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A B S T R A C T 

 

The gravity inversion methods play a fundamental role in subsurface exploration, facilitating the characterization of geological structures and 
economic deposits. In this study, we conduct a comparative analysis of two widely used regularization methods, Tikhonov (L2) and Sparse 
(L1) regularization, within the framework of the gravity inversion. To assess their performance, we constructed two distinct synthetic models 
by implementing tensor meshes, considering station spacing to discretize the subsurface environment precisely. Both methods have proven 
ability to recover density distributions, while minimizing the inherent non-uniqueness and ill-posed nature of the gravity inversion problems. 
The Tikhonov regularization yields stable results, presenting smooth model parameters even with limited prior information and noisy data. 
Conversely, the Sparse regularization, utilizing sparsity-promoting penalties, excels in capturing sharp geological features and identifying 
anomalous regions, such as mineralized zones. Applying these methodologies to real gravity data from the Safu manganese deposit in 
northwest Iran, we assess their efficacy in recovering the geometry of dense ore deposits. The Sparse regularization demonstrates superior 
performance, yielding lower misfit values and sharper boundaries during individual inversions. This underscores its capacity to provide a 
more accurate representation of the depth and edges of anomalous targets in this specific case. However, both methods represent the same 
top depth of the target in the real case study, but the lower depth and density distribution were not the same in the XZ cross-sections. The 
inversion results imply the presence of a near-surface deposit characterized by a high-density contrast and linear distribution, attributed to 
the high grade of manganese mineralization. 

Keywords: Tikhonov regularization, Sparse regularization, Synthetic models, Tensor meshes, Mineralized zones, Manganese deposit. 

 

 

1. Introduction 

Geophysics stands as a discipline where mathematical methodologies 
have played a central role for over a century. The exploration of 
geophysical challenges has resulted in the formulation of numerous 
mathematical models, showcasing their successful application not only 
within Earth sciences but also across various domains. The evolution of 
diverse geophysical research methods has led to the establishment of the 
theory of inverse problems. Subsequently, methodologies and 
algorithms have been devised to address predominantly ill-posed 
problems associated with these inverse challenges [1]. 

Regularization and optimization are fundamental mathematical 
techniques in geophysics, specifically within the context of the inversion 
process designed to unveil subsurface properties and Earth's geological 
features. These methods address the inherent non-uniqueness and ill-
posed nature of inverse problems. Optimization involves determining 
optimal model parameters aligned with available data, while conforming 
to specific regularization constraints. Regularization methods are crucial 
for incorporating prior information and assumptions into inverse 
problem solutions, effectively acting as constraints on the recovered 
models [2]. The choice of regularization parameters and methods 
significantly influences the trade-off between fitting observed data. In 
the realm of inverse problems, where achieving a desired tolerance can 
yield various fitting models, the key task is selecting a model that aligns  

 
 
 
with both observed data and prior knowledge [3]. Regularization 
emerges as a central player in this process, guiding the model selection 
journey by applying norms to assess the size or complexity of each 
model. The ultimate goal is to formulate a relevant regularization term 
encompassing prior insights, penalizing specific model traits, such as 
deviations from a reference model or variations in spatial derivatives. 
Minimizing this regularization term during the optimization phase 
ensures the identification of a model adept at fitting the data and 
conforming to anticipated characteristics, effectively mitigating the 
inherent non-uniqueness in inverse problems [3]. 

The majority of subsurface geological features exhibit a smooth and 
sharp structure, requiring the application of suitable regularization 
methods to address this challenge. However, it is essential to note that 
the selection of regularization methods depends on the inversion goals 
and the specific geological features encountered. Stratigraphic layers 
and geological boundaries typify smooth geological structures, while 
faults, karst formations, ore deposits, and volcanic structures represent 
sharp geological features. In this review, we provide a brief overview of 
the primary regularization methods commonly employed in the 
geophysical inversion process and explore their applications.  

Regularization, also known as damping, plays an essential role in 
specific applications within the field of inverse problems [4]. The first 
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application is the stabilization of solutions [5]. Ill-posed inverse 
problems typically yield infinitely many solutions, rendering them 
sensitive to noise in the data. Regularization introduces a controlled 
level of smoothness or sparsity into the solutions, ensuring stability and 
preventing the amplification of noise [6]. Another crucial application 
involves balancing data fidelity [5]. Regularization strikes a balance 
between fitting the observed data and maintaining the smoothness or 
sparsity of the model [7]. It introduces a penalty term that discourages 
overly complex or noisy solutions, while ensuring the model remains 
consistent with the measurements [6]. The third application is about 
dealing with non-uniqueness. Ill-posed problems often admit multiple 
possible solutions that can equally fit the data. Regularization assists in 
narrowing down the range of acceptable solutions by favoring those that 
align with the regularization constraints [8]. This not only enhances the 
reliability of the inversion results but also makes them more 
interpretable. 

The Tikhonov regularization, a widely used method, was developed 
by Tikhonov and Arsenin back in 1977 [8]. It brings in a penalty term to 
strike a balance between fitting the observed data and controlling the 
complexity of the model [1]. This regularization encourages a solution 
with smaller parameter values, effectively favoring a smoother and more 
stable solution. It helps mitigate the effects of noise in the data and 
prevents overfitting [9]. This approach promotes smoothness in the 
reconstructed model during inversion and is especially well-suited for 
scenarios where we anticipate gradual changes in physical properties. 
The Tikhonov regularization is commonly used in seismic exploration. 
Seismic data often suffer from blurring effects and noise during 
acquisition. The Tikhonov regularization helps in deblurring seismic 
images and suppressing noise by introducing a regularization term that 
penalizes overly complex or oscillatory solutions [10]. 

Another regularization method is the Sparsity regularization. This 
method adds a penalty term (in this study, the penalty term is based on 
the L1 norm) based on the absolute values of model parameters. It 
encourages sparsity in the solution, making some parameters exactly 
zero [11]. In other words, it selects solutions with the minimum number 
of non-zero model parameters. In geological conditions, where the true 
subsurface model may have a few significant features surrounded by a 
more homogeneous background, sparsity regularization can help 
identify and recover these significant features [12]. Recent findings 
indicate that sparse solutions frequently provide more accurate 
representations of real objects compared to solutions characterized by 
the L2 norm [12]. 

Then, there is the Total Variation regularization, occasionally known 
as TV denoising, which plays a significant role in seismic and 
electromagnetic imaging. It excels at enhancing the resolution and 
quality of results when dealing with noisy data [13-16]. This method 
finds solutions that are mostly smooth but allow for sudden changes in 
certain regions. This is really useful in geophysics when we want to find 
regions where physical properties, including density or conductivity 
change quickly. Denoising is a type of the linear inverse problem, aiming 
to remove noise from a signal or image, while maintaining the overall 
structure of the original content. In the image processing, the assessment 
of the resulting model's quality is often subjective and depends on 
specific criteria or motivations [5]. 

 Lastly, we have the Bayesian Regularization, a method that enables 
geophysicists to incorporate prior geological knowledge and constraints 
into the inversion process, leading to improved accuracy and result 
reliability [17, 18]. In this approach, the model is considered a random 
variable, and we aim to estimate its probability distribution. By 
combining a prior distribution for the model parameters with the 
available data, we obtain a posterior distribution for the model 
parameters. It is noteworthy that in certain scenarios, the Bayesian 
approach yields solutions equivalent to those obtained through least 
squares, maximum likelihood, and the Tikhonov regularization 
methods [5].   

Due to the significant exploratory relevance of the Safu site and the 
availability of reliable gravity data, numerous noteworthy research 
studies have been conducted on it. In 2014, Vatankhah et al. undertook 
research employing the Tikhonov regularization with the minimum 

support stabilizer for the underdetermined 2D inversion of the gravity 
data [19]. In 2021, Varfinezhad and Ardestani conducted research on the 
gravity inversion, incorporating depth weighting and compactness 
constraints [20].  In this study, we conduct a gravity inversion 
employing the Sparse regularization, with the primary goal of 
promoting sparsity in the recovered model. This approach utilizes the 
iteratively reweighted least squares (IRLS) method to dynamically 
adjust the trade-off between data misfit and regularization throughout 
the inversion process. Additionally, we perform a gravity inversion using 
the Tikhonov regularization, with the objective of obtaining a model 
that strikes a balance between data misfit and smoothness. The 
efficiency of both inversion methods is assessed in terms of recovering 
the geometry and depth of a dense ore deposit. Despite dealing with a 
near-surface target, distinct results emerge from these methods, 
providing valuable insights into the selection of regularization 
techniques for shallow exploratory targets. 

For geophysical data processing, we utilized the simPEG library [21], 
version 0.20 within the Python programming language. The properties 
of operating system for forward and inverse modelling are an ASUS 
laptop with an AMD A6 3.4 GHz CPU with 8G Ram. 

2. Methodology 

2.1. Meshing 

Choosing a suitable discretization plays a fundamental role in 
computational modelling and simulations, covering various scientific 
domains, including geophysics. This essential technique involves the 
creation of a grid or mesh that discretizes the subsurface environment 
into more manageable elements [21]. In the field of geophysics, accurate 
meshing plays an important role in the numerical modelling and 
simulation of subsurface structures and natural phenomena. Employing 
a fine mesh, which takes into account the intervals between data points, 
results in a more accurate representation of the subsurface compared to 
using a coarse mesh. Tensor meshing, a specialized method within 
meshing, comes into focus when addressing complex geological 
formations and anisotropic properties, allowing for the creation of finer 
cells [21]. Figure 1 shows how the choice between a coarse mesh (1b) 
and a fine mesh (1c) impacts the recovery of a synthetic cube. The 
illustration highlights that fine tensor meshes work better at capturing 
the edges of the cube compared to coarse meshes. The density contrast 
of the cube in the true model was considered as 1.5 gr/cm3 and for the 
background as 0 gr/cm3. It is evident that a more precise recovery of 
density and geometry is achieved under the second condition. 

2.2. Forward Modelling 

In both synthetic and real cases, the model space is characterized by 
a tensor mesh. The predicted data is obtained by summing the gravity 
effects of individual cells at each gravity measurement point on the 
ground surface [22]. This process is generally represented as follows: 

 

𝐹(𝒎𝒈𝒓𝒂𝒗) =  𝒅𝑝𝑟𝑒𝑑                                                                                      (1) 
 

 

The forward operator F acts on the subsurface model,  𝒎𝒈𝒓𝒂𝒗 , 
computing the sum of gravity effects exerted by individual cells within 
the model at each gravity measurement point on the ground surface. The 
outcome, 𝒅𝑝𝑟𝑒𝑑 , represents the predicted gravity data.                                                                                                                                        

The gravitational effect of each cell within the tensor mesh is 
calculated using the below equation, representing a detailed form of Eq.1 
[23, 24]: 

 

 

 

𝐹(𝒎𝒈𝒓𝒂𝒗) = 𝐺𝜌 ∑ ⬚2
𝑖=1 ∑ ⬚2

𝑗=1 ∑ 𝜇𝑖𝑗𝑘
2
𝑘=1 [𝑧𝑘 arctan

𝑥𝑖 𝑦𝑖

𝑧𝑘𝑅𝑖𝑗𝑘
−

𝑥𝑖 log(𝑅𝑖𝑗𝑘 + 𝑦𝑖) − 𝑦𝑖 log(𝑅𝑖𝑗𝑘 + 𝑥𝑖)]                                                         (2) 
 

 

And: 

 𝑅𝑖𝑗𝑘 =  √𝑥𝑖
2 + 𝑦𝑗

2 + 𝑧𝑘
2                                                                           (3) 

 

𝜇𝑖𝑗𝑘 =  (−1)𝑖(−1)𝑗(−1)𝑘                                                                           (4) 
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Figure 1. Illustrating the results of inverting simple geometrical shape using various 
mesh sizes, (a) True Model, (b) Reconstruction of a geometrical shape with a 
coarse tensor mesh, (c) Reconstruction of a geometrical shape with a fine tensor 
mesh. 
 

Where 𝐺  represents the universal gravitational constant and 𝜌 
denotes the density. 𝑧𝑘 , 𝑥𝑖 and 𝑦𝑖 represent the vertical coordinate of the 
cell center, and the horizontal coordinates of the observation point. 𝑅𝑖𝑗𝑘 
represents the radial distance from the cell center to the observation 
point. This equation (2) calculates the gravitational effect of each cell in 
a discretized 3D subsurface model on the observation point. It considers 
the geometric factors and distances between the cell center and the 
observation point, incorporating the density distribution within the 
model. The alternating signs in the coefficient   𝜇𝑖𝑗𝑘  account for the 
arrangement of cells in the 3D model. The triple summation ensures that 
the contribution of each cell in the model is considered. 

2.3. Inversion Methodology 

The theoretical basis of the inversion methodology utilized in the 
SimPEG framework finds its roots in the works of Li and Oldenberg 
[25] and Oldenburg and Li [26]. In this section, we provide a brief 
summary of the employed inversion methodology. After introducing the 
generalized form of inversion, our focus shifts to the exploration of 
diverse regularization terms incorporated into the objective functions. 
The inversion is frequently conceptualized as an optimization problem 
in the following form [25]: 

 

min 𝜙(𝑚) = 𝜙𝑑 + 𝛽𝜙𝑚.                                                                             (5) 
 

The misfit function, denoted as 𝜙𝑑 and expressed in Eq.6, serves to 
quantify the disparity between observed data (𝒅𝑜𝑏𝑠) and predicted data 
(𝒅𝑝𝑟𝑒𝑑 ), with 𝛔  representing the estimated uncertainties in the data 
[25]. 

 

𝜙𝑑 =  ∑ (
𝒅𝑖

𝑝𝑟𝑒𝑑
−𝒅𝑖

𝑜𝑏𝑠

𝛔𝑖
)

2

              
𝑁
𝑖=1                                                                 (6) 

 

ularization function, represented by 𝜙𝑚, introduces prior information 
to address the non-uniqueness inherent in the inverse problem, 
enhancing its solution. 𝛽  controls the balance between misfit and 
regularization [26]. The key distinction between two inversions lies in 
their regularization terms. The Tikhonov regularization is formulated in 
Eq.7: 

𝜙𝑚𝑡𝑖𝑘ℎ𝑜𝑛𝑜𝑣
=  𝛼𝑠𝜙𝑠 +  𝛼𝑥𝜙𝑥 + 𝛼𝑦𝜙𝑦 + 𝛼𝑧𝜙𝑧 =

∑ 𝛼𝑟𝑟=𝑠,𝑥,𝑦,𝑧 ‖𝐖𝑟𝐕𝑟𝐆𝑟(𝐦 − 𝐦𝑟𝑒𝑓)‖2
2 .                                                                     (7) 

 

In Eq. (7), 𝜙𝑠 quantifies the deviation of the discrete model (𝐦) from 
a reference model (𝐦𝑟𝑒𝑓), whereas 𝜙𝑥  , 𝜙𝑦, and 𝜙𝑧  gauge the model's 
roughness. The coefficients 𝛼𝑠, 𝛼𝑥 , 𝛼𝑦, and 𝛼𝑧 govern the proximity of 
the derived model to the reference model and the flatness of the 
resulting model, respectively [26]. 𝐕  represents the discrete volume 
elements. The matrices  𝐆𝑥 ,  𝐆𝑦, and 𝐆𝑧  denote discrete gradient 
operators. In the context of the smallness component, 𝐆𝑠 simplifies to 
the identity matrix. 𝑾𝒔 denotes the weight for the smallest model and 
𝑾𝑥, 𝑾𝑦 , and 𝑾𝑧  denote the weights for model flatness in three 
Cartesian coordinates [25]. 𝐦 represents the model vector, which is the 
unknown subsurface property that the inversion is trying to recover. 
𝐦𝑟𝑒𝑓represents a reference model or a prior estimate of the subsurface 
properties. It is incorporated into the inversion process to provide 
additional information and constraints [25]. The sparsity regularization 
term is represented as follows: 

 

𝜙𝑚𝑆𝑝𝑎𝑟𝑠𝑒
=  ∑ 𝛼𝑟𝑟=𝑠,𝑥,𝑦,𝑧 ‖𝐖𝑟𝐕𝑟𝐆𝑟(𝐦 − 𝐦𝑟𝑒𝑓)‖1

⬚.                                   (8) 
 

The L1 norm is used to encourage sparsity in the model parameters. 
The Sparse regularization term penalizes the absolute values of the 
elements of  𝐖𝑟𝐕𝑟𝐆𝑟(𝐦 − 𝐦𝑟𝑒𝑓)  instead of their squared values, 
promoting sparsity in the solution [11]. The final objective functions for 
two types of the gravity inversions are expressed in Eqs.9 and 10. 

 

min 𝜙(𝑚)𝑇𝑖𝑘ℎ𝑜𝑛𝑜𝑣 = ‖𝐆𝛒 − 𝐝𝑜𝑏𝑠)‖2
2 +    

                  𝛽 ∑ 𝛼𝑟𝑟=𝑠,𝑥,𝑦,𝑧 ‖𝐖𝑟𝐕𝑟𝐆𝑟(𝐦 − 𝐦𝑟𝑒𝑓)‖2
2 .                                (9)                                                                

 

min 𝜙(𝑚)𝑆𝑝𝑎𝑟𝑠𝑒 = ‖𝐆𝛒 − 𝐝𝑜𝑏𝑠)‖2
2 +   

                                     𝛽 ∑ 𝛼𝑟𝑟=𝑠,𝑥,𝑦,𝑧 ‖𝑾𝑟𝑽𝑟𝑮𝑟(𝒎 − 𝒎𝑟𝑒𝑓)‖1
⬚           (10)     

 

By equating the gradient of the objective function to zero, ∇𝜙(𝑚)= 0, 
we can derive the solutions for both inversion cases, representing the 
recovered models [26]. These solutions are expressed in Eqs.11 and 12. 

 

𝐦Tikhonov =  (𝐆𝑇𝐖𝑑
𝑇𝐖𝑑𝐆 +  𝛽𝐖𝑚

𝑇 𝐖𝑚)−1  

(𝐆𝑇𝐖𝑑
𝑇𝐖𝑑𝐝𝑜𝑏𝑠 +  𝛽𝐖𝑚

𝑇 𝐦𝑟𝑒𝑓) .                                                           (11) 
 

𝐦Sparse =  (𝐆𝑇𝐖𝑑
𝑇𝐖𝑑𝐆 +  𝛽𝐖𝑚

𝑇 diag(𝐑)𝐖𝑚)−1 * 
                     (𝐆𝑇𝐖𝑑

𝑇𝐖𝑑𝐝𝑜𝑏𝑠 +  𝛽𝐖𝑚
𝑇 𝐦𝑟𝑒𝑓) .                                           (12) 

 

diag(𝐑) is a diagonal matrix imposing the iteratively updated weights 
[26-29]. The choice between these regularization techniques influences 
the characteristics of the recovered model. Tikhonov tends to produce 
smooth solutions, while Sparse encourages sparsity in the solution. 

3. Synthetic scenarios 

In geophysical exploration, the choice of the regularization method 
can significantly impact the quality and accuracy of inversion results. To 
illustrate this, we conducted a study in a homogeneous half-space using 
forward modelling to investigate the effectiveness of both Tikhonov and 
Sparse regularization in recovering simple subsurface features. For the 
first synthetic model, we discretized the synthetic environment with 
dimensions of 200m × 200m × 100m into 80 × 80 × 40 cells. The x-axis 
interval ranges from 0 to 200m, the y-axis interval spans from -100m to 
100m, and the z-axis interval extends from -100m to 0. We present both 
synthetic models in Slice 40 at y = 0, indicating that the figures represent 
an x-z cross-section at y = 0, corresponding to the indexed Slice 40. 
Within this environment, we created a simple cube (Figure 2.a) with the 
dimensions of 40m × 40m × 40m, which was embedded in the 
homogeneous background with zero density contrast. The density 
contrast for the synthetic cube was considered as 1.2 g/cm3. The observed 
gravity anomalies are added with 2% Gaussian random noise in both 
synthetic models. The objective was to accurately recover the properties 
of this cube, such as its geometry, density, and depth using the gravity 
inversion methods. Our findings revealed notable differences between 
two regularization methods. When employing the Sparse regularization, 
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the results were remarkably accurate, yielding a model that closely 
resembled the true properties of the cube. The sparse (L1) regularization, 
also known as Lasso, is renowned for promoting sparsity in the solution 
vector. It encourages the model to identify and highlight the essential 
features within the data. In this case, it accurately illustrates the cube's 
dimensions and depth (Figure 2.b). In contrast, the Tikhonov 
regularization (Figure 2.c) yielded a smoother model that struggled to 
recover the true depth of the cube. 

 

 
Figure 2. The synthetic data modelling for a single rectangular cube, (a) the true 
density model, (b) the result of inversion by the Sparse regularization, (c) the 
result of inversion by the Tikhonov regularization. 

 
The Tikhonov regularization is designed to encourage solutions 

where all model parameters are small, but not necessarily sparse. This 
tendency toward smoothness can sometimes blur the sharp boundaries 
of subsurface features, making it challenging to precisely locate the 
depth of the cube. Figure 3a illustrates the observed anomalies resulting 
from the true model, and Figures 3b and 3d depict the observed 
anomalies resulting from inversions with the Sparse and Tikhonov 
regularization, respectively. The normalized misfit values further 
reinforced these observations; with the Sparse regularization achieving 
a lower misfit of around 1(Figure 3.c), indicating a better fit to the 
observed data. On the other hand, the Tikhonov regularization resulted 
in a higher misfit of around 1.5 (Figure 3.e), suggesting a less accurate 
fit. 

The selection of a regularization method should be approached with 
careful consideration, taking into account the specific objectives and 
characteristics of the inversion problem. This choice plays a crucial role 
in shaping the interpretation of geophysical data. The cross-plot of 
inversion results for the first synthetic model is depicted in Figure 4, 
showcasing the correlation between inversion results. In a 
straightforward explanation, each point on cross-plots corresponds to a 
cell in the discretized environment. After distinct inversions with 
various regularization terms, each cell now represents two density 
contrasts. One arises from an inversion with the sparsity regularization, 
while the other stems from an inversion with the Tikhonov 
regularization. In these types of plots, we employ cross-correlation to  

 

 

 

 

 

 
 

Figure 3. (a)The observed data from the true model, (b) the predicted data from 
inversion with the Sparse regularization, (c) the normalized misfit for the gravity 
inversion with the Spare regularization, (d) the predicted data from inversion with 
the Tikhonov regularization, (e) normalized misfit for the gravity inversion with 
the Tikhonov regularization. 
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In Figures 4 and 7, we use the (+) signs to represent the density 
contrast of background and objects, illustrating the efficiency of each 
inversion method in reconstructing them. For the first synthetic model, 
15 iterations are employed in the gravity inversion with the Sparse 
regularization and the Tikhonov regularization undergoes 10 iterations. 

 

 
 

Figure 4. The cross-plot for the first synthetic model. 
 

For the second model, we introduced a synthetic configuration 
consisting of two rectangular cubes with distinct densities (Figure 5.a) 
with the dimension of 40m × 20m × 20m. The left rectangular cube has 
a density contrast of 1 g/cm3, and the right rectangular cube has a density 
contrast of 1.5 g/cm3, with the background density set to zero. Both 
rectangular cubes were positioned at the same depth and separated by a 
distance of approximately 70 meters. Utilizing the Sparse regularization 
yielded highly promising inversion results. The estimated depths for 
each geometrical shape closely approximated the true model, and the 
geometry of both cubes within the recovered model closely resembled 
reality (Figure 5.b). In contrast, the application of the Tikhonov 
regularization resulted in a smoother but somewhat misleading model. 
While achieving a desirable overall smoothness, it struggled to 
accurately recover the depths and dimensions of the cubes. Notably, the 
cube with a lower density posed a particular challenge for the Tikhonov 
regularization method, highlighting its limitations in preserving sharp 
boundaries and specific details of subsurface features (Figure 5.c). The 
inversion with the Sparse regularization involved 15 iterations, while the 
inversion with the Tikhonov regularization utilized 10 iterations. The 
application of the iteratively reweighted least squares (IRLS) method in 
the first inversion heightened the algorithm's sensitivity to depth, 
resulting in a more accurate recovery of the buried structures. 

Figure 6a represents the observed anomalies resulting from the true 
model. Figures 6b and 6d represent the observed anomalies resulting 
from the Sparse and Tikhonov regularization, respectively. In a short 
explanation, "misfit" refers to the quantitative measure of the difference 
between observed data and the data predicted by a model. It is a key 
parameter used to evaluate how well the model reproduces the actual 
measurements. The normalized misfit values obtained from inversion 
methods for the second synthetic model are presented in Figure 6. 
Notably, we achieved a significantly more favorable misfit using the 
Sparse regularization (Figure 6c) compared to the Tikhonov 
regularization (Figure 6e).  
This indicates a superior data fit with the Sparse regularization, showing 
its effectiveness in capturing the underlying subsurface structures. In 
Figure 7, our cross-plot of the inversion results for the second synthetic 
model provides a visual representation of the differences in performance 
between two regularization techniques. The orange and blue data points 
adhere to the same pattern observed in the first synthetic model. This 
plot conveys information about the density contrast trend in two 
inversion conditions. As evident, similar to the first synthetic model, 

sparsity regularization demonstrates a superior ability to distinguish 
main objects from the background. The distribution of the blue points 
indicates that cells with higher density contrast in inversion using the L2 
norm exhibit lower density contrast in inversion with the sparsity 
regularization. This suggests that the obtained sources' depth and 
density distributions within these cells are not the same. Furthermore, 
taking into account the variation in density contrast, it becomes 
apparent that inversion with the sparsity regularization was more 
effective in capturing the properties of the second cube with lower 
density contrast compared to inversion with the Tikhonov 
regularization. 
In conclusion, in both synthetic models, the Sparse regularization 
demonstrates an advantage over the Tikhonov regularization in 
reconstructing geometry and true depth. Additionally, a more effective 
separation between background and objects is achieved through 
inversion with the sparsity regularization.  However, the benefits of the 
Tikhonov regularization become evident when dealing with noisy data, 
an aspect that will be discussed in section 4. 

4. Application to the real data 

4.1. Geological Context 

The Safu deposit in Iran is a significant manganese deposit situated 
in the Khoy area, and its geological context is rooted in the Late Jurassic 
to the Late Cretaceous period. This deposit is a product of the mature 
back-arc spreading that characterized the Khoy-Zanjan area during this 
time. The Late Jurassic to the Late Cretaceous period witnessed 
extensive back-arc spreading events in various regions, including the 
Khoy-Zanjan area in the north Sanandaj-Sirjan zone. The Safu deposit, 
being an ophiolite-hosted manganese deposit, formed within this 
geological setting, specifically in the Khoy area. The ore formation in the 
Safu is associated with mature back-arc spreading, a tectonic 
environment marked by the extension of the Earth's crust behind a 
subduction zone. This deposit is classified as an ophiolite-hosted 
manganese deposit, signifying its connection to ophiolitic belts formed 
in oceanic environments [30]. 

 

 
Figure 5. The synthetic data modelling for two rectangular cubes, (a) the true 
density model, (b) the result of inversion by the Sparse regularization (c) result of 
inversion by the Tikhonov regularization. 
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Figure 6. Observed data from true model, (b) predicted data from inversion with 
the Sparse regularization, (c) normalized misfit for the gravity inversion with 
Spare regularization, (d) predicted data from inversion with Tikhonov 
regularization, (e) normalized misfit for the gravity inversion with Tikhonov 
regularization 

 Chronologically, the Safu deposit took shape during the Late 

Cretaceous, a period marked by significant geological events, including the 

Laramide Orogeny and intense deformation. Manganese mineralization in 

the Safu is linked to ore interlayers, particularly with reddish radiolarites 

that are younger than the Middle Jurassic. Geochemical studies emphasize 

the supra-subduction nature of ophiolites, including those hosting 

manganese deposits, such as the Safu [30]. These ophiolites developed in 

intra-oceanic island arc environments during the Late Triassic to the Late 

Cretaceous. Geological and geochemical evidence suggests that the 

deposition of ores resulted from submarine hydrothermal solutions on the 

floor of the Neo-tethys ocean basin during the Upper Cretaceous [31]. 

The Mn/Fe ratios in this deposit exhibit variability, with the average 
ratio several times higher than the values found in metal-bearing 
sediment deposits of mid-ocean ridges. High Mn/Fe and Si/Al ratios, 
coupled with low quantities of rare metals, particularly nickel (Ni), 
cobalt (Co), and copper (Cu), limited amounts of cerium (Ce) elements, 
and elevated levels of silicon dioxide (SiO2), barium (Ba), iron (Fe), 
manganese (Mn), and strontium (Sr), serve as the evidence of the 
enrichment and depletion of manganese from submarine hydrothermal 
fluids. The role of hydrogenation processes in the formation of this 
deposit appears to be insignificant [32]. 

 

 
Figure 7. The cross-plot for the second synthetic model. 

 

 
 

Figure 8. The distribution map of manganese deposits according to the age of host 
rocks within the main tectonic elements of Iran [30]. 
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4.2. Gravity Data 

For the gravity survey, a CG3 gravimeter with a precision of 5 
microgal was utilized. The data collection phase involved a network of 
601 sampling points, with station spacing ranging from 5 to 10 meters 
[31]. In the northeastern corner of the survey area, fewer gravity data 
points were collected due to the rugged topography. Following gravity 
correction, regional trends were eliminated using a first-order 
polynomial fitting method [33]. In Figure 9, we present the residual 
gravity anomaly (Figure 9a) and the 20m upward continuation of 
gravity data (Figure 9b). Notably, a linear sharp anomaly is discernible 
in the central region of the survey area, reaching a maximum value of 
approximately 3 mgal. Profiles A-B and C-D depict the sections where 
the inversion results are displayed. 

 

 
Figure 9. (a) Residual gravity anomaly, (b) upward continuation (20m) of gravity 
data. 

 

4.3. Inversion results 

To conduct the real data inversion, we discretized the subsurface 
environment using a grid of 80 × 60 × 20 cells. The outcomes of the 
inversion of gravity data are illustrated along two profiles (A-B and C-
D), as shown in Figure 9. About 25 iterations were undertaken for the 
inversion with the Sparse regularization, and 10 iterations were carried 
out for inversion with the Tikhonov regularization. The density limits 
for both inversions were set between 2.0 g/cm3 and 4.5 g/cm3, with a 
background density considered as 2.6 g/cm3. Figure 10 depicts the results 
of the gravity inversion along the A-B and C-D profiles. In Figures 10a 
and 10c, the inversion results with the Sparse regularization reveal the 
presence of an anomalous target at approximately 5 meters deep, with 
sharp boundaries delineating the massive target. Figures 10b and 10d 
display the inversion results with the Tikhonov regularization, 
showcasing a smoother model characterized by gradual changes in 
density contrast. Both models indicate a shallow top depth, highlighting 
the evident near-surface location of the ore. By moving to the northern 
part of the survey area, we observed a slight increase in the depth of the 
anomalous target, accompanied by more gradual changes in the 
inversion results (Figures 10b and 10d). 

We additionally present the inversion results along the Z-direction at 
a depth of 20 meters in Figure 11. Both inversion methods (11a and 11b) 
unveil a linear mineralization with a concentration in the lower section 
of the survey area. As indicated by the inversion results, the mineral 
deposit is situated at depths ranging from 5 to 25 meters, implying a  

 

 
 

Figure 10. (a) The inversion result along A-B profile with the Sparse regularization, 
(b) Inversion result along A-B profile with the Tikhonov regularization, (c) 
Inversion result along C-D profile with the Sparse regularization, (d) Inversion 
result along C-D profile with the Tikhonov regularization. 

 

 

 
Figure 11. (a) Inversion result along Z direction with Sparse regularization, (b) 
Inversion result along Z direction with the Tikhonov regularization. 
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superficial target. It is evident that the Tikhonov regularization is more 
effective in mitigating the presence of noise at the edges of the survey 
area compared to the Sparse regularization. 

We illustrate the normalized misfits of inversions in Figure 12. Figures 
12a and 12c depict the predicted data from the gravity inversion with the 
Sparse and Tikhonov regularization, respectively. It is noteworthy to 
mention that elevated misfit values are observed in the real data 
inversion, as evident in Figures 12b and 12d. This is primarily attributed 
to the challenges posed by Limited Data Coverage at the edges of the 
survey area, where inversion encounters difficulties in providing 
accurate results. Insufficient data points in these regions give rise to 
information gaps and reduced data coverage, thereby yielding 
incomplete and less reliable subsurface models. Notably, when we 
concentrate on the primary anomalous location, we observe lower and 
acceptable misfit values for both inversion methods. 

In Figure 13, we display a cross-plot of the real data inversion, 
effectively illustrating the trade-off between sparsity and smoothness. In 
simpler terms, it serves as the representation of 'Sparsity vs. Smoothness.' 
Similar to the synthetic modelling, the blue color represents data where 
the Tikhonov regularization resulted in a higher density contrast than 
the Sparse regularization, while the orange color signifies cases where 
the Sparse regularization produced a higher density contrast than the 
Tikhonov regularization. A nearly linear relationship between the 
inversion results indicates that both methods are effective, providing 
consistent results for the manganese ore. There is a vertical distribution 
of the density contrast at the beginning and end of the cross-plot. This 
implies that the lowest and highest density contrasts obtained through 
inversion with the sparsity regularization exhibit a gradual change in the 
other reconstructed model, emphasizing a smooth density model 
resulting from inversion with the Tikhonov regularization. However, in 
contrast to the synthetic models, inversion with the Tikhonov 
regularization demonstrates an acceptable performance in real cases. 
This distinction becomes evident when comparing the cross-plot of real 
cases with that of synthetic models. The term "acceptable" means that 
both inversion methods result in a closely similar density model. 

 

 

 
Figure 12. (a) predicted data from inversion with Sparse regularization, (b) 
normalized misfit for the gravity inversion with The Spare regularization, (c) 
predicted data from inversion with the Tikhonov regularization, (d) normalized 
misfit for the gravity inversion with the Tikhonov regularization. 

 
Figure 13. The cross-plot for the real gravity data. 

 

5. Conclusion 

In this study, we conducted an extensive comparative analysis of two 
prominent regularization methods: Sparse and Tikhonov. Our focus was 
on their effectiveness in recovering ore deposits. To ensure a robust 
assessment, we began by applying these methods to synthetic geometric 
shapes. This provided a controlled setting for evaluating their 
performance. Subsequently, we extended our investigation to real 
gravity data, simulating practical scenarios. This approach allowed us to 
assess how well the Sparse and Tikhonov regularization techniques 
could handle the complexities of actual geological settings. The results 
highlighted the capabilities and limitations of each method. The Sparse 
regularization proved proficient at capturing sparse and sharp features, 
making it suitable for identifying distinct ore deposits. The Tikhonov 
regularization, on the other hand, demonstrated excellence in producing 
smoother, more gradual models, ideal for characterizing broader 
geological structures. Our research offers valuable insights for 
geophysical exploration, revealing the complex interaction between 
regularization techniques and their suitability for specific geological 
scenarios. 
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