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A B S T R A C T 

 

The primary aim of this study was to define the final pit boundaries utilizing the maximum flow Pseudoflow method in an open-pit mining 
context. Our methodology encompassed exploratory data analysis (EDA), establishing geomechanical and economic factors, and assessing 
the final pit. The study was conducted using Python 3.11 and SGeMS 3.0. We discovered that our block model comprised 480,000 blocks of 
10x10x10 m dimensions. We generated 20 pits with revenue factors between 0.1 to 2, increasing by increments of 0.1. The Study indicated that 
pit 20 was optimal, with an estimated NPV of 17855 MUSD, extracting 212 million tons of ore and 58 million tons of waste rock, achieving a 
stripping ratio based on block model and market conditions, and is subject to change with further block sequencing analysis. Nevertheless, 
pit 20 emerged as the most advantageous when considering economic feasibility, given its high estimated NPV and favorable stripping ratio. 
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1. Introduction 

Open-pit mining is a prevalent method in mineral extraction, which 
necessitates precise design of the pit's shape and final boundaries before 
operations begin. The primary aim of this design phase in open-pit 
mining is to determine the definitive configuration and dimensions of 
the mine [1 - 2]. This process takes into account various critical factors, 
including the geology and topography of the deposit, mineral 
distribution, geotechnical and slope stability constraints [3], 
environmental considerations, as well as extraction and processing 
costs, metallurgical recovery, and the price of the mineral [4 - 10]. 

The optimization of the final pit limits plays a crucial role in open-pit 
mining design. To achieve this precise delimitation, block models are 
used to represent the reserve as a combination of small blocks, 
employing methods of inverse distance or geostatistics [1]. In recent 
decades, two main approaches have been employed to delimit the final 
pit: maximization of the undiscounted profit and maximization of the 
Net Present Value (NPV) [11]. Each approach has specific methods and 
algorithms. In the first approach, the aim is to maximize undiscounted 
profit by initially setting the pit limits. Additionally, production 
scheduling is planned to obtain the highest NPV. Heuristic algorithms 
used include floating cone [12] and its improvements [13], Korobov 
[14], Boykov-Kolmogorov [15], and Ford-Fulkerson [16]. However, 
these algorithms do not guarantee mathematically optimal solutions. 
The Lerchs-Grossman algorithm [17] (LG), based on graph theory, and 
the network flow algorithm [18] also determine the final pit limits using 
mathematical approaches. Each method has its advantages and 
disadvantages. For example, when using a block model with a large 
amount of data, such as in generating final pits for an open-pit mine 
with over 100 million data points, applying the Lerchs-Grossman 
algorithm to obtain optimal pit limits may result in significant runtime  

 
 
 
delays [19]. 

The maximum flow problem aims to maximize the amount of flow 
that can pass from a source to a sink in a network with capacities on the 
arcs. To solve this problem, two types of algorithms have been 
developed: feasible flow algorithms, which increase the flow in each 
iteration using augmenting paths, and preflow algorithms, which allow 
for excesses in flow equilibrium [20]. The first feasible flow algorithm 
was proposed by Ford and Fulkerson in 1957, while the first known use 
of preflows was in 1955 by Boldyreff [21]. However, this technique did 
not guarantee optimal solutions. The Push-relabel algorithm by 
Goldberg and Tarjan in 1988 [22] [23] uses preflows and has been 
shown to be efficient both theoretically and empirically. 

In this context, the pseudoflow algorithm is presented as a highly 
effective tool for determining the final pit limits in open-pit mining. The 
pseudoflow algorithm uses an optimality certificate based on the Lerchs 
and Grossman algorithm for the maximum closure problem in a 
weighted node graph. This approach demonstrates that the concept of 
mass can be generalized to capacity networks using the notion of 
pseudoflow [20]. Unlike the maximum flow problem, pseudoflow 
addresses the maximum blocking cut problem, which focuses on arc 
capacities and node weights without having source and sink nodes. Its 
goal is to find a subset of nodes that maximizes the sum of node weights 
minus the capacities of arcs leaving the subset [24]. Within this study, 
the “Final Pit Limit” is defined as the ultimate boundary derived from 
the optimization process, indicating the most economically viable limit 
over the mine's lifespan. This is accomplished through iterative 
determinations of “optimal pit limits', with each iteration representing a 
step towards the “Final Pit Limit”, which is the culmination of 
maximizing economic value under given constraints [25, 26]. 
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Despite the computational strengths of the pseudoflow algorithm and 
its robustness in handling large datasets, it is not without its 
disadvantages. The algorithm's efficacy is heavily dependent on the 
accuracy of the input data; inaccuracies in the block model can 
propagate, leading to suboptimal pit designs. Moreover, it 
predominantly focuses on the economic optimization of pit limits and 
does not inherently account for operational constraints, potentially 
necessitating further design adjustments. These shortcomings 
underscore the importance of comprehensive data collection and the 
integration of algorithmic outcomes with practical mining 
considerations [27]. 

This study primarily contributes to the field of open-pit mining by 
developing and implementing a rapid solution technique for 
determining the final pit limit via the pseudoflow algorithm, focusing 
on computational efficiency and robust data management. By enhancing 
the algorithm's speed and precision, the research bridges critical gaps in 
current methodologies, offering a practical tool for mine planners 
seeking to quickly adapt to varying economic scenarios and make 
informed decisions about pit designs. The application of this refined 
pseudoflow approach underscores its value not only in calculating 
economically optimized boundaries but also in providing a scalable 
solution that accommodates the complexities inherent in large-scale 
mining operations. 

2. Materials and methods 

Parametric analysis was conducted to define the final pit limits, 
incorporating key geomechanical and financial parameters. A series of 
final pit scenarios were generated by varying revenue factors, enabling 
a comprehensive assessment under different economic conditions. Each 
pit scenario was meticulously evaluated through the construction of 
comparative pit graphs and scatter plots to ascertain the optimal 
configuration. The visualizations and analyses were executed using 
Python 3.11 within the Jupyter Notebook interface [27] and SGeMS 
software version 3.0 [28], chosen for their analytical prowess and 
compatibility with mining optimization tasks. 

2.1. Exploratory Data Analysis 

Exploratory data analysis is a set of procedures followed by 
researchers to understand the overall structure of the data, identify 
anomalies, and gain insights that can be used in more complex analyses 
[29]. 

2.2. Graphical concepts and pit optimization 

In optimizing the sequence of extraction for open-pit mining, a block 
model is utilized to represent the distribution and value of mineable 
materials [30]. Each block within the model is assigned a predefined 
value, which signifies its economic worth or cost, as depicted in Figure 
1. The critical aspect of planning involves establishing the slope 
requirements, ensuring safe and efficient removal of material. The 
dependencies among blocks are determined by the need to maintain a 
consistent slope, typically set at 45° for operational safety and stability. 
Figure 2 presents a simplified two-dimensional representation, focusing 
on the critical dependency for a single block to elucidate the concept. 
For instance, the extraction of block “g” is contingent upon the prior 
removal of blocks “p”, “q” and “r” to preserve the integrity of the slope. 
This dependency graphically underscores the operational constraints 
that must be observed to realize the slope requirements [31]. 

A graph is a fundamental structure utilized in various fields for 
modelling relational data, consisting of a set of vertices (or nodes) 
connected by edges. In the domain of open-pit mine optimization, this 
abstract representation becomes a practical tool: each vertex 
corresponds to a discrete block of material within the mine, and the 
edges delineate the extraction sequence and slope constraints that 
govern the removal of these blocks. Such constraints are essential for 
maintaining the structural integrity of the mine and ensuring 
operational safety. Additionally, vertices are imbued with weights, 

which reflect the economic value or cost associated with each block's 
extraction. This graphical abstraction facilitates the computational 
assessment of the mine's design by allowing the application of 
optimization algorithms [32]. 

Figure 3, building on the block model presented in Figure 1, visually 
encapsulates this optimization problem. It demonstrates how the graph-
based approach can be employed to determine an optimal excavation 
sequence that maximizes the overall value of the extracted materials 
while conforming to the technical constraints inherent in mine 
planning. This figure serves to translate the complex interdependencies 
and valuation of mine blocks into a comprehensible format, enabling 
the strategic planning that underpins efficient and profitable mining 
operations [31]. 

 

 
Figure 1. Block Model 

 

 
Figure 2. Dependency between the blocks to be mined. 

 

 
Figure 3. The graphical representation of optimization problem. 

 
After establishing the fundamental graphical concepts and their 

application to pit optimization, it is pertinent to specify the algorithmic 
approach adopted for the maximum flow problem. For this study, we 
have implemented the Pseudoflow algorithm, a variant refined from the 
HI-PR (Highest-Label Preflow-Push) algorithm, due to its proven 
effectiveness in addressing the complexities of mining sequences while 
preserving operational safety through slope constraints. The algorithm's 
suitability for maximizing the Net Present Value within our mining 
project's geotechnical parameters confirms its selection over other 
maximum flow algorithms such as Push-relabel or Excess flow. The 
subsequent sections delve into the specifics of the Pseudoflow algorithm 
and its application to the mine block model [33]. 

2.3. Maximum Closure and Optimal Pit 

In the optimization of open-pit mines, a “closure” or “closed set” 
refers to a subset of blocks that comply with the operational slope 
constraints, encapsulated within a directed graph 𝐺 = (𝑉, 𝐸). Here, 𝑉 
represents the set of all blocks under consideration-both ore and waste-
while 𝐸 embodies the directional relationships indicative of mining 
sequence and slope adherence. A subset 𝑆 ⊆ 𝑉 is defined as a “closure” 
if for any given block 𝑖 ∈ 𝑆, all blocks that are to be mined subsequent 
to 𝑖, are also included in 𝑆 [34]. Formally, this is denoted as: 

𝑆 = {𝑖 ∈ 𝑉|∀(𝑖, 𝑗) ∈ 𝐸, 𝑗 ∈ 𝑆}                                                                  (1) 
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The challenge of the “maximum closure” problem is to ascertain such 
a set 𝑆 where the cumulative value of the blocks, as quantified by a 
weighting function 𝑤: 𝑉 → 𝑅, is at its pinnacle. This maximization 
reflects the balance between the economic gains from ore extraction 
against the costs of waste removal. Figure 4 provides a visual depiction 
of this concept, illustrating the maximum closure problem as it pertains 
to the strategic planning of open-pit mines. Nodes are assigned values, 
positive for economically beneficial ore and negative for non-valuable 
waste, thereby mirroring their extraction. The physical stability of mine 
dictated by geotechnical requirements, is represented by directional 
arcs. Solving the maximum closure problem identifies the optimal 
subset or blocks that maximizes the net present value, ensuring the 
venture´s economic viability and structural integrity [31]. 

 

 
Figure 4. The flow graph with maximum closure limit. 

 
The Pseudoflow procedure is designed to ensure an efficient 

allocation of flow throughout the network, leading to the precise 
identification of the block set that delineates the boundary of the final 
cut. 
Pseudoflow Procedure {Gst, f, T, S, W} 
Begin 

While (S, W) ∩ Af ≠ ∅ do 
        Select (s’, w) ∈ (S, W); 
        Let rs’, rw be the roots of the branches containing s’ and w 
respectively. 
        Let 𝛿 = excess (rs’) = 𝑓𝑟𝑠′,𝑟𝑖 

        Merge T T∖[r, rs’] ∪ (s’,w); 
        Renormalize {Push 𝛿 units of flow along the path [rs’, …, s’, w, …, 
rw, r]:} 
        i=1; 
        Until vi+1=r; 
            Let [vi, vi+1] be the ith edge on the path; 

            {Push flow} If 𝑐𝑣𝑖,𝑣𝑖+1
𝑓

≥ 𝛿 augment flow by 𝛿, 𝑓𝑣𝑖,𝑣𝑖+1 
𝑓𝑣𝑖,𝑣𝑖+1+ 𝛿 

            Else, split {(vi, vi+1), 𝛿 - 𝑐𝑣𝑖,𝑣𝑖+1
𝑓 }; 

                  Set 𝛿  𝑐𝑣𝑖,𝑣𝑖+1
𝑓 ; 

                  Set 𝑓𝑣𝑖,𝑣𝑖+1 𝑐𝑣𝑖,𝑣𝑖+1; 
            i i+1 
        End 
   End 
End  
Division procedure {(a, b), M} 
T T∖(a,b) ∪ (a,r); excess (a) = far = M; {a is a root of a strong branch} 
Af  Af ∪ {(b,a)} ∖ {(a,b)}; 

2.4. Pseudoflow maximum flow method 

The determination of the ultimate pit limit within the mine 
optimization process has been refined by implementing the Pseudoflow 
maximum flow method. This advanced algorithmic approach is 
underpinned by the network flow theory, which provides a robust 
framework for addressing the intricacies of pit design. The method is an 
evolution from traditional 'maximum closure' strategies, offering 
enhanced computational efficiency and precision. In this context, the 
mine is conceptualized as a 'flow graph,' where nodes represent 
discretized blocks of the mine, each with an associated economic value 
or cost, and directed edges delineate potential extraction sequences, 
adhering to mandatory slope constraints. To address the optimization 
challenge, the flow graph is augmented with a 'source' node, 
representing the initiation point of material extraction, and a 'sink' node, 
denoting the point of completion [35]. 

The optimization problem is formulated to maximize the net present 
value of extracted materials, constrained by the flow capacities of each 
block and the overall system, ensuring that the solution adheres to 
operational and geotechnical constraints. The objective function and 
constraints are mathematically expressed as follows: Maximize the total 
flow Z from the source to the sink [36]: 

 

𝑍 = ∑ 𝐹𝑠𝑖(𝑠,𝑖)∈𝐸                                                                                            (2) 
 

Subject to capacity constraints on each edge (i,j): 
 

𝐹𝑖𝑗 ≤ 𝐶𝑖𝑗        ∀(𝑖, 𝑗)  ∈ 𝐸                                                                               (3) 
 

Ensuring flow conservation at each node except for source and sink: 
 

∑ 𝐹𝑖𝑗(𝑖,𝑗)∈𝐸 − ∑ 𝐹𝑗𝑖 = 0    ∀𝑖 ∈ 𝑉 ∖ {𝑠𝑜𝑢𝑟𝑐𝑒, 𝑠𝑖𝑛𝑘}(𝑗,𝑖)∈𝐸                       (4) 
 

And non-negativity of flow: 
 

𝐹𝑖𝑗 ≥ 0    ∀(𝑖, 𝑗)  ∈ 𝐸                                                                               (5) 
 

The Pseudoflow maximum flow method then systematically 
computes the optimal flow values that correspond to the selection of 
blocks to be excavated, while satisfying all constraints. The solution to 
this optimization problem yields a set of blocks that forms the ultimate 
pit limit, maximizing the economic return of the mining operation. The 
algorithm's performance and implementation for open-pit mining 
optimization are corroborated by the empirical findings of Picard and 
Smith (2004) [33], Hochbaum and Chen (2000) [34], and Thomas 
(1996) [37], whose research substantiates the efficacy of this approach. 

To elucidate the application of the Pseudoflow maximum flow 
method in pit optimization, consider a simplified mine model composed 
of a series of blocks with varying economic values. Imagine three blocks, 
A, B, and C, where A is directly accessible and B and C are sequentially 
dependent on the extraction of A. Block A has an economic value of $10, 
B is worth $15, and C is worth $5, but cannot be accessed until A and B 
have been extracted. The flow graph is constructed by connecting a 
source node to block A, and then A to B, B to C, and finally C to a sink 
node, with arcs representing the extraction sequence. The capacities of 
the arcs are set to mirror the economic values of the blocks they connect. 
Applying the Pseudoflow algorithm, we initiate the flow from the 
source, respecting the capacities, and adjust the flow iteratively until the 
maximum flow from the source to the sink is achieved. The optimal 
solution, in this case, would identify the extraction of blocks A and B, 
with a total flow equivalent to their combined value, as the optimal 
sequence to maximize economic return while adhering to operational 
constraints. 

3. RESULTS 

In applying the Pseudoflow algorithm to the block model for pit 
optimization, a succinct representation of the model’s attributes is 
essential to demonstrate the effectiveness of the method. The block 
model was evaluated based on copper grades (see Figure 5), density 
distributions, and geomechanical properties, which were critical in 
delineating the final pit limit. 
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Figure 5. Cooper grades in the block model, a) frontal view, b) plan view, c) 
isometric view. 

 
A summarized visualization of the block model highlighted the 

central concentration of copper grades, indicative of the region's 
economic potential. This facilitated the focus of the Pseudoflow 
algorithm on areas of higher value, aligning the excavation sequence 
with the most profitable blocks. A selective representation of the grade-
tonnage relationship further emphasized the inverse correlation 
typically observed between these variables, which was instrumental in 
the algorithm’s optimization process (see Figure 6). 

 

 
Figure 6. Tonnes vs. Grade curve. 

 
The parameters of the block model were dimensions of 10x10x10 

meters in length in the east (X), north (Y) and elevation (Z), with the 
average density set at 2.3 ton/m3. Geomechanical parameters, such as 
the slope angle, were set to 45°, conforming to standard safety practices. 
Operational and financial parameters, including costs and copper prices, 
were accounted for within the algorithm to ensure economic viability 
(see Table 1). The Pseudoflow algorithm effectively utilized these inputs 
to compute the optimal flow of value through the network, simulating 
the extraction process and determining the ultimate pit limit. 

 

Table 1: The financial and operational parameters. 

Scenario Cu 
Base Copper Price (US$/lb) 3.9 
Smelting Cost (US$/lb) 0.4 
Mining Cost (US$/ton) 2.3 
Crushing and Grinding Cost (US$/ton) 11 
Metallurgical Recovery (%) 90 

In evaluating the scenarios for the final pit delineation, as depicted in 
Table 2, the economic viability was assessed using a range of revenue 
factors from 0.1 to 2. This range allowed for the analysis of the pit's 
financial performance under various market conditions, providing a 
comprehensive understanding of the pit’s profitability across a spectrum 
of economic environments. The revenue factor, directly impacting the 
valuation of ore, was instrumental in understanding the economic 
thresholds that define the optimal pit limits.  

The Net Present Value (NPV) calculations for each scenario were 
anchored by a discount rate of 10%, which is a standard figure reflecting 
the cost of capital and the associated investment risk within the mining 
industry. This rate was applied to the projected cash flows, composed of 
the revenue from ore sales and the costs of waste management and ore 
extraction. The ore sales revenue was calculated by multiplying the 
annual production rate, set at 10,616,800 tonnes, by the ore grade and 
the prevailing copper price, adjusted according to the specific revenue 
factor. The subsequent cash flows were then discounted to ascertain 
their present value, culminating in the NPV for each scenario. 

An integral aspect of the evaluation process is the computational 
efficiency of the Pseudoflow algorithm used to delineate the final pit in 
each scenario. The solution times recorded for the generation of each 
pit configuration substantiate the algorithm's expeditious performance. 
For the initial pit (Pit 1), the algorithm required only 6.34 seconds to 
reach a solution. Subsequent pits demonstrated comparable efficiency, 
with Pit 2 through Pit 20 requiring 6.59, 6.5, 6.59, 6.58, 6.62, 6.66, 7.6, 7.75, 
6.71, 6.83, 6.56, 6.8, 6.66, 6.91, 6.66, 6.95, 6.94, 6.61, and 6.76 seconds, 
respectively. This consistent rapidity in the generation of solutions, even 
as the complexity of the scenario increased, underscores the robustness 
of the algorithmic approach. 

Figure 7 depicts the visualization of final pits 1, 5, 10 and 17, each 
accompanied by its respective views. These visual representations 
enhance the understanding of the shape and size of the final pits 
obtained in different scenarios. 

 

 
Figure 7. Final pit scenarios. a, b) Final pit 1. c, d) Final pit 5. e, f) Final pit 10. g, h) 
Final pit 17. 
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Table 2: Multiple final pit scenarios. 

Pit Ore (Ton) Waste (Ton) Total Ton VAN (US$) SR Ore grade (%) 
1 47 345 500 70 345 500 117 691 000 232 952 666 1.49 0.50 
2 98 398 600 78 305 800 176 704 400 940 593 419 0.80 0.46 
3 121 304 300 77 530 700 198 835 000 1 765 344 582 0.64 0.44 
4 136 944 300 78 370 200 215 314 500 2 638 744 061 0.57 0.43 
5 147 519 700 79 255 700 226 775 400 3 541 652 586 0.54 0.42 
6 155 512 200 77 965 400 233 477 600 4 462 160 532 0.50 0.41 
7 163 053 900 76 431 300 239 485 200 5 393 078 876 0.47 0.40 
8 172 069 900 71 916 400 243 986 300 6 331 577 954 0.42 0.40 
9 181 129 600 68 944 800 250 074 400 7 276 582 987 0.38 0.39 
10 187 539 700 66 350 400 253 890 100 8 226 824 097 0.35 0.39 
11 193 073 500 64 372 400 257 445 900 9 181 373 993 0.33 0.38 
12 197 664 300 63 086 700 260 751 000 10 139 198 654 0.32 0.38 
13 200 888 900 60 795 900 261 684 800 11 099 586 591 0.30 0.38 
14 204 074 400 60 609 600 264 684 000 12 062 014 785 0.30 0.38 
15 20 6068 500 60 112 800 266 181 300 13 025 177 993 0.29 0.37 
16 207 892 400 59 560 800 267 453 200 13 990 289 538 0.29 0.37 
17 209 079 200 59 121 500 268 200 700 14 955 546 199 0.28 0.37 
18 210 424 700 59 576 900 270 001 600 15 921 877 589 0.28 0.37 
19 211 390 700 58 610 900 270 001 600 16 888 844 623 0.28 0.37 
20 212 336 000 58 355 600 270 691 600 17 855 973 282 0.27 0.37 

 

 
To evaluate and determine the optimal final pit, a "pit by pit" graph 

was used. In this graph, each pit is displayed along with its 
corresponding ore and waste tonnages in relation to the associated NPV. 
It can be observed that pit 20 has the highest ore tonnage, totaling 212 
million tons, and the lowest waste tonnage, totaling 58 million tons. 
Additionally, this pit has the highest NPV compared to the other 
generated pits (see Figure 8). 

 

 
Figure 8. Pit by Pit graph. 

 

 
Figure 9. SR vs NPV graph. 

 

In Figure 10, the visualization of the optimal pit (pit 20) is presented 
from different perspectives, showing its copper grade legend. These 
views allow for a better appreciation of the distribution and 
concentration of the copper grade in the pit selected as the optimum. 

In a singular effort to validate the performance of the Pseudoflow 
algorithm within open-pit mining optimization, a comparative study 
was conducted against traditional Maximum Flow methods, including 
Boykov-Kolmogorov, Ford and Fulkerson, and Lerchs and Grossman. 
The results, encapsulated in Table 3, revealed that Pseudoflow 
significantly outperformed the alternatives in both computational speed 
and economic efficiency, achieving an NPV of 17,855.97 million USD 
across 486,000 blocks with an impressive execution time of just 6.76 
seconds. This starkly contrasts with the lesser NPVs and longer 
processing times of the other methods, underscoring the Pseudoflow 
algorithm's robustness and its suitability for contemporary mining 
operations where time efficiency and maximizing economic return are 
paramount. 

 
Table 3: Final Pit Comparison Using Different Methods. 

Method Block count NPV  
(MUS$) 

Execution Time 
(Seconds) 

Pseudoflow 486000 17855.97 6.76 
Boykov-Kolmogorov [16] 40947 0.293 362.01 
Push-Relabel [16] 40947 0.293 434.61 
Ford and Fulkerson [23] 2366 2881.78 25 
Lerchs and Grossman 
[23] 

2366 0.880 45 

 

4. CONCLUSIONS 

In concluding our exploration of the open pit mine optimization, the 
Pseudoflow maximum flow method proved to be an effective 
computational tool for delineating the final pit, showcasing its 
methodological robustness and optimization capacity. The algorithm's 
adept handling of the block model and its ability to navigate economic 
variables demonstrate a significant advancement over traditional 
approaches. This study’s findings underscore the efficacy of the 
Pseudoflow method in identifying the most economically viable pit 
configuration, with optimal pits showcasing favorable ore to waste ratios 
and solid financial prospects, as exemplified by the highest NPV in the  
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Figure 10. Pit 20. a) Plan view. b, c) Front views. d) Isometric view. 

 

series of scenarios examined. Looking ahead, comparative analyses with 
classic algorithms, such as Lerchs and Grossman are proposed to further 
validate the Pseudoflow method's performance, which promises to 
refine the strategic decision-making process in the mining industry. 
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