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A B S T R A C T 

 

Long-term production planning for open-pit mines is recognised as one of the vital decision-making issues in open-pit mining operations. In 
addition, the ore grade is one of the most significant sources of uncertainty in a mining operation, as it classified run-of-mine material into 
ore and waste. In the classical approach, the destination of mining blocks is determined by comparing the estimated grade with a pre-
determined cut-off grade. However, the uncertainty of material grade dramatically affects production planning. In this paper, a novel model 
was developed based on the idea of simulating the grade to incorporate the risk of grade uncertainty. In the proposed model, the economic 
consequences of the assigned destination are calculated using the profit and loss functions and they are integrated with the production 
scheduling. The proposed production planning was implemented in an iron ore mine, and the results were discussed for classical, loss, and 
profit models. Results show that the net present value increases by 3.64% by implementing the profit function. In contrast, the loss function 
method reduces the net present value by 2.23% compared to the classic model. This happens because the amount of ore class is increased by 
7.46% using the profit function method and decreased by 2.49% using the loss function method. Additionally, the coefficient of variation, as 
an index of uncertainty, was investigated. The results show that the loss function approach attempts to extract more reliable blocks in the 
early years and postpone the high-uncertain blocks to the later years of the production. 
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1. Introduction 

The declining trend in mineral grades, increasing mining costs, and 
environmental considerations confirm that the economic life of today’s 
mines depends on careful planning and management. Open-pit mining 
planning is a decision-making issue related to determining which blocks, 
enclosed within the ultimate pit, should be extracted each year and sent 
to the process, waste dump, or ore dump. The problem of open-pit mine 
production planning is usually solved to maximize the project’s net 
present value under constraints, such as mining and processing 
capacities and the precedence of block extraction [1]. 

Operational research techniques have been widely applied to solve 
the problem of long-term production planning since the 1960s; however, 
the solution obtained from mathematical techniques may not be 
practically feasible and for the larger instances of the problem, finding a 
solution is computationally expensive. In contrast, heuristic methods 
can provide an acceptable, but not necessarily optimal solution. But, the 
ease of use and flexibility in considering operational constraints make 
heuristic methods widely used. Depending on the nature of the input 
parameters, the proposed methods for planning open-pit mining are 
divided into deterministic and uncertainty-based solution approaches. 
In the deterministic approach, all input data is assumed to be definite. 
In the uncertainty-based methods, instead of an absolute value, the 
distribution of a value is used depending on the source of uncertainty. 
Ore grade is the most crucial source of uncertainty in mining operations.  

 
 
 
 
Kriging is the primary geostatistical method used to estimate block  
attributes; however, to include estimation uncertainty, the geostatistical 
simulations, such as sequential Gaussian simulations are applied. The 
simulation generates realizations of the block model and investigates the 
uncertainty in the estimation [2-5]. 

To solve the deterministic classic long-term production planning 
problem, three types of solution methods including exact, heuristic, and 
meta-heuristic approaches have been developed. Johnson [6] proposed 
the first known mathematical model, which sets the variables to decide 
the sequence of block extraction in each period and determines their 
destination. Constraints on the capacity of resources required for 
extraction and processing are also considered. Tolwinski [7] developed 
a dynamic programming routine using the depth-first search method. 
However, despite the possibility of applying large block models, the 
highest NPV was still infeasible. Sattarvand [8] applied Ant Colony 
Optimization (ACO) to solve open-pit production planning for a two-
dimensional hypothetical block model. Shishvan and Sattarvand [9] 
used the Ant Colony Optimization (ACO) algorithm to solve a real case 
study with 350,000 blocks under mining and processing capacity 
constraints. 

Moreno et al. [10] examined various linear and nonlinear integer 
models for production planning in open-pit mines and developed a 
nonlinear model for production planning considering stockpiles. 

Article History: 
Received: 05 June 2023. 
Revised 04 September 
Accepted: 25 October 2023. 
 

- R E S E A R C H    P A P E R - 

https://ijmge.ut.ac.ir/
https://doi.org/10.22059/IJMGE.2023.360143.595072


60 Z. Nabavi et al.,  / Int. J. Min. & Geo-Eng. (IJMGE), 58-1 (2024) 59-67 

 

Rezakhah [11] developed the Moreno model by considering blending 
and concluded that the mixing plan increased the NPV by about 19%. 
Lotfian et al. [12] proposed a new method based on the block clustering 
to reduce model size. In the first step, the blocks are grouped into 
"mother clusters," using the concept of clustering as a mathematical 
programming problem and solved using a genetic algorithm (GA). In 
the second stage, the mother clusters are transformed into mineral 
clusters for practical reasons. Fathollahzadeh et al. [13] have presented 
a mathematical model based on mixed integer programming with the 
grade engineering framework for mining operations. Mariz and 
Soofastaei [14] focused on improving surface mine planning using 
advanced analytical approaches, such as machine learning and artificial 
intelligence. Flores-Fonseca et al. [15] presented models based on mixed 
integer programming considering the sequencing of power shovels and 
storage. This model has been developed to maximize the work efficiency 
of shovels and NPV. The results show an increase in operational NPV 
by including storage in the model. 

Despite the valuable research in the field of deterministic open-pit 
planning, uncertainties associated with the input parameters can lead to 
increased differences between the realized and calculated NPV. 
Therefore, the direct involvement of uncertainties, especially grade and 
price uncertainties, in the production planning process can lead to 
planning that maximizes the NPV of the project with a high degree of 
reliability [16]. Albach [17] first investigated the issue of grade changes 
in reserves and their impact on mining production planning. The author 
used the linear programming technique with random constraints to plan 
a lignite mine where the amount of resources is uncertain. Darwen [18] 
examined a genetic algorithm's capabilities to plan mines' production in 
the face of mineral price and grade uncertainty. Godoy and 
Dimitrakopoulos [19] developed a model that considers the grade of 
uncertainty by modifying the Tan and Ramani [20] model and 
combining it with the simulated annealing method. The results show 
that the use of optimal mining rates and grade uncertainty leads to plans 
that meet the objectives through significant improvements in the NPV 
of the project. Ramazan and Dimitrakopoulos [21] used the stochastic 
integer programming method to perform production planning in a gold 
mine in Australia and utilized multiple conditional simulations to 
investigate supply uncertainty. The objective function in this model will 
eventually lead to the maximization of the NPV. Morales et al [22] 
combine geo-metallurgical models using co-probability scenarios that 
evaluate spatial variability and mineral deposit uncertainty. 
Additionally, using a stochastic integer programming model and 
considering simultaneous methods for direct block scheduling will 
determine long-term open-pit mining planning. Rimélé et al. [23] 
proposed a dynamic stochastic programming approach with geological 
and commodity price uncertainty for open-pit mining planning. The 
proposed method first uses a two-stage model to manage geological 
uncertainty. Then, the stochastic dynamic programming algorithm is 
developed and applied to determine the appropriate strategy for metal 
production based on the price evolution of the commodity. Gilani et al. 
[24] have developed a stochastic integer planning (SIP) model to 
integrate geological uncertainty and use a PSO-based algorithm to solve 
the SIP model. Four strategies were proposed according to the 
population topology and the risk block model. Implementing the 
proposed approach in a large-scale mine demonstrates its performance 
in creating a unique application considering geological uncertainties 
with a maximum NPV and a minimum risk of not achieving production 
goals. Tolouei et al. [25] have proposed a new approach to finding the 
optimal solution for long-term mining planning by considering grade 
uncertainty. The augmented Lagrangian relaxation (ALR) method 
speeds up the optimisation convergence in large samples. The grey wolf 
optimiser (GWO) algorithm is then used to update the programmed 
Lagrangian multipliers. Birch [26] presented an approach to optimize 
the cut-off grade by considering estimation uncertainty to improve the 
materials' classification in open-pit mines. 

The most influential effect of grade uncertainty occurs around the 
cut-off grade. In the classical open-pit production planning model, the 
cut-off grade is used to classify mining blocks. If the estimated grade is 
higher than the cut-off, this ore block is classified; otherwise, it is 

considered waste. Therefore, any mistake in the estimated grade around 
the cut-off grade can change the destination of the material parcel. Thus, 
an alternative approach is to simultaneously consider the distribution of 
the grade and the economic consequences of sending the block using 
simulation-based methods, such as the loss and profit functions. 
Dimitrakopoulos [27] proposed the idea of classifying ore/waste based 
on estimation and conditional simulation. The results indicate that 
conditional simulation is generally better than the fixed estimation of 
material grade in material classification. This is especially true when the 
profit value of a block is a nonlinear function of the block grade. 
Mousavi et al. [28] have used the profit and loss functions to classify 
ore/waste material. Studies show that this method performs better than 
conventional methods and is more adjustable to actual data. Vasylchuk 
and Deutsch [29] have presented a new approach to enhancing grade 
control using the loss function. The research aims to show how to 
improve grade control, i.e., sending less ore to the waste dump or 
sending tailings to the plant through numerical studies. Verly and Parker 
[30] have provided a practical review of conditional simulation to 
improve mineral resource estimation in classification, mining selectivity 
or dilution, and grade uncertainty. 

In this paper, we integrated the idea of loss and profit functions in 
classifying material and in the long-term production planning of open-
pit mines. Thus, the cut-off grade is not fixed and changes based on the 
probability that the block is ore or waste, and the economic 
consequences of materials classification. The proposed model considers 
monetary loss and misclassification and applies actual loss or profit 
figures in the mine planning by considering the discounting rate and 
linking them to the mining sequence. Finally, the proposed model was 
applied to a real case study, and the results were discussed for the classic, 
loss, and profit function approaches. 

2. The Profit and Loss Functions 

One of the essential steps in production planning is to use a method 
to determine the class of mining blocks. In other words, the destination 
of the extraction blocks (plant, waste dump, and stockpile) must be 
specified. One of the methods for classifying materials and determining 
their destination is using the profit and loss functions. 

2.1. The Loss Function 

The loss function is defined as the amount of money lost due to 
incorrect classification. Losses associated with the wrong classification 
can be expressed as a function of actual but unknown grade losses. In 
other words, the amount of loss for a given block is defined as the 
potential value of the block minus the recovered value [31]. 

The article introduces p, r, and Cp as the price, recovery, and 
processing cost. Cm and z denote mining cost and the grade of block, 
respectively. In the case of a real ore block initially categorized as waste: 

 

Potential value       𝑝𝑟𝑧 − 𝐶𝑚 − 𝐶𝑝  
Recovered value   −𝐶𝑚 
In the case of a real waste block initially categorized as ore: 
Potential value      −𝐶𝑚 
Recovered value    𝑝𝑟𝑧 − 𝐶𝑚 − 𝐶𝑝 
 

Then, the loss function as a result of the incorrect classification of the 
waste block as ore (Lo) and also the loss function for the ore block that 
is incorrectly classified as waste (Lw) are given in Equations (1) and (2), 
respectively [28]. 

 

𝐿𝑜 = 𝑃0 × (−(𝑝𝑟𝑧− − 𝐶𝑝))                                                                                   (1) 
 

𝐿𝑤 = (1 − 𝑃0) × (𝑝𝑟𝑧+ − 𝐶𝑝)                                                                       (2) 
 

Where, P0 is the probability of having a grade higher than the cut-off 
grade, and z+ and z- are the average values of the simulated grade greater 
than and less than the cut-off grade, respectively. If Lo is less than Lw 
for a specific block, it is categorized as ore; otherwise, it falls into the 
waste category. Within a given block and category (ore or waste), the 
estimated grade (z) represents the mean value of simulated outcomes. 
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2.2. Profit Function 

The profit function specifies the expected profit associated with each 
classification scenario [31]. The profit function approach calculates the 
expected profit for each class, and the classification that gives the 
highest expected profit will be selected [28]. The profit function for the 
blocks estimated as ore (Pro) and also the profit for the blocks classified 
as waste (Prw), respectively, in equations (3) and (4) are given [28]. 

 

𝑃𝑟𝑜 = 𝑃0 × (𝑝𝑟𝑧+ − 𝐶𝑝) + (1 − 𝑃0) × (𝑝𝑟𝑧− − 𝐶𝑝)                                    (3) 
 

𝑃𝑟𝑤 = −(𝑃0) × (𝑝𝑟𝑧+ − 𝐶𝑝)                                                                           (4) 
 

If Pro exceeds Prw, the block is categorized as ore; otherwise, it is 
designated as waste. For instance, when the average simulated value for 
a specific block surpasses the cut-off grade, the profit function 
categorizes it as ore, given that −(𝑃0) × (𝑝𝑟𝑧+ − 𝐶𝑝) < 0. Likewise, 
when the average simulated value for a particular block falls below the 
cut-off grade, the block is directed to a waste dump, provided that 
𝑃0 × (𝑝𝑟𝑧+ − 𝐶𝑝) + (1 − 𝑃0) × (𝑝𝑟𝑧− − 𝐶𝑝) < 0. In both the loss and 
profit approaches, the assumption is that every block needs to be mined, 
and the mining costs for ore and waste are considered equal. 
Consequently, mining cost are not factored into the equations. 

The purpose of using the loss function is to minimize the loss from 
sending the block to the wrong destination. Also, the profit function is 
used to maximize the profit from sending the block to the correct 
destination. In other words, for each block in these two methods, four 
cases occur [19]: 

 

• Acceptance: The actual grade of the block is higher than the cut-off 
grade, and it is sent to the processing plant. 

• Correct rejection: The actual block grade is less than the cut-off 
grade sent to the waste dump. 

• Wrong acceptance: The block grade is lower than the cut-off grade 
and is sent to the processing plant. 

• Wrong rejection: The block grade is higher than the cut-off grade 
sent to the waste dump 

 

In this context, the loss function aims to minimize errors in 
acceptance and rejection, while the profit function strives to increase 
acceptance rates and rectify rejections. Simulating the probability of 
profit for a block is feasible by estimating the likelihood of a block 
having a grade higher than the cut-off grade. For instance, if the 
estimated block grade surpasses the cut-off grade, factoring in the 
potential error in this estimation helps gauge the cost associated with 
sending it to the processing plant. This approach clarifies the 
determination of block profitability under various scenarios. 

3. Open-pit Production Planning Problem 

In classical long-term open-pit mining planning, mineral block 
destinations are determined by comparing each block's grade with the 
economic cut-off grade. However, grade uncertainty affects production 
planning results in practice. This uncertainty makes it impossible to 
achieve the production intended for the mine in some periods. For this 
purpose, this paper uses the profit and loss function to determine the 
destination and sequence of block extraction. In this regard, the classic 
production planning model is presented, and then revised models based 
on the loss and profit functions are developed. 

3.1. The Classical Approach for Open-Pit Production Planning 

In the classical production planning model, the objective function 
maximizes the NPV. Each block's economic value (BEV) is included in 
the formula, and only the cut-off grade is used to determine the 
destination of the blocks. First, the sets, parameters, and decision 
variables are introduced, and then the mathematical model of the 
objective function and constraints is expressed. 

Sets: 
 

T: The set of time period, t = (0, 1, …, T) 

I: The set of extraction blocks, i = (0,1,…, I) 
Pi: The set of blocks that must be extracted before block i. 
Io: The set of blocks that are sent to the processing plant 
D: The set of block’s destination, d = (0, 1, …, D), where d=0 and d=1 
denote waste and ore, respectively. 
Pi denotes the collection of blocks having a precedence connection 

originating from block i. The grouping of these precedence connections 
is established based on both slope angle and height, forming what is 
referred to as the "cone of precedence". 

 
Parameters: 

Cm: The mining cost (dollars per tonne) 
Cp: The processing cost (dollars per tonne) 
p: The price of product (dollars per tonne of product). 
r: Total recovery (%) 
Zc: Cut-off grade (%) 
e: Discount rate (%) 
Bevi: The economic value of block i (dollars) 
bi: The tonnage of block i (tonne) 
Mml

t : The minimum mining capacity in period t (tonne) 
Mmu

t : The maximum mining capacity in period t (tonne) 

Mpl
t : The minimum capacity of processing plant in period t 

(tonne) 

Mpu
t : The maximum capacity of processing plant in period t 

(tonne) 
Zi: Grade of block i (%) 
Zmax: Maximum acceptable grade in the processing plant (%) 
Zmin: Minimum acceptable grade in the processing plant (%) 

Decision variable: 

Xi𝑑
t : If block (i) is extracted in period (t) and sent to the destination 

(d) is equal to one; otherwise, it will be zero. 

The objective function 

The objective function of the long-term production planning problem 
is to maximize the net present value. The objective function, shown in 
equation (6), is obtained from the total discounted revenue of the blocks 
minus the total discounted cost of extracting and processing. The Block 
Economic Values (BEV) are calculated using equation (5). 

 

𝐵𝐸𝑉 = {
𝑝𝑟𝑧 − 𝐶𝑝 − 𝐶𝑚      𝑧 > 𝑍𝑐

−𝐶𝑚                         𝑧 ≤ 𝑍𝑐
                                                            (5) 

 

𝑀𝑎𝑥 ∑ ∑ ∑
𝐵𝑒𝑣𝑖𝑋𝑖𝑑

𝑡

(1+𝜀)𝑡
𝑇
𝑡=0

𝐼
𝑖=0

1
𝑑=0                    𝑋𝑖𝑑

𝑡 = {
1
0

                                       (6) 

Constraints 

Precedence constraint: 

Equation (7) shows the precedence constraint of block extraction. 
The precedence constraint ensures that all immediate blocks, which 
have restricted the target block, are extracted before the extraction of 
the target block. 

 

∑ (∑ 𝑋𝑗𝑑
𝑟𝑡

𝑟=1 − 𝑋𝑖𝑑
𝑡 )1

𝑑=0 ≥ 0      ∀ 𝑖 ∈ 𝐼;  𝑗 ∈ 𝑃𝑖;  𝑡 ∈ 𝑇;  𝑑 ∈ 𝐷                   (7) 

Constraint of the mining capacity: 

Equations (8) and (9) show the constraints related to the mining 
capacity, which are determined according to the amount of mineral 
reserve, technical and economic constraints, and the processing plant's 
capacity. 

 

∑ ∑ 𝑏𝑖
𝐼
𝑖=0

1
𝑑=0 𝑋𝑖𝑑

𝑡 ≥ 𝑀𝑚𝑙
𝑡                    ∀ 𝑖 ∈ 𝐼;  𝑡 ∈ 𝑇;  𝑑 ∈ 𝐷                          (8) 

 

∑ ∑ 𝑏𝑖
𝐼
𝑖=0

1
𝑑=0 𝑋𝑖𝑑

𝑡 ≤ 𝑀𝑚𝑢
𝑡                    ∀ 𝑖 ∈ 𝐼;  𝑡 ∈ 𝑇;  𝑑 ∈ 𝐷                       (9) 
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Constraint of the processing plant capacity: 

The processing capacity is determined according to mineral reserve, 
extraction capacity, and market conditions. As shown in Equations (10) 
and (11), the total tonnage of ore sent to the processing plant should not 
be less than the minimum feed required by the plant in period t; also, 
this tonnage should not exceed the capacity of the processing plant. 

 

∑ ∑ 𝑏𝑖
𝐼𝑜
𝑖=0 𝑋𝑖𝑑

𝑡 ≥ 𝑀𝑝𝑙
𝑡

𝑑=1           𝑡 ∈ 𝑇                                                             (10) 
 

∑ ∑ 𝑏𝑖
𝐼𝑜
𝑖=0 𝑋𝑖𝑑

𝑡 ≤ 𝑀𝑝𝑢
𝑡

𝑑=1         𝑡 ∈ 𝑇                                                        (11) 

Constraint of grade limits: 

The grade limits constraint given in Equations (12) and (13) controls 
the amount of metal content sent to the processing plant in period 𝑡. 
This constraint ensures that the plant feed is within a steady range. 

 

∑ ∑ (𝑍𝑖 − 𝑍𝑚𝑎𝑥)𝐼
𝑖=0 𝑋𝑖𝑑

𝑡 ≤ 0𝑑=1                   ∀ 𝑖 ∈ 𝐼;  𝑡 ∈ 𝑇                        (12) 
 

∑ ∑ (𝑍𝑖 − 𝑍𝑚𝑖𝑛)𝐼
𝑖=0 𝑋𝑖𝑑

𝑡 ≥ 0𝑑=1                    ∀ 𝑖 ∈ 𝐼;  𝑡 ∈ 𝑇                       (13) 

Reserve constraint: 

The constraint given in Equation (14) ensures that each block is 
extracted only once during the life of the mine. 

 

∑ ∑ 𝑋𝑖𝑑
𝑡𝑇

𝑡=0 ≤ 1 1
𝑑=0       ∀ 𝑖 ∈ 𝐼                                                                (14) 

3.2. Profit and Loss Approaches for Open-Pit Production Planning 

Open-pit mining planning can be formulated as an integer program 
with the objective function of NPV maximisation with a set of technical 
and practical constraints. This research has developed a mathematical 
model considering the grade uncertainty, which calculates the potential 
profit and loss from sending blocks to the processing plant or waste 
dump. Ultimately, it chooses the destination that maximises the 
potential profit of the block or minimises the potential loss. Then, the 
extraction sequence of the blocks is determined. The structure of the 
proposed model requires new parameters related to the concept of 
economic function, which will be described below. Additional detail 
includes sets, decision variables, and constraints based on the classic 
model. 

The new parameters in the mathematical formulation of long-term 
planning using the profit and loss function are as follows: 

 

Prid: Potential profit of block i sent to destination d (dollars) 
Lid: Potential loss of block i sent to destination d (dollars) 
P0: The probability that the block is an ore (%) 

z+: 
The average values of the simulated grade are higher than 
the cut-off grade 

z-: 
The average values of the simulated grade which are less 
than the cut-off grade 

 

As mentioned earlier, the sequence of block extraction has been 
determined using the profit and loss functions. Objective functions are 
introduced below; however, the constraints are the same as those of the 
classical method.  

The objective function in the profit function approach is to maximize 
potential profits from correctly classifying blocks; by observing physical 
and technical constraints, including precedence, reserve, mining 
capacity, processing capacity, and grade limit. 

 

𝑀𝑎𝑥 ∑ ∑ ∑
𝑃𝑟𝑖𝑑𝑋𝑖𝑑

𝑡

(1+𝜀)𝑡
𝑇
𝑡=0

𝐼
𝑖=0

1
𝑑=0              𝑋𝑖𝑑

𝑡 = {
1
0

                                             (15) 
 

The Pr value for the blocks that are sent to the processing or dump 
will be calculated using Equations (16) and (17), respectively. According 
to this function, a block is sent to the processing plant, if it has a grade 
higher than the cut-off grade and its potential profit (Pro) is equal to 
zero (Equations (16)). Also, if a block has grades less than the cut-off 
grade, its potential profit will be calculated with the probability of 
having a grade higher than the cut-off grade. A block is sent to the dump 

(Prw), if it has a grade lower than the cut-off grade and the potential gain 
is zero. However, if the grade is higher than the cut-off grade, the 
potential profit is calculated according to the probability of the block 
having a grade higher than the cut-off grade [28]. 

 

𝑃𝑟𝑜 = {
0                                                                                   𝑧 > 𝑍𝑐

𝑃0 × (𝑝𝑟𝑧+ − 𝐶𝑝) + (1 − 𝑃0) × (𝑝𝑟𝑧− − 𝐶𝑝) 𝑧 ≤ 𝑍𝑐
                       (16) 

 

𝑃𝑟𝑤 = {
−(𝑃0) × (𝑝𝑟𝑧+ − 𝐶𝑝)      𝑧 > 𝑍𝑐

0                                            𝑧 ≤ 𝑍𝑐

                                                    (17) 
 

In this loss function approach, the objective function leads to the 
minimization of potential losses, resulting in incorrect classification of 
blocks; following physical and technical constraints, such as precedence, 
reserve, mining capacity, and grade limit. 

 

𝑚𝑖𝑛 ∑ ∑ ∑
𝐿𝑖𝑑𝑋𝑖𝑑

𝑡

(1+𝜀)𝑡
𝑇
𝑡=0

𝐼
𝑖=0

1
𝑑=0               𝑋𝑖𝑑

𝑡 = {
1
0

                                           (18) 
 

In this case, using the functions given in Equations (19) and (20), the 
amount of possible losses of a given block as a result of sending it to the 
processing plant (Lo) and waste dump (Lw) is calculated [28]. 

 

𝐿𝑜 = {
0                                             𝑧 > 𝑍𝑐

𝑃0 × (−(𝑝𝑟𝑧− − 𝐶𝑝))       𝑧 ≤ 𝑍𝑐
                                                               (19) 

 

𝐿𝑤 = {
(1 − 𝑃0) × (𝑝𝑟𝑧+ − 𝐶𝑝)        𝑧 > 𝑍𝑐

0                                                   𝑧 ≤ 𝑍𝑐

                                                   (20) 
 

4. Case study 

The Chah-Gaz iron ore mine was selected as a case study to evaluate 
and validate the mathematical models developed for long-term 
production planning of open-pit mines using the profit and loss 
functions. The Chah-Gaz mine, shown in Figure (1) is located at 
longitude 29 degrees and 55 minutes east and latitude 7 degrees and 32 
minutes north. The average altitude of the deposit is about 1700 meters 
above sea level and it is considered a mountainous area. The first studies 
of the Chah-Gaz deposit were carried out in 1976, in which most of the 
profiles were perpendicular to the trend of the eastern and western 
massifs, of which Techno Export drilled 59 wells. The Chah-Gaz ore 
deposit is concentrated in two almost parallel masses, east and west, and 
most of the deposit is located at depth [32]. 

 

 
Figure 1. The geographical location of the Chah-Gaz mine. a) The position of the 
mine b) Chah-Gaz iron ore mine. 

4.1. Geostatistical Studies 

Variography output determines three critical parameters, namely: the 
sill, the nugget effect, and the range. Each reserve has a unique 
variogram model, the parameters of which are not precisely 
determinable but can be approximated to some extent. Anisotropy can 
be determined by drawing a variogram in different directions, and its 
parameters can be obtained. Variography in the study area was outlined 
in different steps using Datamine software to identify the spatial 
structure of the deposit. Table (1) shows the variogram parameters and 
maximum and minimum anisotropy variability. Figure (2) also shows 
the variogram of the maximum and minimum anisotropy variability, 
respectively. 
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Table 1. The variogram parameters along with the maximum and minimum anisotropy variability. 
 Type Extension Slope tolerance Nugget effect Range Sill 

Maximum Spherical 150 55 10 0.2 128 0.89 
Minimum Spherical 70 80 10 0.2 47 0.87 

 

 
 

Figure 2. Variogram along with the maximum and minimum anisotropy variability. 

4.2. Geostatistical Simulation 

In this study, the sequential Gaussian simulation (SGS) method was 
applied for simulation. The SGS is an efficient and popular geostatistical 
simulation method for continuous variables [28]. The statistical and 
geostatistical parameters of each realization that the SGS generates are 
identical to those of the raw data, and the actual known data remain 
constant throughout all realizations. Following the generation of 
realizations, the material is divided into the ore and waste categories 
using the profit and loss functions as the two primary simulation-based 
methods. 

Utilizing the available data, we performed simulations for 50 
realizations of the block model. When selecting 50 simulations for the 
SGS in our study, several critical factors were considered. First and 
foremost, we aimed to strike a balance between achieving statistically 
significant results and managing computational resources effectively. 
Given the complexity of our geological model and the computational 
demands of the SGS, 50 simulations were deemed sufficient to provide 
reasonably stable estimates of the spatial distribution of the variable 
under investigation. This choice also aligned with established practices 
in our field, ensuring the comparability and credibility of our research 
within the geological community. However, we acknowledge that the 
choice of the number of simulations can influence precision and 
computational time. 

The statistical parameters obtained from the results of five 
realisations of the simulation and the original data are given in Table 
(2). Figure (3) also depicts the non-directional variogram of five 
realisations (R) and the original data. The results shown in Figure (3) 
and the variograms of all 50 realisations are matched by the histograms 
and variograms of the original data and the simulations have high 
validity. Finally, Figure (4) shows the ore block of the case study along 
with the grade obtained from geostatistical studies. 

5. Result and Discussion 

Production planning at the Chah-Gaz iron ore mine based on the 
grade uncertainty was performed with three mentioned methods to 
evaluate the developed models, and each technique produced results 
according to its nature. All approaches were coded in Python, and 
CPLEX was used to solve the models and compare the profit and loss 
function results with the classical model. All models were conducted on 
a Windows 10 workstation equipped with an Intel Core i7-8557U CPU 
and 12GB of RAM. The computational time for the classical, profit, and 
loss approaches amounted to 692 seconds, 17,060 seconds, and 10,412 
seconds, respectively. 

5.1. Block Classification 

The classification of blocks will have a significant impact on the long-
term planning of production because if an ore block is sent to the waste 
dump,  a significant amount of money will be wasted. Furthermore, if a 
waste block is processed in the plant, the recovery of the plant will be 
reduced. In particular, processing plants susceptible to incoming feed 
can experience severe problems due to wrongly sending blocks to 
destinations. Therefore, using the most appropriate method to 
determine destinations can lead to better planning and reduce the risk 
associated with mining operations. 

This paper discusses ore/waste classification using economic 
classification functions, which are indicators of the economic impacts of 
different classification decisions. Along with the classification process, 
two approaches were presented. One involved minimizing loss and the 
other involved maximizing profit. Both incorporate conditional 
simulations of the ore body, as well as the calculation of economic 
classification functions for the ore body blocks. In addition, these 
functions allow for the inclusion of asymmetric relationships between 
monetary loss and misclassification. 

 
Table 2. The statistical parameters of five realizations and raw data. 

 Original data R 5 R 15 R 25 R 35 R 45 
Average 46.31 44.37 43.78 44.72 44.13 46.39 
Standard deviation 21.67 22.85 23.04 22.48 23.07 22.17 
Middle 57.22 56.46 55.76 56.46 56.20 57.50 
Skewness -0.92 -0.99 -1.06 -0.92 -1.03 -0.68 

 

 
Figure 3. The non-directional variograms related to five realisations and the 
original data. 
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Figure 4. The ore block of the case study along with the grade obtained from geostatistical studies. 

 
First, the possible profit and loss for each block were calculated to 

classify the blocks using the profit and loss functions. Then, blocks were 
classified using the traditional method and economic functions. Figure 
(5) illustrates the result of classifying blocks using three methods. After 
determining each function's parameters, the destination of each block 
was specified by implementing the production planning model. The 
extraction and processing tonnage diagrams of the plant used to analyse 
and compare the performance of each model are shown in Figure (6). 

In all three methods, profit, loss, and classical, the extraction capacity 
is approximately the same. But, the results of ore production in Figures 
(5) and (6) differ for each approach over a period of five years. Some 
blocks with a lower grade than the cut-off grade (with a high 
probability) in the profit function are classified as ore and sent to the 
plant. Hence, the tonnage of plant feed in the profit model is greater 
than in the other two models. In the loss function model, not sending 
blocks with a grade higher than the cut-off grade to the processing plant, 
due to its harmfulness, has reduced the annual tonnage of the processing 
plant in this model. 

The profit function generally directs several blocks with a grade lower 
than the cut-off grade to the plant (due to profitability). This 
classification change caused a 7.46% increase in the total tonnage sent 
to the plant. The loss function method is conservative, which is why 
blocks with a higher grade than the cut-off grade was not delivered to 
the plant due to losses, and blocks provided the minimum tonnage of 
the plant with lower losses in all years. As a result, this conservative 
choice reduced the total tonnage delivered to the plant by 2.49%. 

5.2. Block Sequencing 

Each of the developed models uses its theory to classify blocks. This 
change in the block classification approach will affect the mine 
production planning and block sequencing. As mentioned in the 
previous section, the first effect of applying economic functions is the 
change in the classification of blocks. This classification will change the 
annual extraction tonnage in planning. Table (3) and Figure (7) show 
the details of the annual production (Ore and Waste) for all three 
approaches. 

Table (3) and Figure (7) show that the total extraction tonnage is 
approximately equal; however, the loss function has extracted less ore, 
proportionate to its economic nature (2.4% lower). Also, the concept of 
the loss function in classifying the blocks has caused it to extract 1.2% 
more waste than the other two methods. This classification contrasts 
with the profit function and has caused more tonnes of ore to be sent to 
the plant. 

A change in the classification of blocks and the annual extraction 
amount will also affect the sequencing of blocks. Therefore, Figure (8) 
shows the block extraction sequencing in three developed models in the 
east-west view. Each color represents the planning period (year). 
According to the description and Figure (8), it is clear that the 

classification approach affects the sequencing of blocks. Also, the change 
in tonnage sent to the plant and block sequencing leads to a change in 
the economic parameters of mine planning. 

According to Figure 8, the sequencing of blocks in two classical 
methods and the profit function have differences, but they use the same 
extraction pattern. However, this extraction pattern is different in the 
loss function method. The reason is the concept of this method, which 
tries to extract blocks that are more likely to be ore in the early planning 
periods. Giving priority to blocks with the highest probability of having 
ore causes a change in their sequencing. This concept can be better 
understood with the coefficient of variation. 

 

 

Figure 5. The ore blocks classified by classical, profit, and loss approaches. 

 

Figure 6. The annual ore production by classical, profit, and loss approaches 
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Table 3. The details of annual production (Ore and Waste). 

Planning model 
Classical (Mt) Profit function (Mt) Loss function (Mt) 

Ore Waste Ore Waste Ore Waste 
Year one 2.231 6.094 2.55 5.775 2.175 6.113 
Year two 2.363 5.963 2.494 5.831 2.175 6.019 
Year three 2.644 4.969 2.644 4.931 2.175 5.531 
Year four 2.625 4.2 2.644 4.181 2.587 4.313 
Year five 2.194 4.631 2.624 4.238 2.644 4.18 

 

 

 
Figure 7. The detail of annual production (Ore and Waste) by classical, profit, and 
loss approaches. 

 

 
 

Figure 8. The block extraction sequencing by classical, profit, and loss approaches 
in the east-west view. 

 

5.3. Grade Variability 

As mentioned, the loss and profit functions can include grade 
uncertainty in production planning. To explore this ability, the 
coefficient of variation has been calculated and summarized for the 
yearly schedule. The coefficient of variation measures dispersion which 
is a measure of data variability used to gauge the extent of data 
variability. Hence, the coefficient of variation measures how far data are 
from the average or mean value [33]. Therefore, the coefficient of 
variation is a useful way to express the level of uncertainty, especially 
for grades. Points with higher coefficients of variation indicate lower 
accuracy and higher risk. Figure 9 shows the coefficient of variation for 
blocks of ore in all three methods. 

As it is known, using the loss function causes the selection of blocks 
with a lower coefficient of variation than ore. The reason for this is that  

 

 
Figure 9. The coefficient of variation for blocks of ore in classical, profit, and loss 
approaches. 

 

in the calculation of profit and loss functions, the role of the coefficient 
of variation is entered as a probability distribution function for each 
block. 

In this study, the coefficient of variation was used as an index of 
uncertainty in mine planning. The results of the loss function approach 
show that blocks with a high probability of being ore are mined in the 
first years. In contrast, blocks with more uncertainty are mined in the 
last years when exploration is complete. In this regard, Figure 10 
illustrates the annual probability of being ore in each approach. In 
Figure 10, the concept of extracting blocks with higher probability 
(more reliability) in the first years and extracting blocks with lower 
probability (more uncertainty) in the last years is displayed. 

 

 
Figure 10. The annual probability of being ore in classical, profit, and loss 
approaches. 

5.4. Grade limits 

The purpose of this section is to compare classical grade limit 
practices in an iron mine with the mine's comparison and reconciliation 
of the economic classification functions (the loss and profit functions) 
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using geostatistical simulations. The next step is to determine whether 
grade limits based on the economic classification functions and 
simulations will further improve performance. 

Figure 11 illustrates the comparison between the mine’s grade control 
ordinary (blue), the classification from the minimum loss approach 
(green), and the classification from the maximum profit approach 
(orange) to compare differences in the metal content between three 
approaches. As a result, the application of the minimum loss economic 
classification function and indicator sequential simulation shows 
improvement in the mine’s grade control performance. 

Also, because the profit function labeled a larger number of blocks as 
ore, it caused the average grade in periods two and four to be lower than 
the traditional method. 

 

 
Figure 11. The average grade (%) of ore sent to the plant by classical, profit, and 
loss approaches. 

 
Figure 12 illustrates the grade distribution of blocks in each period for 

the selected methods, providing valuable insights into the variability and 
characteristics of block grades over time. The box in a box plot 
represents the interquartile range (IQR), which is the range between the 
first quartile (Q1) and the third quartile (Q3). The distance between Q1 
and Q3 (IQR) is a measure of the spread or variability of the data. Based 
on Figure 12, it is evident that the loss function exhibits a smaller 
Interquartile Range (IQR) in block grades for mining operations. This 
suggests a higher degree of consistency and predictability in the ore 
source, resulting in reduced operational risk. 

 

 
Figure 12. The annual grade distribution analysis by classical, profit, and loss 
approaches. 

5.5. Economical Result 

Prior to evaluating, investing, designing, and planning a mining 
project, it is essential to discriminate between ores and waste. Mining 
operations can face serious problems as a result of the misclassification 
of ore and waste. Applying the appropriate ore/waste discrimination 
technique can lead to better planning and reduce mining risk. In the first 

stage, the goal is to take into account the asymmetric relationship 
between monetary loss and misclassification. Then, include actual loss 
or profit figures in mine planning by considering the discounting rate 
and linking them to a mining sequence. In this regard, the cumulative 
cash flows achieved by each approach are shown in Figure (13). Also, 
Table (4) shows the net present value for all three models. 

 
Table 4. The net present value by each approach 

Planning model Classical Profit function Loss function 
Net present value  
(million dollars) 83.11 86.24 81.26 

Difference ore classify (%) - +7.24 -2.49 
Difference NPV (%) - +3.64% -2.23% 

 

 
Figure 13. The cumulative cash flow by classical, profit, and loss approaches. 

 
 

It is evident that, with the nature of the loss and profit functions, we 
do not simply allow the user to compare the scenarios with the base case. 
Instead, our approach involves employing these functions to determine 
block sequencing and subsequently calculating the NPV based on this 
sequencing. By integrating these two fundamental methods into our 
analysis, we gain the capability to conduct a thorough and insightful 
comparison with the base case. 

As mentioned, the nature of the profit function causes more tonnage 
of materials to be sent to the processing plant. As a result, sending these 
materials will increase the NPV, while the nature of the loss function 
will reduce it. In the profit function model, an increase of 7.24% in 
processing plant tonnage caused a rise of 3.64% in NPV. In the loss 
function model, a decrease of 2.49% in plant tonnage led to a decline of 
2.23% in the NPV. 

6. Conclusions 

The profit and loss functions are methods to classify ore and waste 
rocks by considering the economic consequences of assigning blocks to 
different destinations. In this paper, we incorporate the ideas of the 
profit and loss functions into mine planning models. The proposed 
model has several advantages, including taking into account the 
asymmetric relationship between monetary loss and misclassification, 
and  and incorporating the actual loss or profit figures in mine planning 
by considering the discounting rate and linking them to a mining 
sequence. The comparative analysis was presented to elucidate the 
potential performance of the proposed models. Comparisons of the 
scenarios show that the profit classification function is the most effective 
approach in terms of returning the highest NPV. Based on a real case 
study, implementing the classic, loss, and profit functions resulted in an 
increase of 3.64% in the NPV using the profit function approach. In 
contrast, the loss function method reduces the NPV by 2.23% compared 
to the classic model. This happens because the amount of ore class is 
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increased by 7.46% by the profit function method and decreased by 
2.49% using the loss function method. Moreover, the quality of ore 
production can be further improved using the loss function approach, 
especially in the first periods, because the grade uncertainty is reduced 
by sending more reliable blocks. 
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