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A B S T R A C T 

 

For the construction of railway embankments, geotechnical engineers pay special attention to slope stability studies. The factor of safety values 
plays a crucial part in assessing the safe design of slopes. These values determine how close or far slopes are from failing due to natural or 
man-made causes. While the factor of safety is a numeric indicator of relative stability, it does not indicate the actual risk level of any structure. 
However, the reliability index and probability of failure quantify the risk level. The present study discusses the findings of a study to determine 
the factor of safety of an embankment with 12.3 m height using Geo-studio 2012 software. In this article, the fragility curve for six different 
types of cross-sections was also developed, i.e. the graph between the probability of failure (𝑃𝑓) and horizontal seismic coefficient (𝐾ℎ), for 
various values of 𝐾ℎ (i.e. 0.1, 0.12, 0.144, 0.18, 0.2, 0.3, 0.4 and 0.5). It is observed from the developed fragility curve that as the 𝐾ℎ value increases, 
the 𝑃𝑓 value decreases. A fragility curve can be used to calculate failure probability over a range of seismic zones, and for design purposes, a 
given seismic zone and probability of failure which determine a unique reliable side slope are selected. Furthermore, two machine learning 
(ML) models, namely Deep Neural Network (DNN) and Support Vector Regression (SVR) have been developed for the prediction of the 
factor of safety for different sides slope. The obtained correlation values (R) for SVR and DNN are approximately 0.95 and 0.82, respectively. 
With the help of the predicted factor of safety, the fragility curve against horizontal seismic coefficient are drawn for both SVR and DNN 
models. This aims to reduce the time of calculation and facilitate working by suggesting the best model for further analysis of railway 
embankment. 
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1. Introduction 

The quantitative examination of stability is required in the practice of 
civil engineering for a variety of technical issues, including the 
construction of railway embankments. The slope is vital in the stability 
of railway embankment slopes, since even the smallest collapse can 
result in severe financial losses and endanger lives. Engineers use the 
factor of safety value to determine how close or far the slope is from 
failure while analyzing the slope stability. To derive the factor of safety, 
the slope stability analysis of railway embankment is carried out for a 
12.3 m height. The analysis has been performed using Bishop’s method. 
There are several methods available to determine the factor of safety, 
namely Method of Slices, Jambu’s method, Morgenstern method, soft 
computing methods, etc. 

A fragility curve is a relationship that expresses the likelihood of a 
facility or component reaching or exceeding a precisely defined limit 
state as a function of some measure of environmental excitation [1]. 
Fragility curves have recently become more widely used in risk 
assessment for various damage stages of geotechnical structures [2,3]. 
These curves assess the total risk of infrastructures and provide an 
estimate of probable damage for a certain class. As a result, fragility 
curves can be utilized as a disaster decision-making tool, which is critical 
for disaster mitigation and emergency planning. Fragility functions 
describe the performance of structures and slope failure based on the 
conditional probability of failure for a particular range of loading 
condition. The reliability index calculated using these fragility function  

 
 
 
is based on traditional probabilistic methodology, which can be seen as 
the relative probability of failure at a specific design point [4]. Many 
researchers have used various ways to quantify the fragility curve in 
previous studies [4,5,6,7,8,9]. 

Jeong and Elnashai (2007) categorized fragility curves into a variety 
of methods such as analytical, empirical, and hybrid approaches [11]. 
Even if each technique has its own set of drawbacks, the most widely 
discussed approaches in the literature are analytical ones. Because of 
their diversity, they can be divided into numerous categories depending 
on whether the used equation is an explicit or implicit function, and 
whether the likelihood of failure is calculated analytically or numerically 
[12]. The first-order reliability method (FORM) was frequently used to 
determine the reliability index and corresponding probability of failure. 
Vorogushyn et al. proposed the fragility curve development for earthen 
dikes using Monte Carlo simulation. Fotopoulou and Pitilakis (2013) 
suggested a method for constructing fragility curves for reinforced 
concrete buildings subjected to earthquake-induced landslides using the 
finite difference method [13]. To produce the fragility curve for 
embankments, Tsompanakis et al. (2012) incorporated the pseudo-static 
limit equilibrium method combined with Monte Carlo simulations. In 
this study, only one failure mechanism is investigated, and the 
correlation characteristic of fill material shear strengths is ignored. 

The major goal of this study is to show the establishment of a 
methodology for railway embankment slope fragility functions in 
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response to a variety of loading scenarios, e.g. earthquake and landslide 
events. Recent studies have introduced some novel developed 
techniques , such as the copula-based sampling method and FORM 
[11,12,13,14]. These strategies are incorporated to estimate the 
probability of failure of the embankment slope, accounting for the 
uncertainties of shear strength parameters. The developed fragility 
curves can be used to explore the diverse economic impacts of railway 
embankment failure, especially on transportation systems. To achieve 
the goal, data have been generated using Geo-studio 2012. To perform 
the stability analysis, SLOPE/W has been used with the Bishop’s 
method. Moreover, two machine learning methods, DNN and SVR, have 
been also used to analyze the factor of safety. Finally, fragility curves are 
plotted for different embankment slopes for all the proposed models. 

2. Methodology 

All analysis are done for a railway embankment with a height of 
12.293 m. The embankment is made up of C-ϕ type of soil. A cross-
sectional view of the railway embankment is shown in Figure 1, and the 
material properties used in the embankment for each layer are presented 
in Table 1. 

 

 
Figure 1. The railway embankment sectional view. 

 
Table 1. The material properties of railway embankment. 

Color Name Unit Weight 
(kN/m2) 

Cohesion (kpa) Phi (◦) 

 

Sleeper 24 50 40 

 

Ballast Cushion 18 0 40 

 

Blanket 19 0 32 

 

Embankment 
Fill-4 25 17 34 

 

Subsoil L-1-4 25 20 30 

 

Subsoil L-2-4 24 21 27 

 
The unit weight of the ballast cushion is taken as 18 KN/m2, and the 

unit weight of subsoil layer L-1-4 and embankment fill-4 are considered 
as 25 KN/M2. The detailed material properties and geometrical 
properties of railway embankment considered in this study are 
presented in Tables 1 and 2 respectively. 

In this study, GeoStudio SLOPE/W has been used to perform the 
stability analysis with the Bishop’s method. The input parameters used 
in this study are 𝑐 , 𝜙 , 𝛾 , 𝐾ℎ , and 𝐾𝑣 for calculating the factor of safety 
(FOS). Values of 𝑐  , 𝜙  , and 𝛾  are entered in the material section,  

while𝐾ℎ , and 𝐾𝑣are entered in the loading section in SLOPE/W FOS is 
calculated for various side slopes, ranging from 1:2.0 to 1:1.5 for the side 
slope of embankment fill 1 and fill 2. 

The horizontal seismic coefficient was determined by the IITK-
GSDMA guideline for seismic design of earth dams and embankments 
[18] using equation (1), and the vertical horizontal seismic coefficient 
was calculated using equation (2) as follows: 

 

𝐾ℎ =
𝑍𝐼𝑆

3
                                                                                                  (1) 

 

𝐾𝑣 =
𝐾ℎ

2
                                                                                                   (2) 

 

Where 𝑍 denotes the zone factor, 𝐼  denotes the importance factor, 
and 𝑆  denotes the shape factor. The values of 𝑍 , 𝐼 , and 𝑆  for the 
corresponding zone factor are used as per IS-1893 (Part 1):2002, 
presented in Table 3. 

 
Table 2. The illustration of Geometrical properties of embankment. 

Geometrical Parameters Value (m) 

Total height of the embankment 12.293 

The top width of the embankment 13.860 

Height of the blanket layer 0.600 

Height of prepared subgrade 1.000 

Height of embankment fill 1 4.693 

Height of embankment fill 2 6.000 

Side slope of embankment fill 1 1.900 

Side slope of embankment fill 2 1.900 

Height of subsoil layer 1 2.000 

Height of subsoil layer 2 10.000 

Berm width at 6m level 1.5 

Berm at subsoil layer 1 10 
 

Table 3. The values of different factors. 

Zone Z I S Kh 

Ⅱ 0.1 1.5 2.0 0.1 

Ⅲ 0.16 1.5 1.5 0.12 

Ⅳ 0.24 1.5 1.2 0.144 

Ⅴ 0.36 1.5 1.0 0.18 

 

For any specific value of 𝐾ℎ, the average value of FOS is considered 
as 𝜇, and the standard deviation of these FOS values is taken as 𝜎.  

The reliability index (β) is defined as the shortest distance of the 
performance function from the origin of the reduced coordinate system 
of variables and can be calculated using the equation given below: 

 

𝛽 =
𝜇−1

𝜎
                                                                                                     (3) 

 

Where 𝛽 represents the reliability index, 𝜇 represents the mean of the 
factor of safety, 𝜎  represents the standard deviation of the factor of 
safety. 

Then, to evaluate the 𝑃𝑓from these 𝛽 values, an analytical expression 
is proposed [19–21] as follows: 

 

𝑃𝑓 = 1 − 𝜙(𝛽)                                                                                                           (4) 
 

Here, 𝜙  represents the standard normal cumulative distribution 
function. 

3. Description of ML Techniques 

3.1. Deep Neural Network (DNN) 

An artificial neural network (ANN) model typically has three layers: 
one input layer, one hidden layer, and one output layer. A deep neural 
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network (DNN) is an ANN that has several layers between the input 
and output layers.  The depth of the architecture is determined by the 
number of hidden layers. There are multiple nodes (i.e., neurons) and an 
activation function in each hidden layer. For different layers, activation 
functions may be different. Because of its extraordinary ability to 
understand intricate patterns and replicate non-linear circumstances in 
the real world, we use it as the meta-model to provide correct 
predictions. One input layer, three hidden layers, and one output layer 
make up the DNN structure. As a non-linear approximation, each 
hidden layer owns the rectified linear activation function (ReLU). 

 

𝑔(𝑦) = max⁡(0, 𝑦)                                                                            (5) 
 

In the output layer, there is no non-linear activation function. In the 
DNN, the number of neurons is equal in all the hidden layers and is 
calculated to give a specified total number of DNN parameters. 
Furthermore, the output of a hidden layer is connected to the input of 
the preceding layer, allowing the layers to learn the residual. These 
residual blocks help to simulate more complicated relationships by 
allowing it to dig deeper. Furthermore, inputs can experience quick 
feedforward propagation across layers via residual connections, and 
learning the residual mapping is simpler than the original mapping. The 
hidden layer of the DNN model is trained by randomly selected model 
parameters. The DNN model aims to reduce the loss function which is 
represented by mean-square error (MSE). Backward propagation of 
errors is an important step in fine-tuning DNN hyper parameters to 
solve the objective function accurately. In this study, gradient descent is 
used to update the weight of the DNN by back-propagating the measure 
of errors from the current layer to the previous layer. This process aims 
to predict values closer to the target output value. For loss optimization, 
the updated weight is calculated by equation (6). 

 

𝑊 = 𝑤 + 𝜂 ×
𝜕𝐸

𝜕𝑤
                                                                                    (5) 

 

Where 𝑤 represents the weight, 𝜂 represents the learning rate, and 𝐸 
represents the error between the actual and predicted values. The DNN 
models are well-developed algorithms and for further details, please 
refer to [22,23]. 

3.2. Support Vector Regression (SVR) 

Support vector regression is a popular choice for prediction and curve 
fitting for both linear and non-linear regression types. The SVR 
algorithm is based on the components of the SVM, in which support 
vectors are simply points closer to the created hyperplane in an n-
dimensional feature space that separates the data points around the 
hyperplane. 

There is a simple training set 𝑋 = (𝑥𝑖 , 𝑦𝑖), where (I = 1, 2, …n). A 
function 𝑓(𝑥𝑖) is a regression function that can be written as: 

 

𝑓(𝑥𝑖) = 𝜔 ∗ 𝜙(𝑥𝑖) + 𝑏                                                                         (7) 
 

Where 𝑥𝑖  represent the input vector,⁡𝑥𝑖  represent the target output 
vector, 𝜔 belongs to any real number is called the weight vector, 𝜙(𝑥𝑖) 
represent a non-linear mapping of the dataset within real number space 
to the higher feature space, and b represents the bias. The optimization 
can be done using the following function presented in Eq. (8). 

 

𝑚𝑖𝑛𝜙(𝜆) =
1

2
(𝜆2)                                                                                  (8) 

 

{
𝑦𝑖 − 𝜆 ∙ 𝑥𝑖 − 𝑏 ≤ 𝜀
𝜆 ∙ 𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝜀

                                                                               (9) 
 

Where 𝑥𝑖 and 𝑏 are the normal vectors and offset of the regression 
function, respectively. 

4. Data preparation 

In this study, 100 random datasets are generated using GeoStudio by 
assuming the random values of cohesion (𝑐 = 0⁡𝑡𝑜⁡400) , angle of 
friction (𝜙 = 0 − 38), unit weight of soil (𝛾 = 17 − ⁡22) for different 
values of 𝐾ℎ and 𝐾𝑣 for all six varying slopes (i.e., slope 1:2.0 to 1:1.15). 

The entire dataset used in this study is normalized between 0 to 1 using 
the following equation (9) 

 

𝑋𝑁𝑜𝑟 =
𝑋𝐴𝑐𝑡−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                                                                                    (9) 

 

Here 𝑋𝑚𝑎𝑥and 𝑋𝑚𝑖𝑛  are the maximum and minimum values of the 
parameters, respectively. 𝑋𝐴𝑐𝑡 and 𝑋𝑁𝑜𝑟 are the actual and normalized 
values of the parameters, respectively. After the process of 
normalization, the entire dataset is randomly divided into two parts i.e., 
training (70%) and testing (30%). The training dataset is used for the 
construction of the model, and the testing dataset is used for the 
validation of the model. Two Machine Learning (ML) techniques, Deep 
Neural Network (DNN) and Support Vector Regression (SVR), have 
been developed using these 100 datasets. Furthermore, 40 datasets have 
been generated using GeoStudio to validate the proposed ML model. 

Ten statistical parameters such as the Coefficient of Determination 
(R2), Adjusted Determination Coefficient (AdjR2), Nash–Sutcliffe 
efficiency (NS), Root Mean Square Error (RMSE), Variance Account 
Factor (VAF), Performance Index (PI), RMSE-observations standard 
deviation ratio (RSR), Willmott’s Index (WI), Mean Absolute Error 
(MAE), and Expanded Uncertainty (U95) were utilized to investigate the 
performance of the developed models. The mathematical equations of 
these statistical parameters are given below: 

 

𝑅2 =
∑ (𝑥𝑖−𝑥𝑎𝑣𝑔)

2
−𝑛

𝑖=1 ∑ (𝑥𝑖−𝑦𝑖)
2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦𝑎𝑣𝑔)
2𝑛

𝑖=1

                                                                 (10) 
 

𝐴𝑑𝑗𝑅2 = 1 −
(𝑛−1)

(𝑛−𝑝−1)
(1 − 𝑅2)                                                                   (11) 

 

𝑁𝑆 = 1 −
∑ (𝑥𝑖−𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑥𝑖−𝑥𝑚𝑒𝑎𝑛)
2𝑛

𝑖=1

                                                                        (12) 
 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑥𝑖 − 𝑦𝑖)

2𝑛
𝑖=1                                                                 (13) 

 

𝑉𝐴𝐹 = (1 −
𝑣𝑎𝑟(𝑥𝑖−𝑦𝑖)

𝑣𝑎𝑟(𝑥𝑖)
) × 100                                                            (14) 

 

𝑃𝐼 = 𝑎𝑑𝑗. 𝑅2 + (0.01 × 𝑉𝐴𝐹) − 𝑅𝑀𝑆𝐸                                             (15) 
 

𝑅𝑆𝑅 =
𝑅𝑀𝑆𝐸

√
1

𝑛
∗∑ (𝑥𝑖−𝑥𝑎𝑣𝑔)

2𝑛
𝑖=1 ⁡

                                                                       (16) 

 

𝑊𝐼 =
∑ (𝑥𝑖−𝑦𝑖)

2𝑛
𝑖=1

∑ (|𝑦𝑖−𝑥𝑚𝑒𝑎𝑛|+|𝑥𝑖−𝑥𝑚𝑒𝑎𝑛|)
2𝑛

𝑖=1

                                                            (17) 
 

𝑀𝐴𝐸 =
1

𝑛
∑ |(𝑦𝑖 − 𝑥𝑖)|
𝑛
𝑖=1                                                                       (18) 

 

𝑈95 = 1.96(𝑆𝐷2 + 𝑅𝑀𝑆𝐸2)
1

2                                                                 (19) 
 

where 𝑥𝑖 and 𝑦𝑖 represent the experimental and observed ith value, n 
corresponds to the size of dataset samples, 𝑥𝑎𝑣𝑔 is the average of the 
experimental value, and P represents the number of input parameters. 
The U95 (Eq. 19) provides uncertainty up to a 95% confidence level, with 
1.96 being subsequent to the confidence level coverage factor. 

5. Result and discussion 

This section presents the results of the proposed DNN and SVR 
models in the development of fragility curve and the determination of 
probability of failure for different railway embankment side slopes such 
as 1:1.5, 1:1.6, 1:1.7, 1:1.8,1:1.9, and 1:2.0. The outcomes of all proposed 
models are shown in the following sub-sections. Finally, the best 
predictive model was determined through the proposed statistical 
parameters. 

5.1. Statistical parameters 

In this section, ten statistical parameter values were computed to 
analyze and compare the accuracy of the proposed models 
corresponding to various slopes. The statistical parameters include 
Coefficient of Determination (R2), Adjusted Determination Coefficient 
(AdjR2), Nash–Sutcliffe efficiency (NS), Root Mean Square Error 
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(RMSE), Variance Account Factor (VAF), Performance Index (PI), 
RMSE-observations standard deviation ratio (RSR), Willmott’s Index 
(WI), Mean Absolute Error (MAE), and Expanded Uncertainty (U95). 
To assess the accuracy of ML-based models, many researchers employ 
all these statistical parameters[24–30]. The parameters calculated for 
both models for various slopes are considered the best, because the 
obtained values are close to their ideal value. The results obtained from 
the performance evaluation of the proposed ML models are presented 
in Table 4. 

5.2. Scatterplot 

The results of the different proposed models are presented through 
scatterplots which represent the normalized actual output versus the 
normalized predicted output. method illustrates the accuracy of the 
proposed models by plotting the actual and predicted data along the line 
(𝑥 = 𝑦) . Data points located on the line (𝑥 = 𝑦)  represent the best 
predictive model. The scatterplots of training (Figure 2a, c, e, g, I, and 
k), and testing (Figure 2b, d, f, h, j, and l) are plotted separately for both 
the DNN and SVR models. It can be observed from the scatterplots of 

the proposed models that the plotted points are located close to the line 
(𝑥 = 𝑦), implying a successful prediction of all models. 

5.3. Fragility curves 

It is necessary to address the responses for slopes using a traditional 
deterministic limit equilibrium analysis and ML technique to create 
analytical fragility curves. In this step, a fragility curve was created 
according to the dynamic simulations. Figure 3 (a-l) represent the 
fragility curves for both the actual dataset and model dataset for six 
different slopes. The comparison between the fragility curve obtained 
from the actual output and the developed DNN and SVR models for 
different embankment slopes is presented in Figure. 3 (a, c, e, g, I, k) for 
the DNN model and Figure. 3 (b, d, f, h, j, l) for the SVR model. It can 
be seen that as the value of the horizontal seismic coefficient increases, 
the probability of failure also increases. In addition, the slope of the 
curves can also play an important role in the failure of railway 
embankments. it can also be observed from the curves that the 
probability of failure is lower for slope 1:2.0 in comparison to slopes 1:1.5, 
1:1.6, 1:1.7, 1:1.8, and 1:1.9. 

 
Table 4. The statistical Parameters. 

Statistical 

parameters 

Slope 1:2.0 Slope 1:1.9 Slope 1:1.8 Slope 1:1.7 Slope 1:1.6 Slope 1:1.5 

DNN SVR DNN SVR DNN SVR DNN SVR DNN SVR DNN SVR 

R2 0.899 0.909 0.953 0.460 0.959 0.832 0.898 0.936 0.841 0.581 0.870 0.8574 

Adj R2 0.894 0.904 0.950 0.431 0.957 0.823 0.892 0.932 0.832 0.558 0.863 0.8497 

NS 0.179 -0.125 0.306 0.047 -0.240 -0.223 -0.209 -0.460 -0.284 -0.536 -0.634 -0.5667 

RMSE 0.241 0.283 0.224 0.262 0.303 0.301 0.301 0.330 0.310 0.339 0.351 0.3437 

VAF 49.116 39.375 72.341 44.248 61.476 58.600 52.243 57.156 60.770 42.537 32.243 52.5169 

PI 1.144 1.015 1.450 0.611 1.269 1.108 1.114 1.173 1.130 0.645 0.835 1.0312 

RSR 0.906 1.061 0.833 0.976 1.114 1.106 1.100 1.208 1.133 1.239 1.278 1.2517 

WI 0.654 0.607 0.760 0.690 0.663 0.663 0.638 0.632 0.663 0.610 0.559 0.6168 

MAE 0.209 0.237 0.195 0.198 0.258 0.257 0.258 0.287 0.267 0.279 0.295 0.2970 

U95 0.255 0.290 0.261 0.301 0.322 0.322 0.314 0.345 0.332 0.354 0.355 0.3572 

 
 
 

   
(a) (b) (c) 

Figure 2 a, c, for the training phase and Figure 2b  for the Testing phase. 
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(d) (e) (f) 

   

(f) (g) (h) 
 

 

 

 (i)  
Figure 2 e, g, I, k) for the training phase and Figure 2 d, f, h, j, l) for the Testing phase. 

 

 

   
(a) Fragility curve for slope 1:2.0 for the DNN 

model 
(b)Fragility curve for slope 1:2.0 for the SVR model (c) Fragility curve for slope 1:1.9 for the DNN model 

Figure 3 (a-c). The illustration of fragility curve for all models with different slopes. 
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(d) Fragility curve for slope 1:1.9 for the SVR model (e) Fragility curve for slope 1:1.8 for the DNN model (f) Fragility curve for slope 1:1.8 for the SVR model 

   
(g) Fragility curve for slope 1:1.7 for the DNN model (h) Fragility curve for slope 1:1.7 for the SVR model (i) Fragility curve for slope 1:1.6 for the DNN model 

  
(k) Fragility curve for slope 1:1.5 for the DNN model (l) Fragility curve for slope 1:1.5 for the SVR model 

Figure 3 (d-l): The illustration of fragility curve for all models with different slopes. 

 

6. Conclusion 

This study demonstrates the application of the machine learning 
methodology in developing fragility curves for railway embankments. 
The factor of safety of the railway embankment of various slopes was 
estimated in this investigation using the traditional, well-proven 
reliability methods. the shear strength properties of landfill materials 
and slope geometries significantly influenced the fragility curves 
generated by the FORM and machine learning models. For instance, 
fragility curves during seismic excitations are directly correlated with 
the magnitude of the earthquake, as the magnitude increases, the 
probability of failure also increases. Additionally, when slope height 
increases, fragility curves alter, showing that slopes with a higher slope 
height have a larger failure chance. The calculated probability of failure 
is also impacted by changes in inclination. The results of this work 
demonstrated that the slope responses can be more thoroughly 
interpreted using the fragility analysis under a wide range of loading 
conditions. It is thus suggested that the analysis of the railway  

 
 
embankment’s fragility curve can provide a better estimation of the 
probability of failure. In general, the novel interpretable model based on 
DNN and SVR developed in this work is suitable and efficient; it offers 
benefits and prospects for analyzing the contribution of influencing 
elements to the failure of railway embankments. Following the 
prediction, the model was analyzed using some statistical parameters, 
and the best models for the prediction of the safety factor were chosen 
by comparing them. The statistical parameters and numerous graphs, 
including the actual vs expected curve and fragility curve, were used to 
study these comparisons. The R2 values for DNN and SVR showed good 
accuracy in both the training and testing phases presented in Table 4. 
The proposed DNN and SVR models have high potentials to predict 
factors of safety and can be used as quick tools in railway embankment 
analysis. 
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