data, with some specifically tailored for 
monitoring (time-lapse) observations or integrating hydrological and 
other geophysical data into the inversion process [23]. The pyGIMLi 
framework [24] and ResIPy [23] represent successful instances of open-
source programs, both functioning as Python Application Programming 
Interfaces (API). Notably, ResIPy stands out as an exemplar of a 
Graphical User Interface (GUI), enhancing user-friendliness by 
simplifying the utilization of intricate codes. While ResIPy focuses 
exclusively on the ERT and induced polarization modelling, the 
pyGIMLi presents a broader range of frameworks. It provides diverse 
seismic methods (i.e., refraction tomography modelling in 2D and 3D, 
cross-hole tomography, and etc.), magnetometry, gravimetry, and 
electromagnetic data processing, modelling, and inversion. In 2023, 
Rochlitz leveraged custEM open-source software in order to employ a 
forward modelling and utilized pyGIMLi to conduct a three-
dimensional inversion on electromagnetic data [25]. In 2023, Steiner 
proposed a versatile library for the management of seismic refraction 
data, functioning on the foundation of pyGIMLi's Seismic Refraction 
Manager [26]. In 2015, Cockett introduced SimPEG, an open-source 
framework for simulation and gradient-based parameter estimation in 
geophysical applications [27]. In 2022, Guedes represented Refrapy, a 
Python program for seismic refraction data analysis [28]. 

The Seismic Refraction Tomography (SRT) has proven to be a 
valuable tool in the study of landslides, particularly in the 
characterization of sliding zone geometries [15]. However, employing 
this method for the long-term monitoring of landslides poses challenges, 
primarily attributable to potential errors stemming from topographic 
variations[3]. Despite these inherent challenges, the utilization of the 
SRT in landslide investigations has been widespread, marked by notable 

advancements in algorithm development and the establishment of 
robust field-data collection systems [5]. Notably, researchers have 
addressed the limitations of the SRT by integrating it with other 
geophysical methods, such as ERT. This integration has proven effective 
in delineating landslide body geometries and identifying critical sliding 
surfaces [15]. This collaborative approach enhances the 
comprehensiveness and accuracy of landslide studies, showcasing the 
adaptability and continued progress within the field despite the 
acknowledged challenges associated with long-term monitoring and 
topographic variations. 

 

 
Fig.1 A simplified Schematic visualization of a landslide system. 

 
In this study, both ERT and SRT simulations are employed for a 

synthetic landslide model through unstructured meshing, conducted by 
utilizing pyGIMLi library, version 1.4.3. The operating system utilized 
for the forward and inverse modelling is a laptop with 16GB RAM and 
a 12th Gen Intel® Core™ i7 1255U CPU. 

2. Methodology 

This study aims to explore a synthetic landslide comprising three 
layers through the integration of both ERT and SRT simulations. To 
achieve this, the forward modelling of aforementioned geophysical 
methods is employed firstly. In the context of geophysical simulations 
and modelling, it is common to do such modelling. In fact, the forward 
produced model act as an input in the inversion process. A mesh is 
generated, and forward simulations yield apparent resistivity data for 
diverse electrode configurations, emulating field acquisition. 
Simultaneously, the SRT simulations are performed. The synthetic 
model undergoes finite element-based discretization, and travel time 
data are generated for various source-receiver configurations. The 
accuracy of these simulations is evaluated through statistical metrics, 
such as resolution, sensitivity, and inversion misfit, providing insights 
into the methodology's robustness. 

2.1. Forward modelling 

In geophysics, the forward problem is a fundamental aspect involving 
the computation of responses under the assumption of known sources 
and earth models. This is expressed as: 

 

𝐹𝑗  [𝑚] =  𝑑𝑗
𝑜𝑏𝑠  ≡   𝑑𝑗 + 𝑛𝑗                                  𝑗 = 1, … , 𝑁                                 (1) 

 

Here, 𝑭𝒋  represents a forward modelling operator, incorporating 
intricate details of survey design and pertinent physical equations. The 
symbol 𝒎  conventionally denotes the distribution of physical 
properties, while the right side portrays the observed datum 𝒅𝒋

𝒐𝒃𝒔 , 
comprising the true datum 𝒅𝒋  and additive noise 𝒏𝒋 . The operator 
𝑭 manifests diversely, often adopting integral or differential forms, 
necessitating numerical solutions for resultant equations. Despite 
challenges, such as the computational demands for electromagnetic 
responses in a 3D Earth, the forward modelling quandary remains well-
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posed, yielding a unique solution [29]. 
This understanding of the forward problem is integral to geophysical 

exploration and plays a key role in the development of inversion 
algorithms [30]. The process of inversion relies on resolving the forward 
problem, wherein data is computed from a specified set of model 
parameters. While inverse problems often presume a perfect knowledge 
of the forward problem solution, practical execution, encapsulated in 
the forward-modelling process, is inherently susceptible to errors, 
acknowledged as modelling errors [31]. 

Forward modelling, serving as a research and educational tool, is 
particularly crucial in applied geophysics. Geophysical approaches, such 
as gravimetry, magnetometry, and geoelectrical methods are employed 
to probe the Earth's subsurface. The presentation of forward models for 
these geophysical techniques, employing the finite-element method, is a 
significant contribution to advancing our understanding of the 
subsurface Earth processes [32]. 

2.2. Inverse modelling 

Extensive research has been dedicated to the concept of inverse 
problems in geophysics, particularly in the field of employing diverse 
computational methods to tackle these challenges [33]. Within this 
context, a central key lies in crafting stable solutions capable of resolving 
intricate geological structures. This challenge has spurred the 
development of innovative techniques, including the introduction of 
focusing inversion images [34]. 

To address the intricacies of discrete inverse problems in geophysics, 
a conceptual framework has been proposed. This framework [35] 
underscores the significance of information and measurements in 
defining the calibration target and objective function. It emphasizes the 
need for a systematic approach to handle the complexities inherent in 
geophysical inverse problems. The evolution of inversion theory in 
geophysics has played a pivotal role in advancing the field. Notably, the 
focus has shifted towards introducing new criteria to navigate 
challenges arising from inaccurate and inconsistent data [36]. This 
progressive development in inversion theory contributes to refining the 
methodologies employed in geophysical studies, thereby enhancing the 
capacity to derive meaningful insights from complex and real-world 
geological scenarios. 

A range of studies have explored the use of inversion techniques in 
the electrical resistivity tomography. In 2002, Tamburrino proposed a 
non-iterative inversion method based on the monotonicity of the 
resistance matrix and its numerical approximations [37]. In 2022, Fallah 
Safari proposed a smoothness constrained inversion algorithm for 2.5-
dimensional forward modelling, which was found to provide stable and 
accurate results [38]. In 2022, Cozzolino applied the Extended data-
adaptive Probability-based Electrical Resistivity Tomography Inversion 
Method (E-PERTI) to model the resistivity distribution of a large 
dataset, successfully identifying an ancient ditch [39]. In 2002, J. 
LaBrecque tested an anisotropic inversion algorithm, which produced 
images less prone to artifacts and noise, and was faster than older 
algorithms. These studies collectively demonstrate the potential of 
inversion techniques in enhancing the accuracy and efficiency of the 
electrical resistivity tomography [40]. 

The seismic refraction technique stands as a robust geophysical 
instrument widely utilized in engineering geology, geotechnical 
engineering, and exploration geophysics. To ensure trustworthy 
outcomes, precise processing of seismic refraction data, particularly in 
the inversion phase, is crucial [41]. A range of studies have explored the 
use of seismic refraction tomography in various geological settings. In 
1985, Mooney developed a method for the direct inversion of seismic 
refraction data in planar dipping structures, successfully applying it to 
synthetic seismograms and field data [42]. In 1989, White presented an 
iterative tomographic inversion scheme for determining 2-D velocity 
structure from seismic refraction first-arrival travel times, with a focus 
on source/receiver spacing and resolution [43]. In 1988, Mora proposed 
an iterative inversion method that combines migration and reflection 
tomography, emphasizing the importance of a varying background 
velocity [44]. In 2003, Hobro extended this work to 3-D tomographic 

inversion of combined reflection and refraction seismic travel time data, 
demonstrating its application to real data in the Cascadia Margin. These 
studies collectively highlight the potential of seismic refraction 
tomography in characterizing subsurface structures [45]. In 2011, 
Alimoradi detailed an investigation into the utilization of neural 
networks for addressing geophysical inverse problems. Specifically, the 
study focuses on employing a three-layer feed-forward neural network 
for estimating the depth of dikes through magnetic data. The training 
process involves the use of synthetic data as both input and output, 
employing the back-propagation algorithm for the forward neural 
network training. In 2012 and 2013, Alimoradi employed feed-forward 
artificial neural networks (FNNs) and support vector regression 
machines (SVR) to establish a connection between identified synthetic 
attributes and synthetic porosity values within a specified environment 
[46], [47]. 

Inverse modelling without considering constraints for any 
geophysical data is inherently non-unique, primarily due to the 
likelihood of multiple geological models (e.g., resistivity, and Vp 
distributions) that are consistent with observed data. Consequently, it 
becomes necessary to impose constraints on the inversion model. 
Additionally, without appropriate constraints, errors (such as rounding 
errors in numerical values) can lead to an unstable solution. 

In order to formulate the inverse problem in both ERT and SRT 
studies, the distribution of electrical and seismic properties is discretized 
into sets of parameters defining the model vector 𝑚 . While for one-
dimensional problems, in the case of ERT study, 𝒎 typically includes 
the conductivity and thickness of a multi-layered model. In the SRT 
scenario, 𝒎 includes the refracted waves' travel times and the geometric 
properties of the model. For arbitrary two-dimensional and three-
dimensional distributions, its cells generally correspond to the 
conductivity and travel times of the individual finite elements (FEs) or 
finite difference (FD) components used in forward modelling. This 
implies that, for such cases, each cell aligns with the conductivity (in the 
ERT scenario) and wave travel times (in the SRT scenario) of the 
corresponding FE or FD element in the forward modelling process. 

 

𝑚𝑗 = 𝑙𝑛𝜎𝑗                                          𝑗 = (1, … , 𝑀)                                           (2) 
 

Here, the logarithm is employed to calculate the range of ground 
conductivity. Similarly, a given dataset of measured resistances, 𝑅𝑖 , 
results in a data vector 𝑚 according to Equation (3). 

 

     𝑑𝑖 =  −𝑙𝑛𝑅𝑖                                          𝑖 = (1, … , 𝑁)                              (3)   
 

Again, the transformed data are typically utilized upon entering the 
system, often due to the wide range of observed resistances for arbitrary 
electrode arrays. Meanwhile, the negative sign in Equation (3) in one-
dimensional physics corresponds to Equation (2). 

Given the non-uniqueness of the inverse problem for resistivity and 
wave propagation, coupled with the presence of data errors, effective 
numerical solutions often necessitate additional constraints imposed on 
the inversion process. This is typically achieved by treating the inversion 
problem as a regularized optimization problem, where the objective 
function takes the form of Equation (4). 

 

𝜑𝑡𝑜𝑡𝑎𝑙 =  𝜑𝑑 +  𝛼𝜑𝑚                                                                                 (4) 
 

In order to minimize Equation (4), we have: 
 

𝜑𝑑 =  (𝑑 − 𝐹(𝑚))
𝑇

𝑊𝑑
𝑇𝑊𝑑(𝑑 − 𝐹(𝑚))                                                       (5) 

 

where 𝒅 represents the data (e.g., measured apparent resistivities and 
apparent velocities), 𝑭(𝒎)  is a set of forward model estimates 
corresponding to the parameter set 𝒎, and 𝑾𝒅 is a data weight matrix. 
If the case of unrelated measurement errors is considered and by also 
neglecting the model errors, 𝑾𝒅 becomes a diagonal matrix with entries 
equal to the standard deviation of each measurement. 

For a one-dimensional DC electrical sounding problem, 𝒎  is 
obtained from sets of apparent resistivities and thicknesses of the 
relevant layers. In the case of a two-dimensional resistivity imaging 
problem, 𝒎 comprises sets of apparent resistivities in a two-dimensional 
grid (or mesh). Likewise, in the case of a two-dimensional refraction 
seismic imaging, 𝒎 includes apparent velocities of the refracted waves 
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between source and the receiver. 
One can express an arbitrary level of data inconsistency, given the 

number of measurements. In the Occam solution, the objective is to 
minimize Equation (4), subject to the constraint of the maximum value 
of 𝒂. While using the Gauss-Newton approach, this leads to the iterative 
solution of Equation (6), where 𝜶  is a scalar controlling the 
regularization. 

 

(𝑗𝑇𝑊𝑑
𝑇𝑊𝑑𝐽 +  𝛼𝑅)∆𝑚 =  𝑗𝑇𝑊𝑑

𝑇(𝑑 − 𝐹(𝑚𝑘)) −  𝛼𝑅𝑚𝑘   (6)                             (6) 
 

𝑚𝑘+1 =  𝑚𝑘 + ∆𝑚                                                                                     (7) 
 

 𝑗𝑖,𝑗 =
𝜕𝑑𝑖

𝜕𝑚𝑗
                                                                                                 (9) 

 

The Jacobian matrix (𝑱) , as computed by utilizing Equation (8), 
represents the sensitivity. 𝒎𝒌 signifies the adjusted parameter, while k 
iterations take place, having a rate of ∆𝒎 in parameter updating. In the 
context of DC resistivity inversion, it is customary to formulate the 
inverse problem by employing log-transformed apparent resistivities 
[38]. 

The Finite Element Method (FEM) relies on a variational 
formulation, integrating the differential equation across the model 
domain. This integration, represented as a summation of contributions 
from discrete finite elements, yields a system of algebraic equations 
approximating the solution. Notably, this system, of finite dimensions, 
diverges from the initial infinite-dimensional partial differential 
equations. This approach offers notable advantages in modelling 
intricate irregular regions, utilizing non-uniform meshes to precisely 
represent solution gradients, handling boundary conditions involving 
fluxes, and facilitating the development of high-order approximations. 
Furthermore, the assessment of discretization errors can be conducted 
cost-effectively, serving a dual purpose: validating computational 
accuracy and guiding an adaptive refinement process where meshes 
autonomously adjust to achieve solutions of desired accuracy optimally. 
Rooted in the FEM, the forward modelling approach is not only integral 
to geophysical exploration but also constitutes a foundational element 
in the evolution of inversion algorithms [48]. 

For the purpose of forward modelling, the FEM was employed. It is 
widely recognized that the modelling algorithms associated with the 
FEM are characterized by a slower computational pace, albeit offering 
enhanced precision when compared to the Finite Difference Method 
(FDM). The inherent challenge of FEM's slower computation is 
effectively mitigated through the utilization of unstructured meshes, 
enabling the method to achieve a balance between efficiency and 
precision in modelling [49]. In contrast, the conventional Finite 
Difference (FD) approach is known for its simplicity in construction 
and maintenance, relying on structured rectangular grids. However, this 
simplicity comes at the cost of limitations, as it precludes local grid 
refinement, and any alterations in grid size exert a considerable impact 
on the overall computational resources required. Recent decades have 
witnessed the evolution of the FE method to address such challenges, 
endowing it with the inherent capability to support unstructured 
meshes. This development proves particularly advantageous in the 
context of the direct current resistivity (DCR) approach, wherein 
modelling and inversion methods are tailored to leverage the flexibility 
offered by unstructured meshes [50]. 

In pyGIMLi, the inherent inversion framework relies on the 
generalized Gauss-Newton approach and is universally adaptable to 
diverse physical predicaments due to its compatibility with any provided 
forward operator. The inversion task is formulated as the minimization 
of an objective function, encompassing both data misfit and model 
constraints [24]. Throughout the iterative process, two primary 
parameters play a crucial role in governing the inversion procedure. The 
first of these parameters is chi-square (𝛘²), which serves as a metric 
quantifying the disparity between the observed and predicted data. Chi-
square provides a quantitative measure of the misfit within the inversion 
process and is calculated through Equation (9). 

 

χ2 =  ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖
                                                                                            (9) 

Where 𝑶𝒊 is the observed frequency for the category 𝒊 and 𝑬𝒊 is the 

expected frequency for the category 𝒊. It is worthy to mention that the 
sum is taken over all categories. 

3. Numerical modelling of landslide 

The synthetic landslide model consists of three layers with distinct 
geological properties (Fig.2c and Fig.3a). These layers, represented by 
polygons in a 2D space, include different kinds of rock and soil types. 
Table 1 details the properties of each sub-region, including the assumed 
material and the related physical properties (i.e., apparent resistivity and 
apparent velocity of refracted waves shown in Figs. 2a and 2b, 
respectively). 

A network of electrodes is strategically positioned to capture the 
electrical resistivity distribution within the landslide model utilizing the 
Schlumberger array. This array is a common electrode array used in ERT 
studies. In this array, the current electrodes are usually fixed at the 
center, and potential electrodes are moved outward, creating different 
"spacing" or configurations [51]. A data scheme is then created 
containing the position of current and potential electrodes. As K is 
calculated by the mentioned positions, the aforementioned data scheme 
contains K as well. In ERT studies, the geometric factors (often denoted 
as K) represent the sensitivity of the measurement configuration to 
changes in subsurface resistivity. The geometric factor is influenced by 
the electrode positions and the specific array used for the ERT study. 
Different arrays have different sensitivities to subsurface structures [52]. 
In Fig. 4, each label (SL-1 to SL-7) represents a specific Schlumberger 
electrode spacing, and the plot is showing how the geometric factors (K) 
vary for each electrode configuration. These variations can be crucial in 
understanding the resolution and sensitivity of the ERT survey at 
different depths or for different subsurface features. The electrode 
positions are adapted to account for the slope of the terrain, ensuring an 
accurate representation of the subsurface resistivity. 25 electrodes have 
been assigned to the surface. As a result, the data scheme includes 112 
data in total. The resistivity values for different geological regions are 
assigned based on the defined resistivity map. The resistivity 
distribution is visualized alongside electrodes on the ground surface 
(Fig.2a), and forward modelling is conducted to simulate the ERT data. 
It is worth mentioning that a plausible geological section is depicted in 
Fig.2c. 

Also, in the case of SRT, the deployment of geophones, imperative for 
recording seismic data, is undertaken across the landslide model. Sensor 
positions are adjusted to accommodate the terrain slope, ensuring an 
accurate representation of subsurface properties. Additionally, it is 
pertinent to mention that a 24-channel seismometer is assumed, with a 
fixed inter-channel distance of 7 meters. The velocity distribution within 
the geological layers is assigned based on the predefined markers 
(Fig.2b). 

 
 

 
Fig. 2 A synthetic 2D landslide structure through simulating, (a) electrical 
resistivity model, (b) Vp model, and (c) a plausible geological section.
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Table 1. The geophysical descriptions of the synthetic landslide model. 

Layer Resistivity (Ωm) Vp (m/s) Material 

First layer 2350 1000 Shale+ Gravel+ Compacted Alluvium  

Second layer 1000 2000 Tuff 

Third layer 3000 3000 Limestone 

 

The simulated ERT and SRT data are generated by incorporating 
resistivity and Vp values into the forward mesh (Fig.3a). Noise is 
introduced to mimic real-world conditions, and the data are processed 
to remove inconsistencies [53]. In this study, a value of 3% of the 
Gaussian noise is considered while simulating the data. Figure 4a 
illustrates the simulated ERT data. Also, Figure 5a shows the forward 
simulated refraction seismic data. 

 
Fig. 3 The mesh quality of the synthetic landslide model for forward modelling (a), 
and inverse modelling of the ERT (b), and the SRT (c). 

 

Following the completion of forward modelling, the generated model 
and simulated data for each scenario are introduced as inputs for the 
subsequent inverse modelling phase. As previously mentioned, the 
inversion process is conducted using the Simultaneous Iterative 
Reconstruction Technique (SIRT). Fig.4b illustrates the inversion 
response of the ERT data after two iterations, while Figure 5b presents 
the inversion response of the SRT simulated data after 10 iterations. 

To assess the convergence and accuracy of the inversion process, 
Fig.4c and Fig.5c depict the misfit between the observed data and the 
inversion response for the ERT and SRT scenarios, respectively. These 
misfit figures provide valuable insights into the iterative refinement of 
the inversion results, highlighting the convergence of the SIRT and its 
effectiveness in minimizing the disparity between observed and 
predicted data. 

The iterative inversion approach is further enhanced through the 
refinement of the inversion mesh in each iteration. Figures 3b and 3c 
visually represent the inverse mesh for both ERT and SRT scenarios, 
respectively, showcasing the evolving precision of the inversion process. 
After the culmination of iterations, the final inversion results are 
obtained and presented in Fig.6a for the ERT and Fig.6b for the SRT. 
These comprehensive figures incorporate the primary layers and 
superimpose ray paths, providing a consolidated visualization of the 
refined subsurface models. The inclusion of primary layers and ray paths 
in the final results contributes to a more interpretable and accurate 

representation of the subsurface characteristics, demonstrating the 
efficacy of the iterative inversion process in achieving a refined and 
reliable outcome. 

 

 
Fig. 4 The electrical resistivity data visualization, (a) observed apparent resistivity, 
(b) predicted apparent resistivity, and (c) misfit data. 
 

 
Fig. 5 The refraction seismic data visualization, (a) observed apparent velocity, (b) 
predicted apparent velocity, and (c) observed and predicted first arrival times 
(cross symbol shows predicted data). 

 1 

 
(a) 

 
(b) 

 
(c) 

 2 

 1 

 
(a)                                                (b) 

 

 
(c) 

 

 2 

 1 

 
(a)                                                  (b) 

 
        (c) 

 2 



268 A. Yazdanpanah & M. Abedi  / Int. J. Min. & Geo-Eng. (IJMGE), 58-3 (2024) 263-270191-199 

 

4. Discussion 

This study delves into the intricate analysis of landslides through the 
adept utilization of both Electrical Resistivity and Seismic Refraction 
Tomography simulations, with a strong emphasis on leveraging the 
capabilities of the pyGIMLi framework. In scrutinizing the 
heterogeneity of the media, the findings of this study showcase a notable 
correlation between the ERT and SRT inversion results. The ERT 
inversion reveals that the first layer exhibits the least heterogenous 
properties, a characteristic later confirmed by the SRT inversion. The 
dense coverage of ray paths in the first layer, as depicted in Fig. 6b, aligns 
seamlessly with the ERT interpretation. This synchronization 
underscores the efficacy of integrating geophysical methods, the ERT 
and SRT in particular, in offering a cohesive analysis of media 
heterogeneity across different geophysical techniques. 

Fig. 6 collectively provides a compelling insight into bedrock 
detection. The ERT inversion highlights higher electrical resistivity in 
the third layer, potentially indicative of bedrock features, such as 
limestone. The SRT model complements this observation, as the ray 
paths deliberately avoid penetrating the third layer, a characteristic 
consistent with bedrock identification. The synergy between ERT and 
SRT strengthens the reliability of the bedrock detection assessments. 

The exclusive derivation of moisture content obtained from the ERT 
proves pivotal in our study. Low resistivity values in the ERT results 
suggest areas with potentially higher moisture content. Th 
understanding of moisture dynamics is crucial for a comprehensive 
analysis of landslide-prone areas. 

 

 

Fig. 6 The inversion result for (a) electrical resistivity, and (b) Vp. The boundary 

of assumed layers has been superimposed on the models. 

5. Conclusion 

The outcomes derived from this investigation showcase the 
effectiveness of integrating both Electrical Resistivity Tomography 
(ERT) and Seismic Refraction Tomography (SRT) for a comprehensive 
understanding of landslide characteristics. The synergistic correlation 
between these methodologies fortifies the robustness of our conclusions. 
Notably, in Fig. 6, the visual representation further substantiates the 
credibility of the interpretation, elucidating intricate subsurface 
conditions. The achievement of this study underscores the proficiency  

 
 
of the proposed framework in handling diverse geophysical data, 
thereby facilitating a holistic interpretation of landslide parameters. It is 
pertinent to introduce intelligent algorithms as a contemporary 
alternative for inversion methodologies. Integrating such algorithms can 
augment the efficiency and adaptability of the proposed framework. The 
success of this study, as highlighted, emphasizes the intricate insights 
into media heterogeneity, bedrock detection, and moisture content, all 
of which hold significant implications for the landslide risk assessment. 
Therefore, in addition to the synergy between the ERT and SRT 
approaches, it is recommended to explore intelligent algorithms in 
future research endeavors. This inclusion aligns with the evolving 
landscape of inversion techniques and positions the study at the 
forefront of incorporating cutting-edge methodologies for improved 
subsurface property studies and informed risk mitigation strategies.  
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