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A B S T R A C T 

 

The shape of a blasted rock mass, or simply muckpile, affects the efficiency of loading machines. A muckpile is defined with two main 
parameters known as throw and drop, while several blasting parameters will influence the muckpile shape. This paper studies the prediction 
of the muckpile shape in open-pit mines by applying an artificial neural network designed by a genetic algorithm. In that regard, a genetic 
algorithm has been used in preparing the neural network architecture and parameters. Moreover, input variables have been reduced using the 
principal component analysis. Finally, the best models for predicting throw and drop determined. Analyzing the performance of the proposed 
models indicates their superiority in predicting the muckpile shape. As a result, the Mean Squared Error of the throw was 0.53 for the training 
data and 1.24 for the testing data. While for the drop, the errors were 0.45 and 0.58 for the training and testing data, respectively. Furthermore, 
the sensitivity analysis shows that specific-charge effects drop and throw more. 

Keywords: Hybrid genetic algorithm neural network, Blasting, Muckpile, Principal component analysis. 

 

 

 

1. Introduction 

Rock blasting remains the most efficient method for loosening and 
fragmenting rocks in mining operations, constituting about 15–20% of 
the total mining cost [1-3]. The blasting operation starts with rock mass 
fracturing by the shock waves from the detonating explosive. Then 
expanding of explosive gases will develop cracks and fractures within 
the rock mass. The blasting energy will heave and move the fragmented 
rock mass to form a muck pile. The diggability of a muckpile is related 
to the specifications of fragmented rock mass and its movement.  The 
Muckpile Shape (MSh) and particle size distribution have essential 
effects on productivity, performance, and the cost of downstream 
mining activities, such as loading, hauling, and crushing [4-12]. The 
objective of blasting in a mine should be to generate a muckpile that can 
be loaded, transported, and crushed efficiently [13-15]. In surface coal 
mines, the blasting operation is designed to move the blasted waste rock 
into the inner dump area. If 34% of the broken rock is cast into the inner 
dump, about 1/3 stripping cost is saved. If draglines are utilized, it should 
be noted that for draglines, the MSh is of more interest than the 
percentage of blasted rock moved into the inner dump [16]. 

Different MShs can occur after blasting, as shown in Figure 1. In any 
surface blasting operation, there is always a desired MSh. The suitable 
MSh is determined based on the features of the blasting blocks and the 
equipment utilized. Any loading machine can work efficiently in a 
particular MSh. For example, when shovels are used, a high muck level 
is desired [17]. 

Front-end loaders generate a relatively small break-out force and are  

 
 
 
better utilized in low, flat-lying, and loose muckpiles. Then, the blasts 
should provide acceptable displacement, enough rock swelling, high 
fragmentation, and a reduced height for the muckpile (Figure 1.a) in 
cases where front-end loaders are used. In other words, for front-end 
loaders, the blasting operation should generate a muckpile that spreads 
the rocks over the bench. In this case, the blasted area needs excessive 
clean-ups. However, the operation area is safe, and reaching high 
productivity with a front-end loader is possible. In brief, the condition 
in Figure 1.a is ideal for front-end loaders, but for shovels, because of the 
time required for dozing and clean-up, shovel productivity is reduced. 

Shovels generate a significant break-out force, filling the bucket when 
moving in the vertical direction. Therefore, the efficiency of shovels 
depends on the muckpile height. For such machines, the blasting 
operation should provide adequate fragmentation accompanied by a 
muckpile that is not spread. Figure 1.b shows the optimum and safe 
conditions for shovel operation with minimum clean-up and high 
productivity [18]. Increasing muckpile height improves shovel 
efficiency. 

Nevertheless, it is noteworthy that a safe operation requires limited 
muckpile height (Figure 1.c). Generally, the MShs can be characterized 
by throw and drop (Figure 2). "Throw" describes the spreading of a 
muckpile, and "drop" implies the vertical lowering of the blasted 
muckpile concerning the bench height. 

The MShs is governed by (1) blast geometry, including bench height, 
blasthole inclination, burden, spacing, and stemming, (2) powder factor, 
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and (3) initiation sequence [19]. The blast geometry is a significant 
aspect of blasting design and has a pronounced effect in practice on rock 
fragmentation and broken rock movement. For example, suppose the 
burden is too small to provide suitable confinement to the gas pressure. 
In that case, gas energy leaks into the atmosphere before contributing to 
fragmentation or displacement. Besides, the benefits of inclined 
blasthole are better fragmentation and better removal of the blasted 
rocks. A uniform burden along the blastholes leads to a better shot 
direction. Stemming is another critical factor. Insufficient stemming will 
increase the probability of free gas escaping into the atmosphere. 
However, excessive stemming leads to many boulders, poor muckpile 
swelling, and an elevated vibration. 

 

 
Figure 1. The examples of MShs (Adapted from [17]). 

 

 
Figure 2. Muckpile shape (Adapted from [16]). 

 

The powder factor or specific charge depends on the rock condition 
and blast geometry. Studies show that for a given rock condition, an 
excess powder factor will cause excessive throw and backbreaks [19, 20]. 
It should be noted that even with the same drilling patterns, different 
timing and delays will result in different displacements. In practice, the 
rock displacement is strongly affected by delay time [21]. As the delay 
between rows decreases, the vertical component of displacement 
increases while the horizontal component decreases. The short delay 
increases rock density resulting from wave collision between holes and 
increases throw. Researchers have tried to model and predict the MSh 
based on rock conditions and blast parameters, but it is still a 
challenging issue [22]. Yang et al. [23] and Yang and Kavetsky [24] 
presented an approach to model the muckpile formation process. Their 
model calculates diggability contours and provides several muckpile 
cross-sections. The model needs to be calibrated to the site condition. 
Morin and Ficarazzo [25] presented a simulation-based approach, Singh 
et al. [26] conducted experiments to optimize the throw distance in cast 
blasting, Mencacci et al. [27] applied the six-sigma methodology, and 
Muller et al. [28] introduced an approach to evaluate and control the 
fragmentation and MSh. They measured grain size and muckpile slope 
as the factors governing the MSh. Rosa and Thornton [29] discussed 
various technologies used to measure blasted rock movements and the 
difficulties in modelling these movements. Choudhary [30] and 
Choudhary and Rai [31] conducted field studies to evaluate the effects 
of blasting patterns and stemming plugs on the fragmentation and MSh. 

Cardu et al. [32] assessed the impact of blasting sequence on rock 
fragmentation and muckpile. They defined the MSh as the ratio of the 
muckpile spread length normalized to the blasthole height. 

The regression analysis is quite appealing for predicting the MSh, but 
the results are poor concerning the degree of non-linearity [33-36]. 
Moreover, several inter-related controllable (blast-geometry and 
explosive) and uncontrollable (geological and geomechanical) 
parameters exist. Many soft computing techniques have been applied to 
predict the MSh. Some researchers used Artificial Neural Networks 
(ANNs) to determine the parameters affecting the MSh [37-39]. They 
noticed that charge density, rock density, and burden are the most 
influential parameters on the MSh. Vasylchuk and Deutsch [40] 
consider the effect of muckpile displacement on grade control in open-
pit mines. Others conducted fieldworks and studied the effects of 
blasting parameters, explosive properties, and fragmentation size on the 
MSh [41, 42]. They noticed that burden, bench height, heave energy, 
and fragmentation size strongly influence the MSh. More recently, 
hybrid models have been of more interest [43-49]. Hybrid models 
integrate an optimization model with a prediction model to enhance the 
prediction performance.  

The performance of an ANN depends on its architecture and training 
process. Moreover, the ANN architecture is case-specific and should be 
established based on the problem. Typically, the architecture is 
determined via a trial-and-error approach, which does not guarantee the 
optimum architecture. Researchers have proposed neuro-evolutive 
algorithms to mitigate the shortcomings of the trial-and-error approach 
[50-52]. This paper aims to enhance the ANN performance and the MSh 
prediction accuracy using a Genetic Algorithm (GA). The GA will 
determine the ANN architecture, including training algorithms, transfer 
functions, number of neurons and layers, and the maximal epochs. The 
proposed algorithm will mitigate the shortcomings of the trial-and-error 
approach. Moreover, this study analyzes the effect of using the Principal 
Component Analysis (PCA) method to preprocess the parameters. The 
PCA is applied to reduce the complexity of input parameters for the 
ANN. Finally, a novel hybrid of GA, PCA, and ANN is successfully 
developed to predict the MSh parameters. 

2. Methodology 

2.1. Hybrid Genetic Algorithm - Artificial Neural Network 

ANNs are biologically inspired learning systems that emulate the 
computational powers of the human brain. The learning process adopts 
the weight of interlinked neurons. The numerical weight associated with 
each link expresses the strength or importance of each neuron. Thus, 
iterative and adaptive weight modification enables the system to learn 
the particular aspects of the problem [53, 54]. 

The Multilayer Perceptron Model (MLP) is a widely accepted ANN 
model. A perceptron calculates the output signal by employing a linear 
combination of available inputs. Then, an activation function changes 
the output signal to get the output y. The structure of MLPs includes an 
input layer, an Output Layer (OL), and at least one Hidden Layer (HL) 
(Figure 3). 

When the MLP structure is determined, the training process starts. 
The calculation process consists of two steps. In the first step, the inputs 
are processed in the HL(s), and the results are passed to the OL. In the 
second step, the expected outputs are calculated. When the expected 
outputs are calculated, one can determine the prediction errors. The 
system aims to minimize prediction errors. Despite the advantages of 
ANNs, designing the ANN structure is a complex task. The GA is 
valuable for finding approximate solutions to complex non-linear 
problems. The GA is a search-based algorithm that initiates with a 
randomly generated population and evolves toward a better population. 
In the GA, the individuals are selected by elitism. In each population, 
individual solutions are ranked based on a predefined fitness function. 
Elites or highly valued individuals have the chance of being selected as 
the parents of the next generation. In the crossover process, features or 
chromosomes of parent individuals are exchanged to produce new 
individuals called offspring. In the mutation process, the process of 
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changing genes inside a chromosome is carried out. This process is 
repeated until a predetermined termination criterion is met. Finally, the 
best offspring is returned to represent the optimum solution [55-56]. 
Before applying the GA for the ANN improvement, one must define the 
objective function and encoding system. 

 

 
 

Figure 3. The MLP structure. 

 

Objective function 

The purpose of using GA is to enhance the ANN performance by 
optimizing its architecture. Hence, the objective function is defined as 
(Eq. 1). 
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where, fobj is the objective function, a is a constant, and f(s) is a 
function of bias (s). In this work, a=1 and f(s)= 0.01×s. x is the number of 
test records having a relative error of 15 to 25, and y is the number of 
test records whose relative error is more than 25. 𝜑 and 𝜔 represent the 
importance levels of x and y. In this work, 𝜑 = 0.33  and  𝜔 = 1  are 
considered. 𝑎1 and b are constants and e represent the training epochs. 
In this work, 𝑎1 = 2 × 10−5 and 𝑏 = 1. Ti and Yi are the estimated and 
the actual outputs, respectively. n is the number of training data, and m 
is the number of testing data. 

In Eq. 1, the term 𝐹1 is the feed‐forward architecture criterion, and it 
prefers small architectures. Small architectures avoid over-fitting, 
augments the generalization ability of the ANN and accelerate the 
training process. The term 𝐹2 is the solution space consistency, and it 
computes the prediction error of testing data. The term 𝐹3 represents 
the learning time criterion. The Term 𝐹4 is the average errors in training 
and generalization. It represents the memorization ability of ANNs, and 
estimates how well the network is trained, quantitatively. Moreover, it 
computes the power of the ANN to respond to new samples. 

Encoding the optimization model 

The GA embedded in Matlab® is employed for optimizing the 
objective function (Eq. 1). The decision vector (X) must contain the 
number of HLs and the respective number of neurons, activation 
function, training algorithm, and the maximum number of epochs. In 
that regard, the chromosome is designed to fulfill the requirements of 
the decision vector. The decision vector is composed of four distinct 
sectors. The first sector of the chromosome includes x1 to x3 indicating 
the neurons numbers in three HLs. The second sector contains x4 to x7 
that define the activation functions between consecutive layers. The 
third sector is x8, which describes the training algorithm, and the last 
sector (i.e., x9) shows the maximum epochs. Eq. 2 indicates the general 
form of the problem. The penalty approach is adopted to satisfy integer 
constraints [57, 58]. 

 

𝑀𝑖𝑛𝑍 = 𝐹1(𝑋) × 𝐹2(𝑋) × 𝐹3(𝑋) × 𝐹4(𝑋)                                           (2) 

𝑠. 𝑡:    1 ≤ 𝑥𝑖 ≤ 𝑢𝑏𝑛,    ∀𝑖 = 1,2,3  
           1 ≤ 𝑥𝑖 ≤ 𝑢𝑏𝑡𝑓,   ∀𝑖 = 4,5,6,7  
            1 ≤ 𝑥8 ≤ 𝑢𝑏𝑡𝑟  
 

where, 𝑢𝑏𝑛 is the maximum number of neurons in HLs,  
𝑢𝑏𝑡𝑓 controls the type of activation function, 
𝑢𝑏𝑡𝑟 control the type of training algorithm, and  
𝑙𝑏 and 𝑢𝑏 constrain the number of epochs. 
Thus, the optimal solution of the model in Eq. 2 corresponds to an 

ANN architecture with the lowest possible training and generalization 
errors. 

2.2. Principle Component Analysis (PCA) 

ANN models require a significant amount of training data, which is 
rarely feasible in real-world cases. Acquiring representative datasets is 
constrained by the high cost of large-scale experiments, which is the case 
in mining engineering. However, when training data is limited, the ANN 
forecasters are susceptible to over-fitting, which means rigid 
memorization of training data but cannot predict new data. As a result, 
ANN models based on small datasets exhibit unstable performance. 
Therefore, the applications of ANNs on small and imbalanced datasets 
require careful analysis [59-63]. Furthermore, datasets with many 
parameters and limited training sets pose challenges for learning 
algorithms [64]. Several attempts have been made to tackle the learning 
problem in small datasets [64, 66, and 65]. Variable reduction in the 
MLP networks seems to increase the network generalization [66]. 

According to literature, the MSh depends on various correlated 
parameters. Therefore, it provides an opportunity to reduce the number 
of input features. Dimensionality reduction is an essential topic in 
learning algorithms. The selected subset is still representative and 
retrieves a large proportion of the information from the original dataset. 
Eventually, in any learning algorithm, the reduced subset can be utilized. 
Therefore, developing a new model based on a limited dataset is 
necessary. In that regard, this study analyzes the effect of using the PCA 
to reduce the complexity of input parameters for the ANN. The PCA 
generates new Principal Components (PCs) to replace the original 
parameters. The PCA transforms some correlated variables into linearly 
uncorrelated new ones (Eq. 3) [67]. 

 

𝑃𝐶𝑗 = ∑𝑤𝑗𝑖𝑥𝑖 = 𝑤𝑗1𝑥1 + 𝑤𝑗2𝑥2+. . . +𝑤𝑗𝑖𝑥𝑖                                         (3) 
 

where, PCj is the jth principal component,  
xi is the standardized score of the original variable i, and  
wij is the coefficient score of variable i, for the component PCj.  
A PC is a type of variable that could not be measured directly. All PCs 

are linearly uncorrelated. Therefore, no redundant information exists in 
the final components. The components are defined such that the 
variance of the first few PCs covers 80% of the total variance. To be sure 
that the new components are independent, the dataset must have a 
normal distribution. 

2.3. Multi-criteria system for best model selection 

As stated, the MSh is defined by throw and drop. Then, two-hybrid 
GA-MLP and two PCA-GA-MLP models are developed for the MSh 
prediction. The performances of these models will be evaluated through 
four indices (Eq. 4 to 7). The indices include Nash-Sutcliffe Efficiency 
(NSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), 
and Median Absolute Error (MEDAE). According to the indices, 
alternate models are sorted in descending order and ranked. This 
ranking system is done separately for all alternate models for training, 
testing, and validation datasets. At last, the model with the lowest total 
score is selected as the best model. 
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𝑀𝐸𝐷𝐴𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛|𝑇𝑖 − 𝑌𝑖|∀𝑖 = 1, . . . , 𝑛                                            (7) 

3. Implementation and results 

In this section, the GA-MLP and PCA-GA-MLP models were applied 
to the MSh prediction, specified by throw and drop. Various parameters 
may govern the MSh, including the bench height, burden, spacing, sub-
drilling, stemming, charge weight, width to height ratio, drill 
penetration rate, specific charge, primer consumption, number of 
benches, number of holes, and firing pattern. The input data are selected 
from 82 blasting instances in similar ground conditions from [24, 30, 31, 
34-37]. The specification of the dataset is summarized in Table 1. 
Moreover, each experiment conducts a V-cut firing pattern with 
constant inter-hole blast timing. 

3.1. First scenario: GA-MLP 

The dataset is partitioned, and 70%, 15%, and 15% of data were used 
for training, validation, and testing phases, respectively. The GA model 
setting is given in Table 2. The maximum number of hidden layers is 
considered three, which is more than adequate for most engineering 
applications. Chromosomes with lengths of 5, 7, and 9 bits are 
considered for networks containing 1, 2, and 3 HLs, respectively. The  
 

GA population size and maximum generation were considered 100 and 
50, respectively. The crossover rate is 0.85, and the mutation rate is 0.01. 
Moreover, binary tournament selection is chosen for the selection 
operation. 

The GA-MLP was used to perform 30 independent runs with the 
same training, validation, and testing datasets. According to the results, 
the optimum MLP network performances are given in Table 3. The 
optimum networks for throw and drop are illustrated in Figure 4. For 
the optimum networks, the analysis of measured and estimated values 
of throw and drop for different vector data is shown in Figure 5. 

3.2. Second scenario: PCA-GA-MLP 

This section evaluates the effect of variable reduction on the 
performance of the MLP networks. In that regard, after determining the 
PCs, they are fed into the PCA-GA-MLP algorithm. The settings used in 
the PCA-GA-MLP are the same as GA-MLP. The difference in the 
number of input variables is reduced from 10 to four. Like the first 
scenario, 30 independent runs with the same data were done, and the 
best network was chosen. The optimum network is shown in Figure 6. A 
comparison of measured and estimated values for the training and 
testing data is shown in Figure 7. The performance of the optimum MLP 
networks is given in Table 4. 

 

Table 1. The dataset specification. 

Data type Parameters Min Max Ave. Standard deviation 

Input 

Bench height (m) 6.00 10.00 6.89 1.41 

Burden (m) 2.80 3.20 2.90 0.13 

Spacing (m) 3.20 4.50 3.73 0.45 

Sub drill length (m) 0.50 1.00 0.64 0.23 

Stemming length (m) 1.50 2.50 1.77 0.32 

Charge weight (ton) 0.37 2.60 1.14 0.58 

Length to width ratio 0.78 12.50 3.94 2.60 

Specific Charge (kg/t) 0.12 0.29 0.19 0.04 

Number of rows 2.00 7.00 4.00 1.43 

Number of holes 13 110 43.10 21.46 

Firing pattern V cut - - - 

Output 
Throw 3.85 14.25 9.89 2.82 

Drop 0.00 6.00 2.97 1.17 

 

Table 2. Chromosome encoding setting for the GA. 

Gene Configuration Lower bound Upper bound 

x1 
number of neurons in hidden layers (NNHL) 

 

1 40 

x2 1 40 

x3 1 40 

x4 Transfer/activation Functions (TRF): 

(1) 'tansig', (2) 'logsig', (3) 'purelin', (4) 'elliot2sig',  

(5) 'elliotsig', (6) 'radbas', (7) 'poslin', (8) 'radbasn',  

(9) 'tribas', (10) 'satlin' and (11) 'satlins' 

1 11 

x5 1 11 

x6 1 11 

x7 1 11 

x8 

Training Algorithms (TRA): 

(1) Levenberg-Marquardt (trainlm),  

(2) Bayesian Regularization (trainbr),  

(3) Gradient Descent with Momentum (traingdm),  

(4) BFGS Quasi-Newton (trainbfg),  

(5) Scaled Conjugate Gradient (trainscg) and  

(6) Variable Learning Rate Gradient Descent (traingdx) 

1 6 

x9 maximum number of epochs (MNEP) 1000 2500 
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Figure 4. The optimum network architecture (a). Throw (b). Drop. 

 

 

Table 3. The GA-MLP results for throw and drop. 

Output Data NSE RMSE MAE MEDAE 

Throw 

ALL 0.871 0.842 0.571 0.339 

Train 0.946 0.534 0.358 0.212 

Test 0.764 1.247 0.992 0.795 

validation 0.652 1.352 1.138 0.865 

Drop 

ALL 0.892 0.491 0.371 0.285 

Train 0.913 0.455 0.328 0.253 

Test 0.819 0.584 0.488 0.356 

validation 0.839 0.539 0.443 0.503 

 

 

 
Figure 5. The measured and estimated values, and estimation error histogram for the optimum MLP. (a) training data of throw, (b) test data of throw (c) training data of 
drop, (d) test data of drop 
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(a) 

 

(b) 

 

Figure 6. The optimum network architecture (a). Throw (b). Drop. 

 

 
Figure 7. The measured and estimated values, and prediction error histogram for the optimum MLP. (a) training data of throw, (b) test data of throw (c) training data of 
drop, (d) test data of drop. 

 
Table 4. The PCA-GA-MLP results for throw and drop. 

Output  Data NSE RMSE MAE MEDAE 

Throw 

ALL 0.526 1.612 1.260 1.036 

Train 0.523 1.678 1.288 1.016 

Test 0.244 1.387 1.220 1.131 

validation 0.606 1.530 1.169 1.323 

Drop 

ALL 0.728 0.781 0.600 0.426 
Train 0.725 0.811 0.606 0.406 

Test 0.810 0.599 0.517 0.486 
validation 0.621 0.827 0.677 0.475 

4. Discussion 

In this section, the GA-MLP and PCA-GA-MLP models are 
compared. Hence, based on the indices reported in Tables 3 and 4, it is 

evident that integrating PCA can improve the generalization of MLP 
networks. However, the PCA-GA-MLP models, for both throw and 
drop, have lower performance in comparison. Comparing the GA-MLP 
and PCA-GA-MLP performances reveals that the results for the drop 
are better than the throw. For further comparison, the correlation 
between the measured and estimated values for both scenarios is shown 
in Figure 8. It is concluded that the results of both scenarios are 
acceptable except for the PCA-GA-MLP model used to predict the 
throw. Nevertheless, the GA-MLP models have complete superiority 
over the PCA-GA-MLP models. 

In addition, due to the probabilistic nature of the GA, the consistency 
of the GA-MLP and PCA-GA-MLP models is explored by statistical 
analyzes. In that regard, 30 new independent runs are conducted for 
both scenarios, and the statistical properties for all indices (i.e., NSE, 
RSME, MAE, and MEDAE) are calculated. Figure 9 shows the histogram 
plots and normal distribution parameters for all indices. Comparing the 
results shows the consistency of the results. The standard deviation is 
shown in Figure 9, which is acceptable relative to the mean of the 
distributions. 
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Figure 8. The correlation of the measured and estimated values. (a) the training and testing data sets for throw by the GA-MLP, (b) the training and testing data sets for 
drop by the GA-MLP, (c) the training and testing data sets for throw by the PCA-GA-MLP, (d) the training and testing data sets for drop by the PCA-GA-MLP. 

 

 
Figure 9. The model performance. (a) throw by the GA-MLP, (b) drop by the GA-MLP, (c) throw by the PCA-GA-MLP, (d) drop by the PCA-GA-MLP. 
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Finally, sensitivity analysis is performed for the best GA-MLP models. 
This study determined the significance of input variables using the 
"improved backward stepwise selection" approach. In this method, the 
sensitivity of the MSE is evaluated by sequentially setting input neurons 
to their mean values. Therefore, by using Eq. 14, the relative Importance 
Factor (IF) of each variable is determined, which is the ratio of the 
resulting MSE (MSEi) to the original network MSE [68, 69]: 

 

𝐼𝐹𝑖 =
𝑀𝑆𝐸𝑖

𝑀𝑆𝐸
                                                                                                (14) 

 

The results are given in Figure 10. As in Figure 10, all the input 
variables significantly predict muckpile shape. However, the MLP model 
(Figure 4b) is more sensitive to specific charges when modeling drops.  
While for the throw, the MLP model (Figure 4a) is more sensitive to 
specific charges and sub-drilling. 

 

 
Figure 10. Sensitivity analysis and IF of input variables. 

Conclusion 

In open-pit mining, there is always a desired MSh. It is determined by 
the equipment type and size utilized and depends on the blasting blocks' 
features. It is essential to find an appropriate model to predict and 
optimize the MSh according to the blasting and rock mass parameters. 
Hence, a hybrid approach is used where the MLP network is prepared 
with the GA. Unlike the traditional trial and error procedure, the GA-
MLP model is a self-organized model that finds a near-optimal 
architecture for an MLP with high performance and generalization. 
Hence, several blasting data were used to predict the MSh and validate 
the proposed MLP method. Principle component analysis was used for 
variable reduction while improving the running time of the GA-MLP. 
Results show that the prediction obtained by PCA-GA-MLP 
outperforms the others except for the throw. Comparing the results 
confirms the absolute superiority of the GA-ANN to the PCA-GA-MLP 
for both throw and drop. The best model for predicting throw has an 
NSE of 0.946 and 0.764 for the training and testing data sets, 
respectively. 

Moreover, throw prediction RMSEs are 0.534 and 1.247 for the 
training and testing data sets, respectively. The best model for drop has 
NSE of 0.913 and 0.819 and RMSE of 0.455 and 0.584 for both training 
and testing. The sensitivity analysis shows that drop is more affected by 
specific charge while the throw is affected by specific charge and sub-
drilling length. In future, some field tests are defined to analyze the 
relationship between different firing pattern and blasting performance. 
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