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A B S T R A C T 

 

Utilizing the aggregate piers is one of the methods to improve and increase the bearing capacity of soft soils. The ultimate bearing capacity of 
these piers is affected by parameters such as the physical properties of the piers, structural conditions, the embedment depth and replacement 
ratio of piers, which complicates the estimation of bearing capacity. In this study, the Gene Expression Programming method was used for 
the prediction of the ultimate bearing capacity of clay soils reinforced with aggregate piers. For this purpose, two different models were 
developed, of which the first model (GEP2) utilized two input variables, the undrained shear strength of clay (Su) and replacement ratio (ar), 
while the second model (GEP4) used four input variables including the undrained shear strength of clay (Su), replacement ratio (ar), 
slenderness ratio (Sr), and embedment depth of piers (df). The coefficient of determination of the GEP2 model, and the GEP4 model is 0.921 
and 0.942, respectively. Besides, comparing the GEP4 model of this research with the developed models of previous studies confirms the 
superior performance of the GEP4 model, considering both the accuracy and number of input parameters. The results of sensitivity analysis 
showed that the undrained shear strength of clay (Su), replacement ratio (ar), slenderness ratio (Sr), and embedment depth of piers (df) have 
the highest impact on the prediction of bearing capacity, respectively. Furthermore, the parametric analysis demonstrated that increasing the 
Su, ar, Sr, and df would improve the bearing capacity of the aggregate piers reinforced clay. 
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1. Introduction 

Soft soils, including clay and slit, have low strength and high 
compressibility. Hence, soil improvements are required before 
constructing engineering structures on soft soils. There are various 
methods for soil improvement, including soil stabilization, pre-loading, 
and deep replacement. In the deep replacement method, the desired soil 
is excavated to a relatively large depth; afterward, it is replaced and filled 
with high-quality materials in the form of a series of columns These 
supports, along with the surrounding soil, form a composite foundation 
with an increased bearing capacity to withstand horizontal and vertical 
loads [1, 2]. Besides being useful, cost-efficient, and environmentally 
friendly, the deep replacement method helps to reduce overall and 
differential settlement and stabilize slopes. Some of the deep 
replacement methods are vibro-replacement, vibro-displacement, vibro-
concrete column, controlled modulus column, sand compaction 
column, encased granular column, aggregate pier, dynamic replacement, 
and sand columns [2]. The deep replacement methods can bring 
benefits such as increasing soil bearing capacity, increasing compaction, 
increasing liquefaction resistance, reducing settlement, providing lateral 
support, and accelerating consolidation [3–7].  

Recently, the aggregate pier method has been widely evaluated and 
used to increase bearing capacity, reduce settlement, and horizontal 
displacement under the foundation [8–12]. In general, aggregate piers 
consist of four categories, including the single isolated pier, the 
intermediate single pier, the intermediate group of piers, and the group 
of piers [13]. Failure modes of aggregate piers consist of bulging, 
punching, and shear failure, which are depicted in Figure (1). The  

 
 

 
bulging failure is most likely to happen in aggregate piers constructed 
in clay, and is usually observed at the upper part of the column (3-2 
times the diameter of the column) [2]. The failure modes of stone 
columns or aggregate piers depend on the column type (based on its 
length and diameter), the type of loading on the column, and soil 
strength [14].  

According to Figure (1a), the zone highlighted in red has the highest 
chance of bulging failure. If floating aggregate piers are placed in soft 
soil (Figure 1b), the aggregate piers would be unstable due to punching 
failure, which happens before bulging failure, especially if the length of 
aggregate piers is less than 3-2 times their diameter [15]. 

Since the early 1970s, several techniques have been proposed to 
predict the bearing capacity of the aggregate pier, including methods 
based on plasticity and elasticity theory [16], cavity expansion theory 
[17, 18], numerical methods [19–22], empirical methods [23–26], and 
soft computing-based methods [27–29]. Numerous field and laboratory 
experiments have been performed to investigate the failure mechanism 
and also to evaluate the bearing capacity of aggregate piers [30–33]. 
Ambily and Gandhi performed a high-precision experiment on the 
behavior of a single and a group of stone columns. Subsequently, they 
compared the results with those obtained from the finite element 
method [34]. Hanna et al. presented a finite element (FE) model for 
evaluating the performance of stone column in soft soils [35]. Mohanty 
and Samantha, apart from investigating the behavior of aggregate piers 
in the laboratory, proposed a numerical method to predict the bearing 
capacity [36]. The 3D FE model proposed by Algin and Gumus 
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considered the effect of parameters during the construction and 
installation of stone columns [37]. Etezad et al. developed a numerical 
analysis method to estimate the bearing capacity of soft soils reinforced 
with stone columns. They compared its results with laboratory findings 
to evaluate this model [38]. Naseer et al. used numerical and laboratory 
investigations to evaluate the effect of sand columns in soft clay soils 
[39]. Also, Stuedlein and Holtz compared the accuracy of existing 
analytical models for estimating the bearing capacity of aggregate piers 
by evaluating 30 loading experiments in various field conditions. They 
demonstrated that the existing models have a wide range of biases and 
errors. They concluded that these models are usually unsuitable for 
practical designs due to their wide range of mistakes. Hence, a modified 
model is required to determine the bearing capacity [13]. 

 

 
Figure 1. The failure modes for stone columns and aggregate piers. 

 
In recent decades, employing soft-computing methods, including 

Artificial Neural Networks (ANNs) and Adaptive Neuro-Fuzzy 
Inference Systems (ANFIS), has been popularized in civil engineering 
due to their capability and adaptability [40–48]. Many researchers used 
these techniques to predict axial and lateral bearing capacity, pull-out 
resistance, and efficiency of piles [13, 33, 39, 49–56]. Among these 
studies, Goh evaluated the friction capacity of driven pilesby the ANN 
[49]. Fattah et al. used a regression model to predict stone columns’ 
bearing capacity (SCBC) [33]. In 2018, Das and Dey employed the ANN 
to predict the SCBC. They showed that ANN has superior predictive 
capability compared to previously established theories [52]. Dey and 
Debnath used the Support Vector Regression (SVR) method to assess 
the ultimate bearing capacity of a stone column reinforced with geogrid. 
They also compared the SVR with the ANFIS method and concluded 
that the SVR model outperforms the ANFIS model [53]. Ardakani et al. 
predicted the SCBC installed in the clay containing slit soil by the back-
propagation ANN and optimized ANN using Imperialist Competitive 
Algorithm (ANN-ICA). This study confirms the superiority of ANN-
ICA compared to back-propagation ANN methods [54]. Although the 
neural network method has been used to predict the bearing capacity, it 
is referred to as a black box model due to the complexity of the model 
and matrix calculations [29]. Ghanizadeh et al. employed Multivariate 
Adaptive Regression Spline (MARS) optimized by a metaheuristic 
algorithm to build a model for predicting the bearing capacity of geogrid 
reinforced stone columns [27]. 

Dehghan banadaki used ANFIS to predict the SCBC in soft soils [55]. 
According to the satisfactory accuracy of the proposed ANFIS, they 
suggested this model to design floating column-like elements for 
subgrade improvement. Type-2 Fuzzy Set (T2FS) was used by Das and 
Dey in 2022 to estimate SCBC. In this study, T2FS outperformed ANN 
and ANFIS models for the prediction of SCBC [56]. Stuedlein and Holtz 
developed a model based on the multiple linear regression method for 
estimating the bearing capacity of aggregate piers. The input variables 
in this study were assumed to be the slenderness ratio (Sr), replacement 
ratio (ar), embedment depth (df), and undrained shear strength of clay 
(Su). Equation (1) was proposed for estimating the bearing capacity [13]. 
It should be noted that the slenderness ratio is the ratio of aggregate pier 
length to its diameter (Sr= Lp / dP ). 

 

ln(𝑞𝑢𝑙𝑡) = 4.756 + 0.013 × 𝑆𝑟 + 1.914 × 𝑎𝑟 + 0.07 × 𝑑𝑓 × 𝑆𝑟 − 13.71 ×

                         (
𝑆𝑢

𝑎𝑟
)−1 + 0.005 ×

𝑆𝑢

𝑎𝑟
                                                                                    (1)  

 

Bong et al. used the multiple linear regression method and deep 

neural network to determine the bearing capacity of the aggregate piers 
[29]. According to Equation (2), four independent variables, including 
undrained shear strength of clay (Su), replacement ratio (ar), 
embedment depth (df), and slenderness ratio (Sr), were used: 

 

𝑞𝑢𝑙𝑡 = 67.8 ×
1

𝑎𝑟
+ 169.3 × √𝑆𝑢 × 𝑎𝑟 + 271.4 × 𝑑𝑓

2 − 626.5 ×
1

𝑆𝑟
− 256.8     (2) 

 

It should be considered that in Equation (2), ar is a ratio and not a 
percentage. R2 of this model was calculated as 0.93. Also, the R2 of the 
deep neural network method was 0.92 [29]. Dadhich et al. also predicted 
the bearing capacity of aggregate piers by the linear regression, support 
vector machine, random forest, and ANN methods [28]. Equation (3) 
was suggested for the prediction of the bearing capacity of the stone 
columns: 

 

𝑞𝑢 = 11.74 × 𝑆𝑢 + 4.69 × 𝑎𝑟 + 19.86 × 𝐵𝑓 + 279.56 × 𝑑𝑓 + 297.17 × 𝑑𝑝 +

2.72 × 𝐿𝑝 + 14.88 × 𝑆𝑟 −  642.43                                                                     (3) 
         

In this equation, the undrained shear strength of clay (Su), 
replacement ratio (ar), diameter or width of the column (Bf), 
embedment depth (df), diameter of the aggregate pier (dp), length of the 
aggregate pier (Lp), and slenderness ratio (Sr) were used as input 
variables. The coefficient of determination (R2) for Equation (3) and the 
developed support-vector regression (SVR), random forest regression 
(RFR), and ANN models were 0.901, 0.88, 0.98, and 0.89, respectively 
[28]. 

In previous studies, various methods were employed, including ANN, 
ANFIS, SVR, RFR, linear and non-linear regression methods, to predict 
the bearing capacity of the aggregate piers reinforced clay. But, each of 
these methods has its drawbacks. The ANN cannot provide a simple 
equation to calculate the bearing capacity due to being a black-box 
method. Besides, it is unsuitable for modelling when the dataset has a 
small number of records and might result in over-fitting. In developing 
multiple non-linear models, considering that the shape of the model is 
presumed and is not fully definable, the best and most accurate equation 
for the prediction of the bearing capacity is not achievable.  

In this study, the Gene Expression Programming (GEP) method is 
employed to predict the ultimate bearing capacity of clay soil reinforced 
by aggregate piers. In the GEP method, the accuracy of the developed 
model is increased by precisely determining the non-linear equation. 
This method is also suitable for a small amount of data. Besides, in this 
study, two different models based on GEP have been developed. One is 
able to estimate the ultimate bearing capacity by two variables (GEP2), 
and the other uses four variables to do so (GEP4). These two models 
may be used depending on the available information and design details. 
After sensitivity analysis and determining the importance degree of each 
input parameter, the parametric analysis was performed to evaluate the 
effect of each input variables on the bearing capacity based on the 
optimal model (GEP4). Also, the accuracy of the optimal developed 
model in this research was compared with the accuracy of previously 
proposed models. 

2. Methods 

2.1. Gene Expression Programming 

GEP is an evolutionary algorithm that, like genetic programming and 
genetic algorithm, relies on a population. This population evolves based 
on a fitness criterion and one or multiple genetic operators [57]. The 
GEP consists of linear chromosomes with a constant length, and 
expression trees with various shapes and lengths. These features are 
inspired by the genetic algorithm and genetic programming, 
respectively [58]. The main steps of the GEP are depicted in Figure (2). 

As can be seen in Figure (2), this process is repeated until a proper 
answer is achieved. All the GEP genes have the same length, but they 
can code expression trees (ET) with different shapes and lengths. A 
chromosome is formed, with the help of linking functions, by placing 
different genes next to each other. The ET, depicted in Figure (3) for 
Equation (4), presents various factors such as functions, constants, 
operators, and variables. 

 

[𝑎 + (𝑎 + 𝑏)] − [𝑎 − √𝑏]                                                                                                                    (4) 
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Figure 2. The flowchart for building a GEP model [59]. 

 

 
Figure 3. The expression tree of a chromosome 

 

Figure (4a) depicts a crossover operator when, to improve fitness 
expansion, a random branch from the parent tree is replaced by another 
random branch or element. Therefore, two offspring, each inheriting 
genetic data from either of the parents, are generated from this crossover 
operator. Figure (4b) presents a mutation operator that happened by 
replacing a random branch in a node of the parent tree with another 
newly generated branch or element [60]. 

Previous research has shown the advantages of the GEP method over 
classical regression methods [61, 62]. In classical regression methods, 
the function is defined before analysis, whereas in GEP, no predefined 
function is considered. Therefore, GEP performs better in modelling 
and extracting equation from empirical studies with multiple variables 
compared to regression techniques [63, 64]. To achieve maximum 
accuracy, no exact method is available to attain the optimal model with 
a combination of parameters, and due to its complexity, the duration of 
the modelling process increases. 

In this study, different values of effective variables were examined in 
GEP to achieve higher efficiency and less complex fittings. First, to 
maximize the accuracy of each model, the least possible number of gene 
parameters was utilized, and then, to expand the model, a combination 
of input variables was used. The linking function used in this GEP was 
addition. A problem was solved by choosing a single-gene chromosome 
and adding to its head length. However, the number of genes can be 
increased, and if the number is significant, a function can be chosen to 
link the branches of expression trees (sub-expression trees (sub-Ets)) 
[65]. Increasing input variables, the number of genes, and head size 
would make the model more complex. The complexity can also increase 
by the addition of new generations for better fitness [66]. There are five 
main steps when using GEP; three define the search space algorithm, 

and the last two determine the quality and speed of the search. These 
steps consist of: 

 

1- Choosing the fitness function. In this study, the fitness function 
(Fi) is considered as the mean square error (MSE). 

 

f =
1

𝑛
 ∑ (�̂�𝑗 − 𝑦𝑗  )2𝑛

𝑗=1                                                                                 (5) 
 

In this equation, �̂�𝑗 is the predicted value for data point “j” (where the 
total number of data points is n), and yj is the measured value for the 
data point “j”. 

 

2- Choosing the terminal (T) and functions (F) for the chromosome 
generation. Here, the terminal consists of independent variables, 
and the function set comprises four arithmetic operators (+, -, *, 
/), as well as some fundamental mathematical operators (such as 
square root and x3). The weight of all functions is considered as 1.  

3- Choosing the architecture of the chromosomes, including the 
number of genes and head size. In this study, between 3 and 7 
genes were selected with a head size of 4 to 7, and at the end, the 
optimum amounts of genes and head size were determined by the 
results of training and testing sets. 

4- Choosing the linking function to connect sub-ETs. In this 
research, after examining different functions and evaluating their 
accuracy, the "addition" function has been used. 

5- Utilizing a combination of all genetic operators, consisting of 
selection, crossover, and mutation. 

 

 
Figure 4: The expression trees in the GEP, a) Crossover operator, b) Mutation 
operator 

2.2. Evaluation of the Model Accuracy 

Several indexes were used in this study to evaluate the performance 
and accuracy of the proposed GEP models based on the training and 
testing data, including the coefficient of determination (R2), root-mean-
squaredeviation (RMSE), mean absolute error (MAE), root relative 
squared error (RRSE), and relative absolute error (RAE). The following 
equations show relations for these indexes 

 

𝑅2 =
(𝑛 ∑ 𝑡𝑖𝑜𝑖−∑ 𝑡𝑖 ∑ 𝑜𝑖)2

(𝑛 ∑ 𝑡𝑖
2−(∑ 𝑡𝑖)2)(𝑛 ∑ 𝑜𝑖

2−(∑ 𝑜𝑖)2)
                                                              (6) 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑡𝑖 − 𝑜𝑖)

2𝑛
𝑖=1                                                                     (7) 

 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑡𝑖 − 𝑜𝑖|

𝑛
𝑖=1                                                                             (8) 

 

𝑅𝑅𝑆𝐸 =  √
∑ (𝑡𝑖−𝑜𝑖)2

𝑖

∑ (𝑡𝑖−(1/𝑛) ∑ 𝑡𝑖𝑖 )2
𝑖

                                                                       (9) 
 

𝑅𝐴𝐸 =  
∑ |𝑡𝑖−𝑜𝑖|𝑖

∑ |𝑡𝑖−(1/𝑛) ∑ 𝑡𝑖𝑖 |𝑖
                                                                            (10) 

 

In the equations mentioned above, the measured value (real), model 
output value, and the number of all data points are presented as t, o, and 
n, respectively. 

(a)

  

(b)
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3. Experimental Dataset 

In this study, 37 bearing capacity data points determined by field 
loading tests were used to develop the GEP models, including 30 data 
collected by [13] and seven data collected by [67]. In fact, 30 data points 
collected by [13] are from different resources. The experimental dataset 
is provided in Table 1. As shown in Table 1, piers configuration, piers 
dimensions, shear strength of soil for data points in [67] are consistent 
with these values in [68-75]. On the other hand, the high accuracy of 
models developed in the current research, as well as previous researches, 
confirms the consistency of data points gathered from different sources. 
The dataset consisted of 27 circular foundations and 10 square 
foundations. The length of the aggregate piers (Lp) was in the range of 
2.3 to 14 meters, the diameter (dp) was in the range of 30 to 100 
centimeters, and the slenderness ratio (Sr) was from 2 to 26.67. Besides, 
the replacement ratio (ar) was between 16% and 122 %. Drop ram, 
tamped, and vibrated methods were used to construct aggregate piers. 
Also, the undrained shear strength of soil (Su) was in the range of 12 to 
100 kPa. Further details regarding the field and laboratory experiments 
are presented in the two references. 

Bong et al. demonstrated that the bearing capacity of aggregate piers 
reinforced clay is affected by four variables, including the undrained  
 

 
 
shear strength of soil (Su), replacement ratio (ar), embedment depth (df), 
and slenderness ratio (Sr) [29]. These four variables are employed in this 
study to predict the bearing capacity. The statistical characteristics of 
the dataset are presented in Table (2).  

The Pearson Correlation Coefficients of different variables are 
depicted in Figure (5). It is observed that the bearing capacity is mostly 
correlated with the undrained shear strength of soil, replacement ratio, 
embedment depth, and slenderness ratio, in that order. Two different 
hypothetical conditions are considered for the development of the GEP 
models, and the results are compared, including: 

 

1. Considering two variables, Su and ar, as independent variables 
(GEP2 model) 
 

2. Considering four variables, Su, ar, df, and Sr as independent 
variables (GEP4 model) 

Variables Su and ar were chosen due to the relatively high correlation 
of these two variables with the bearing capacity. The investigation 
through the construction of additional GEP models revealed that 
removing each of these two parameters in the modelling procedure will 
significantly reduce the modeling accuracy. 

 

 

Table 1. Experimental dataset. 

Footing Shape Compaction Method Su (kPa) ar (%) df (m) dp (m) Lp (m) Sr= Lp/ dp qult (kPa) Pier Configuration Reference 
Circular Drop ram 30 100 0 0.3 8 26.67 722 SP [68] 
Circular Drop ram 30 44.4 0 0.3 8 26.67 396 ISP [68] 
Circular Drop ram 30 25 0 0.3 8 26.67 559 ISP [68] 
Circular Drop ram 30 16 0 0.3 8 26.67 482 ISP [68] 
Circular Vibrated 12 46.8 0 1 5 5 189 IGP [69] 
Square Vibrated 59 30.2 0 0.74 4.57 6.18 555 GP [70] 
Square Vibrated 54 24.2 0 0.74 4.57 6.18 532 GP [70] 
Square Vibrated 59 30.2 0 0.74 3.05 4.12 645 GP [70] 
Square Tamped 75 30.2 0 0.76 4.57 6.01 624 GP [70] 
Square Vibrated 65 30.2 0 0.74 4.57 6.18 615 GP [70] 

Circular Vibrated 44 40.1 0.61 0.61 2.9 4.75 399 ISP [71] 
Circular Vibrated 22 122 0 0.73 10 13.7 628 SP [72] 
Square Vibrated 12 36 0 0.85 14 16.47 177 ISP [73] 
Square Vibrated 12 36 0 0.85 14 16.47 252 ISP [73] 

Circular Vibrated 12 100 0 0.85 14 16.47 378 SP [73] 
Circular Rammed 100 100 0 0.61 3.05 5 1346 SP [74] 
Square Rammed 30 34.6 0.46 0.76 2.33 3.07 338 GP [75] 
Square Rammed 30 34.6 0.46 0.76 4.64 6.11 477 GP [75] 

Circular Rammed 30 100 0.46 0.76 2.33 3.07 604 SP [75] 
Circular Rammed 30 100 0.46 0.76 4.64 6.11 664 SP [75] 
Circular Tamped 65 100 0.61 0.76 3.05 4.01 1096 SP [70] 
Circular Tamped 69 100 0.61 0.76 3.05 4.01 1006 SP [70] 
Circular Tamped 67 100 0.61 0.76 4.57 6.01 1132 SP [70] 
Circular Tamped 70 100 0.61 0.76 4.57 6.01 1202 SP [70] 
Circular Vibrated 57 95 0.61 0.74 3.05 4.12 1115 SP [70] 
Circular Vibrated 61 100 0.61 0.76 3.05 4.01 1093 SP [70] 
Circular Vibrated 63 88 0.61 0.71 3.05 4.3 1067 SP [70] 
Circular Vibrated 61 95 0.61 0.74 4.57 6.18 1214 SP [70] 
Circular Vibrated 53 95 0.61 0.74 4.57 6.18 1071 SP [70] 
Circular Vibrated 52 95 0.61 0.74 4.57 6.18 1106 SP [70] 
Circular Tamped 56 100 0.46 0.76 2.28 3 851 SP [67] 
Circular Tamped 56 100 0.46 0.76 3.8 5 1244 SP [67] 
Circular Tamped 49 100 0.46 0.76 1.52 2 823 SP [67] 
Circular Tamped 49 100 0.46 0.76 2.28 3 697 SP [67] 
Circular Tamped 49 100 0.46 0.76 3.04 4 813 SP [67] 
Circular Tamped 49 100 0.46 0.76 3.8 5 888 SP [67] 
Square Tamped 49 30.5 0.46 0.76 3.04 4 590 GP [67] 
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Table 2. Statistical characteristics of the experimental dataset. 

 Su (kPa) ar (%) df (m) sr qult (kPa) 
count 37 37 37 37 37 
mean 47.05 72.41 0.32 8.34 745.68 

std 20.29 33.98 0.27 7.42 325.02 
min 12.00 16.00 0.00 2.00 177.00 
25% 30.00 34.60 0.00 4.01 532.00 
50% 49.00 95.00 0.46 6.01 664.00 
75% 61.00 100.00 0.61 6.18 1071.00 
max 100.00 122.00 0.61 26.67 1346.00 

Su: undrained shear strength of soil 
ar: replacement ratio 

df: embedment depth 
Sr: slenderness ratio 
qult: bearing capacity 

 

 
Figure 5. The Pearson Correlation Coefficient between dataset variables. 

4. GEP Model Development 

The GenXpro tool 5.0 software is used to develop the GEP models. 
The general setting to develop the model for predicting the bearing 
capacity of the aggregate piers reinforced clay is considered according 
to Table (3). It should be noted that the optimum values for these 
parameters are acquired by the trial and error method so that the under-
fitting and over-fitting do not occur. The optimal number of genes and 
head size are 4 and 6 for the GEP4 model and 6 and 4 for the GEP2 
model, respectively. 

 
Table 3. The settings used to develop the GEP models. 

Value Parameter 

 General 

150 Chromosomes 

4 and 6   Genes 
6 and 4 Head size 

Addition Linking Function 
 Genetic Operators 

0.00138 Mutation rate 

0.00546 Inversion rate 

0.00546 IS transposition rate 

0.00546 RIS transposition rate 

0.00277 One-point recombination rate 

0.00277 Two-point recombination rate 

0.00277 Gene recombination rate 

0.00277 Gene transposition rate 

 Numerical constants 

10 Constants per gene 

Floating point Data type 

-30 Lower band 

30 Upper band 

The equation developed by the GEP method using two input 
variables, Su and ar (GEP2 model), and also using four input variables, 
Su, ar, df, and Sr (GEP4 model), are presented in Equation (11) and (12), 
respectively. The expression trees of the GEP2 and GEP4 models are 
depicted in Figures (6) and (7), respectively. In these figures, “C” 
denotes a constant value, “d” denotes an input variable, 3Rt(x) 
denotes√𝑥

3 , Sqrt(x) denotes x2, NOT(x) denotes (1-x), and Neg(x) 
denotes (-x). 

 

𝑞𝑢𝑙𝑡 = 58.5053 × (𝑆𝑢 − 𝑎𝑟)
1

3 −
41.116

24.7968−𝑎𝑟
+ √𝑎𝑟

2 × 𝑆𝑢 −

                  (39.5333) + ((𝑎𝑟 − 𝑆𝑢)2 × (2411.7401))
1

3                                  (11) 
 

𝑞𝑢𝑙𝑡 = ((𝑆𝑟 + 𝑎𝑟) × (𝑆𝑟))
2
3 + ((𝑑𝑓 × (𝑆𝑟 + 0.4146)) × (𝑎𝑟 − 42.7055)) 

+𝑆𝑟 × (29.6817 − 𝑎𝑟)
1
3 + (−45.6424 + 2𝑆𝑢) + (3.3793 × 𝑆𝑟) 

+
23.5620

17.4048−0.180053𝑎𝑟
+ ((2𝑆𝑢)

1

3 × (𝑆𝑢 + 𝑎𝑟))                                              (12) 

 
The performance indexes for the two developed GEP models are 

given separately for the training and testing datasets in Table (4). It is 
observed that the coefficient of determination (R2) values for all data in 
the two models, GEP2 and GEP4, are 0.927 and 0.942, respectively. The 
root mean square error (RMSE) for GEP2 and GEP4 models are 91.72 
and 78.61, respectively. In other words, the accuracy of the model using 
four independent variables with regard to test data (RMSE=86.52) is 
higher compared to the model with two independent variables 
(RMSE=119.02). Furthermore, the performance indexes of the GEP4 
model regarding training and testing sets are much closer than the 
performance indexes of the GEP2 model regarding the training and 
testing datasets, which indicates that the GEP2 model is overfitted 
compared to the GEP4 model. Although the GEP4 model is more 
complex compared to the GEP2, it is suggested to use this model to 
estimate the bearing capacity due to higher accuracy and reliability. 

 

 
Figure 6. The expression trees for the GEP2 model. 

 

The performance of the GEP2 and GEP4 models is depicted in 
Figures (8) and (9), respectively. The proximity of data points to the 
equality line indicates that both models have a good ability to predict 
the bearing capacity. The comparison between the measured bearing 
capacity and the bearing capacity predicted by the GEP2 and GEP4 
models is depicted in Figures (10) and (11), respectively. The absolute 
relative error (ARE) is also depicted for each data in these figures. As 
can be seen, regarding the GEP2 model, four data points have an ARE 
of more than 20%, while the GEP4 model only has four data points with 
an ARE of more than 20%. Consequently, the GEP model with four 
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independent variables (GEP4) is more accurate at estimating the 
bearing capacity of aggregate piers reinforced clay. 

 

 
 

Figure 7. The expression trees for the GEP4 model. 
 

 
(a) 

 
(b) 

Figure 8: Performance of the GEP2 Model, a) Training dataset, b) Testing dataset. 

 
(a) 

 
(b) 

Figure 9: Performance of the GEP4 Model, a) Training dataset, b) Testing dataset. 

 

 
Figure 10. Comparison of the measured and the predicted bearing capacity using 
the GEP2 model. 

 

 
Figure 11. Comparison of the measured and the predicted bearing capacity using 
the GEP4 model 
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5. Comparison with Previously Proposed Models 

In this section, the accuracy of the optimal developed model, GEP4, 
is compared to other proposed models. For this comparison, models 
developed by Stuedlein & Holtz (2013), Bong et al. (2020), and Dadhich 
et al. (2021) were used to predict the bearing capacity of aggregate piers 
reinforced clay [13, 28, 29]. Among them, Dadhich et al., Bong et al., and 
Stuedlein and Holtz developed models for predicting the bearing 
capacity of the aggregate piers reinforced clay using seven, four, and four 
independent variables, respectively. The types of models, independent 
variables, and performance indicators of each model are presented in 
Table (5). For the DNN, ANN, SVM, and RFR models, performance 
indicators were extracted from the published papers, and for the MLR 
and MNR, the performance indicators were computed by authors based 
on the proposed regression models. 

It is observed that the GEP4 model is more accurate compared to the 
MLR, MNR, DNN, SVM, and ANN models, and only the RFR model 
had better performance indexes than the GEP4 model. However, the 
RFR model is much more complex than the GEP4 model developed in 
this study, and Dadhich et al. [28] did not give details of the RFR model 
for use and implementation by engineers. Besides, the model presented 
in this study requires only four input variables, while the RFR model 
needs seven parameters to estimate the bearing capacity, and so it is 
more complicated. On the other hand, details of the ANN, SVM, and 
DNN models have not been provided, so engineers and researchers 
cannot use these models for further studies. The bearing capacities 
estimated by the MLR, MNR, and GEP4 models are depicted and 
compared in Figure 12. In this Figure, 20% error lines are represented as 
well. As can be seen, the GEP4 model has less dispersion compared to 
other presented models. Besides, the GEP4 model presented in this 
study has an error of less than 20% in most cases, while other models 
show higher errors, such that these models have an error of more than 
300% in some data points. It is observed that the GEP4 model is more 
accurate compared to the MLR, MNR, DNN, SVM, and ANN models, 
and only the RFR model had better performance indexes than the GEP4 
model. However, the RFR model is much more complex than the GEP4 
model developed in this study, and Dadhich et al. [28] did not give 
details of the RFR model for use and implementation by engineers. 
Besides, the model presented in this study requires only four input 
variables, while the RFR model needs seven parameters to estimate the 
bearing capacity, and so it is more complicated. On the other hand, 
details of the ANN, SVM, and DNN models have not been provided, so 
engineers and researchers cannot use these models for further studies. 
The bearing capacities estimated by the MLR, MNR, and GEP4 models 
are depicted and compared in Figure 12. In this Figure, 20% error lines 
are represented as well. As can be seen, the GEP4 model has less 
dispersion compared to other presented models. Besides, the GEP4 
model presented in this study has an error of less than 20% in most 
cases, while other models show higher errors, such that these models 
have an error of more than 300% in some data points.  

6. Sensitivity analysis 

It is necessary to perform various analyses on the developed model to 
validate the performance of the proposed models for new and unseen 
data [76]. The sensitivity analysis evaluates the degree of importance of 
the input parameters on the model output [77]. The method developed 
by Gandomi et al. and Javed et al. was used in this study for the 
sensitivity analysis [78, 79]. In this method, the effect of a single 
parameter on the output of the model is considered. The application of 
this method facilitates the evaluation of results and the extension of 
these results to real data [80]. Numerous researchers have used this 
method in their research [81, 82]. Equations (13) and (14) are used to 
evaluate the contribution of each input value to the output. 

 

𝑡𝑖 = 𝑓𝑚𝑎𝑥(𝑞𝑖) − 𝑓𝑚𝑖𝑛(𝑞𝑖)                                                                        (13) 
 

𝑆𝐴 (%) =
𝑇𝑖

∑ 𝑇𝑗
𝑗=1
𝑛

× 100                                                                          (14) 
 

In these equations, fmax(qi) and fmin(qi) are the minimum and 
maximum values of qult based on the ith input domain, respectively, while 
the rest of the variables are considered constant and equal to their mean 
value. SA has a value between 0 and 100, which represents the 
contribution of each input variable to the bearing capacity evaluation 
(SA=100 means the highest contribution, and SA=0 represents the 
lowest) [83, 84]. The sensitivity analysis of the optimal model (GEP4) 
is depicted in Figure 13. As evident, the undrained shear strength of soil 
(Su), replacement ratio (ar), slenderness ratio (Sr), and embedment 
depth (df) had the highest contribution to the bearing capacity of the 
aggregate piers reinforced clay, in order. 

 

 
Figure 12. The comparison of accuracy for the MLR, MNR, and GEP models for 
predicting aggregate piers bearing capacity. 

 

7. Parametric analysis 

The parametric analysis (Figure 14) was performed to evaluate the 
effect of each variable on the bearing capacity. As presented in Figure 
14, the bearing capacity increases if each input variable is increased. 
However, as observed, increasing the undrained shear strength of soil 
(Su) has the highest effect, while the embedment depth (df) had the least 
effect on the bearing capacity. 

It is also observed that the undrained shear strength of soil (Su), 
slenderness ratio (Sr), and embedment depth (df) increased the bearing 
capacity linearly, while the replacement ratio (ar) had a non-linear effect 
on the bearing capacity. 

 

 
Figure 13. The sensitivity analysis for the GEP4 model. 
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Table 4. Statistical indexes for the GEP2 and GEP4 models. 

Overall Testing Training  Overall Testing Training   

GEP4  GEP2  Model 

rS, fd, r, auS  r, auS  Input parameters 
78.61 86.52 74.52  91.723 119.023 75.18  RMSE 

55.426 86.524 51.036  74.41 98.70 62.75  MAE 

0.199 0.231 0.185  0.268 0.353 0.227  RAE 
0.245 0.273 0.232  0.286 0.3759 0.235  RRSE 

0.942 0.9453 0.946  0.9217 0.940 0.945  2R 
 

Table 5. Comparison of the optimal GEP model with previously proposed models for predicting aggregate piers bearing capacity. 

Statistical Parameter 

Input Parameter Refrences Models RMSE  MAE  2R 
All  All  All 

93.08  77.77  0.92 𝑆𝑢, 𝑎𝑟, 𝑑𝑓 , 𝑆𝑟 [13] MLR 

82.74  61.4  0.93 𝑆𝑢, 𝑎𝑟, 𝑑𝑓 , 𝑆𝑟 [29 ] MNR 
NA  62.1  0.92 𝑆𝑢, 𝑎𝑟, 𝑑𝑓 , 𝑆𝑟 [29] DNN 

97.77  79.23  0.901 𝑆𝑢, 𝑎𝑟, 𝑑𝑓 , 𝑆𝑟 , 𝐵𝑓 , 𝑑𝑝, 𝑙𝑝 [28] MLR 
124.72  99.47  0.88 𝑆𝑢, 𝑎𝑟, 𝑑𝑓 , 𝑆𝑟 , 𝐵𝑓 , 𝑑𝑝, 𝑙𝑝 [28] SVM 

51.9  39.83  0.98 𝑆𝑢, 𝑎𝑟, 𝑑𝑓 , 𝑆𝑟 , 𝐵𝑓 , 𝑑𝑝, 𝑙𝑝 [28] RFR 
102.2  68.13  0.89 𝑆𝑢, 𝑎𝑟, 𝑑𝑓 , 𝑆𝑟 , 𝐵𝑓 , 𝑑𝑝, 𝑙𝑝 [28] ANN 
78.61  55.42  0.942 𝑆𝑢, 𝑎𝑟, 𝑑𝑓 , 𝑆𝑟 This Study (GEP4) This Study (GEP4) 

 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 14. Parametric analysis for the GEP4 model. 

8. Conclusions 

In this study, the gene expression programming was used to estimate 
the bearing capacity of the aggregate piers reinforced clay soils. The 
dataset used in this research, despite its lack of comprehensiveness, is 
the most complete dataset that compiled till now to model the bearing 
capacity of aggregate piers. If the number of data points for modelling is 
small, fewer complex models should be employed. Also, the number of 
input variables should be reduced as much as possible. In this study, the 
GEP method is used, leading to the construction of simpler non-linear 
regression models compared to the common machine learning methods 
(e.g., ANN, SVM, and RFR). 

The results of this study showed that the bearing capacity of clay soils 
reinforced with aggregate piers is mostly affected by the undrained shear 
strength of soil (Su), area replacement ratio (ar), slenderness ratio (Sr), 
and embedment depth (df). Since the importance of two parameters, Su 
and ar, on the bearing capacity is much higher, another GEP model 
(GEP2) was also built using only these two input variables, which also 
has a good accuracy. 

The R2 and RMSE values for the GEP4 model (four input variables) 
were 0.942 and 78.61, respectively The R2 and RMSE values for the GEP2 
model were 0.921 and 91.723, respectively which confirms that the GEP4 
model is more accurate compared to the GEP2 model.Comparing the 
MAE and coefficient of determination of the optimal GEP model with 
the previously proposed models showed that the GEP4 model presented 
in this study had a superior performance regarding the evaluation of 
both the number of input parameters and accuracy. 

The sensitivity analysis demonstrated that the undrained shear 
strength of soil (Su), replacement ratio (ar), slenderness ratio (Sr), and 
embedment depth (df) had the highest contribution to the bearing 
capacity, respectively. The parametric analysis also showed that 
increasing the undrained shear strength of soil (Su), replacement ratio 
(ar), slenderness ratio (Sr), and embedment depth (df) led to an increase 
in the bearing capacity of the aggregate piers reinforced clay, which 
aligns with the experimental results. 
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