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A B S T R A C T 

 

Fractures are one of the most important geological features that affect production from most carbonate reservoirs. A large amount of the 
world’s hydrocarbon resources are located in fractured reservoirs and the identification of fractures is one of the important steps in reservoir 
development. Due to the high cost of tools that are used in the petroleum industry to identify fractures such as image logs, and their 
inaccessibility in most of the studied areas, it is often tried to use other available data to identify fractures. Due to the ever-increasing progress 
of data-driven methods such as neural networks and machine learning, this study has tried to apply1D-Convolutional Neural Network (1D-
CNN) which is one of the deep learning algorithms on well-logging data and seismic attributes in a carbonate reservoir to identify the existing 
fractures in the investigating area. The approach used in this research is a binary classification which is applied first in the well location. To 
validate the method, results are compared with the reports obtained from image logs. Finally, the fracture density map is drawn in the entire 
reservoir area. 
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1. Introduction 

The term ‘fracture’ refers to any secondary physical break or 
discontinuity in the rock caused by stresses exceeding the rock 
resistance threshold [1, 2]. Identification of fractures and their density 
in different areas of the reservoir, especially fractured reservoirs, is one 
of the most important stages of reservoir studies [3, 4]. 

The results of fracture modeling are used as input data for flow 
simulation and analysis. Therefore, it is very important to study the 
network of fractures to know how they spread in fractured reservoirs 
and create a model for it [4, 5]. The main information used for 
identifying fractures are seismic data, well logging data, well test data, 
mud loss information, and analysis of cores taken from reservoir 
horizons. 

In the middle of 1980 with the advent of image logs the process of 
identifying fractures and their characteristics such as slope, aperture, 
and fracture density improved significantly [5,6]. Because geological 
phenomena have various patterns and the presence of anomalies in the 
collected data increases its complexity, human-based methods are very 
complicated in using the above-mentioned data to identify fracture 
zones and characteristics, [7]. Also, direct tools for identifying fractures 
like the image logs and coring have limitations such as not always being 
available, time-consuming, and economic inefficiency [8]. Therefore, to 
analyze subsurface data to investigate fractures in the reservoirs it's 
important to apply intelligent methods that can perform complex 
calculations and provide comprehensive algorithms. 

Artificial intelligence is a field of science that can produce an 
intelligent machine to be able to perform tasks that require human 
intelligence [9]. Today, artificial intelligence systems are programmed  

with the help of machine learning and deep learning, to be trained and  

 

 
used for the intended purposes [10]. In recent years researchers have 
used artificial methods to identify faults and fractures in some reservoirs. 
Ozkaya et al. (2008), used a probabilistic decision tree to detect fracture 
corridors in a mature oil field. In their research, the images log, 
production logs and injector/producer shortcuts were selected as the 
training set [11]. 

Tokhmechi et al. (2009), used a combined method to detect fractures. 
They used all available petro physical logs for training the Parzen 
algorithm, they also used wavelet transform to preprocess the input logs 
before training the algorithm [12]. Jafari et al. (2012), suggested a model 
to estimate fracture density from conventional well logs using an 
Adaptive-Nero fuzzy inference system. They used image logs from two 
wells to verify the results of the model [13]. Asghari Nejad et al. (2014), 
have used the Parzen-wavelet approach to detect the vuggy zone in a 
carbonate reservoir. The combined Parzen-wavelet-based algorithm was 
developed for identifying vuggy zones in the wavelet coefficient domain 
using gamma ray (GR), neutron porosity (NPHI), bulk density 
(RHOB), and sonic (DT) logs. Compatibility between core tests and the 
results of the developed method revealed the capability of the method 
[14]. Zheng et al. (2014), applied an artificial neural network in seismic 
object detection successfully by combining multiple attributes into a 
single object-sensitive attribute. Their final results showed that neural 
network-based fault detection contributes the better structural 
interpretation, especially in an area with a complex fault system [15]. 

Bayat et al. (2015), used a neural network-based method for 3D 
fracture modeling. They used seismic attributes, petrophysical logs, and 
reservoir data to train the artificial network. The fracture model 
obtained from the neural network agreed with the transmissibility map 
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by about 82% [16]. Cruz et al. (2017), applied a deep-learning method to 
improve automatic fracture detection in borehole images [17]. Xiong et 
al. (2018), used supervised convolutional deep learning algorithms to 
identify faults in 3D seismic data [18]. Haibin et al. (2018), used a deep 
convolutional neural network to delineate seismic salt bodies from 3D 
seismic data [19]. Udegbe et al. (2019), used data science analysis to 
identify faults in the scale of seismic data. The combination of the 
pseudo-HAR algorithm, which is used for face recognition, and the 
cascade AdaBoost algorithm was one of the main approaches of their 
research [20]. Ashraf et al. (2020), used an unsupervised machine 
learning algorithm and ant colony optimization to recognition of 
fracture networks [21]. to recognize fractured zones, Tian et al. (2020), 
proposed an integrated workflow, which took fracture identification as 
an end‐to‐end project by combining boundary detection and deep 
learning classification (CPD‐DL) [22]. 

Previous studies have been carried out to identify large-scale fractures 
(on the fault scale) using seismic data, machine learning, and neural 
network algorithms. Considering the development of algorithms and 
special applications that deep learning methods have, this research has 
tried to identify small-scale fractures (well scale) to achieve more 
effective results from the One-dimensional convolution neural network 
algorithm. To compare the result with conventional works that have 
been done before to identify fractures. This study helps to introduce the 
various advantages of using deep learning methods in the field of 
exploration. In this paper, we try to apply supervised deep learning 
methods to identify fractures in the scale of wells using well-log data and 
seismic data such as attributes relating to fault and fractures. The 
research consists of two parts. In the first section, well-logging data is 
used as an input to the algorithm for classifying fractured and non-
fractured zones, and in the next section, fracture-related attributes are 
used for classification. Finally, the fracture density map obtained from 
the training parameters is displayed in the part of the reservoir. It should 
be noted that due to the lack of available data in the research area, part 
of the data from two wells is used for training and the rest is set aside as 
the test data. 

2. Geological setting and data acquisition 

The study area is located in the southwest of Iran within the Zagros 
fold-thrust belt resulting from the continental convergence of Arabian 
and Iranian-Turkiesh plates. The belt hosts about 10 percent oil and 15 
percent gas of worldwide reservoirs. At the middle part of the belt, the 
Dezful Embayment as a tectonic re-entrant part hosts 45 oil fields and 
many fault-related folded structures. In the extreme north of the Dezful 
embayment, the study oil field is located in Ilam province, 22 km 
southwest of Dehloran and 180 km south of Kermanshan cities. This 
field is located between Cheshmeh Kush, Musian, and Changuleh fields 
and is hosted in a northwest-southeast trending anticline with 45 km 
length and 8 km wide on top of the Bangestan horizon. The oil field was 
discovered in 1972. 

According to available geological data, the stratigraphic succession in 
the study area is normal from surface to depth. Agahjari formation is the 
youngest sedimentary sequence and is exposed at the surface. It consists 
of sandstone, cherty conglomerate, medium grain, reddish brown with 
thick layers of red silty marl, gypsiferous marl, and thin beds of limy 
sandstone. The Aghajari formation overlies the Gachsaran formation 
which consists mainly of grey-red marl, anhydrite in alternation with 
limestone, and salt beds. Gachsaran formation is the most important seal 
for hydrocarbon fields in the Zagros basin. Asmari formation, as the 
most important reservoir unit with the Zagros basin, is overlain by the 
Gachsaran formation and consists of limestone, cream-light brown 
mudstone, dolomitic limestone, partly shale, and silt. To the depth, the 
Pabdeh and Gurpi formation consists of dark grey argillaceous 
limestone, and greenish grey marl, overlying the alternation of yellowish 
-brown light grey to brownish argillaceous limestone and greenish grey 
Marl of the Ilam formation. These units overly on the Sarvak formation 
as the second most important reservoir unit in the Zagros basin. This 
formation is one of the geological formations of the Bangistan Group in 

Zagros with the Middle Cretaceous (Albian-Tronian) age and is an 
alternation of off-white to light cream limestone to dolomitic limestone 
and some green to pale green pyritic shale beds. 

In this study, geophysical data of two wells from the study oil field 
were used to model the fractured reservoir at the level of the Sarvak 
formation. These wells with an average depth of 4394 (-4170.7mc) and 
4518 (-3831.2mc) meters were drilled in 1972 and 2003. The wells are 
located near the crest of the anticlinal structure and were drilled with a 
5.875-inch bit across the Sarvak formation. The deviation of the well in 
the logged interval reached a maximum of 2 degrees. The well was 
drilled using oil-based mud. By checking the geological information of 
the area and the image logs reports, the fractures are observed in the 
Sarvak formation. In addition to open-hole logs, an Ultrasonic Borehole 
Imager (UBI*) was logged over the interval from 3938m to 4385m on 1st 
January 2007. The main objectives of logging the UBI* were to 
characterize natural fractures and to analyze the borehole condition. 

To study the fractures in the target area, image log data from two 
wells are available. In well No. 1, the report from the FMI image tool and 
in well No. 2 the report from the UBI tool were provided to study the 
location and type of fractured intervals. In Table 1, fracture information 
in two wells is summarized. 

 

Table 1. Information on the type of fractures in different depth intervals. 

 

3. Deep learning 

Deep learning is a subset of machine learning algorithms and in 
recent years, its computational model is considered a gold standard in 
the field of machine learning. This computational tool has achieved 
outstanding results in adaptive and complex tasks performed by humans 
[23]. The term deep learning refers to an artificial neural network with 
a deep structure. Deep learning networks are a set of algorithms that 
provide the best performance in solving critical problems such as voice 
perception, image recognition, and language processing [24]. Deep 
learning allows computational models composed of multiple processing 
layers to learn representations of data with multiple levels of abstraction. 
This branch of learning science includes numerous algorithms that can 
be used in both supervised and unsupervised approaches [25]. The most 
important deep learning algorithms include convolutional networks, 
Auto-encoder networks, deep belief networks, and recurrent neural 
networks. Many deep architectures are growing every day and it is 
difficult to compare them according to their performance and 
application in different fields [26]. In this research, to identify fractures 
in the field of study it has been tried to apply the deep learning 
classification method, which is a type of supervised approach. For this 
purpose, a one-dimensional convolutional algorithm has been used. In 
addition, to increase the accuracy of the results and compare it with deep 
model, cumulative learning algorithms have been used too. In the 
following, these items have been described. 

3.1. Convolutional neural network 

The convolutional neural network algorithm (CNN) is one of the 
most used and famous algorithms in the field of deep learning [23]. 
These networks are specialized types of neural network algorithms that 
use convolution math operations in their layers. These networks are 
specifically designed to process pixel data and are used in image 
recognition and processing [27]. By using this algorithm, it is possible 
to process one-dimensional and two-dimensional data. This algorithm 
can automatically extract features [23]. The input x of each layer in a 
CNN model is organized in three dimensions: height, width, and depth, 
or m × m × r, where the height (m) is equal to the width. The depth is 
also referred to as the channel number. Several kernels (filters) available 

Well number Fracture interval Tool Type of fracture 

1 3918-4105 SFMI Open/possible 

2 3938-4385 UBI Open/possible/closed 
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in each convolutional layer are denoted by k and also have three 
dimensions (n × n × q), similar to the input image, the kernels are the 
basis of the local connections, which share similar parameters (bias bk 
and weight Wk) for generating k feature maps hk with a size of (m − n 
− 1) each and are convolved with input, as mentioned above. The 
convolution layer calculates a dot product between its input and the 
weights as in formula 1, similar to NLP, but the inputs are undersized 
areas of the initial image size. Next, by applying the nonlinearity or an 
activation function to the convolution-layer output, we obtain the 
following [28]: 

 

𝑓ℎ (1) 𝑘 =  𝑓 (𝑊𝑘 ∗  𝑥 +  𝑏𝑘 )     (1) 
 

In the following, each layer in the network architecture is explained: 

3.2. CNN architecture 

A convolutional network consists of an input layer, hidden layers, and 
an output layer. In a convolutional network, hidden layers perform the 
convolution operation. In a convolution structure, the input is a tensor 
that has three components: length, width, and height. After passing the 
convolutional layer, the image is abstracted into a feature map, called an 
activation map, in which the presence of features detected in the input 
is summarized [29]. In each convolutional layer, a kernel or filter is slid 
over the input data and scan it. As the convolution kernel slides along 
the input data matrix, it creates a feature map that in turn contributes 
to the input to the next layer. The next layers include: a) pooling layers: 
These layers, which are usually used after the convolutional layers, have 
the task of reducing the dimensions of the feature map obtained from 
the convolutional layer by sampling. Pooling can be done in two ways: 
maximum and averaging. In the maximum method, pooling is a 
predetermined window that scans the input or image and selects the 
highest value in each window. In the averaging method, the average 
values are selected [30]. b) Fully connected layers: Each neuron in one 
layer is connected to another neuron in a different layer. When the 
features are extracted from the convolutional layer and resampled by 
the pooling layer, they are mapped to the final outputs of the network 
by a subset of fully connected layers. The final fully connected layer 
usually has the same number of output nodes as the number of available 
classes and each fully connected layer is followed by a non-linear 
function [31]. 

As mentioned, this research has been done with the supervision 
approach. Therefore, the fractured zones obtained from image logs are 
the areas where the network should extract and train parameters and 
features by considering the input values corresponding to each depth of 
the fracture. In fact, the values obtained from well logs or seismic 
attributes are 1-dimensional inputs that are processed with 
Convolutional, pooling, and fully connected layers to lead to a binary 
output of zero and one. 

4. Majority voting algorithms 

Cumulative learning refers to methods of learning algorithms that use 
the combination of several models to predict and achieve higher 
accuracy. Cumulative learning consists of a limited set of alternative 
models and follows more flexible structures [32]. Cumulative learning 
is done in two ways; bagging and boosting methods. Each has been 
described below. 

4.1. Bagging methods 

In this method, several weak learning models are used 
homogeneously. These models learn from each other independently and 
concurrently. The result of each model is combined as a kind of 
deterministic averaging process [33]. Figure 1 shows the bagging 
method. 

4.2. Boosting method 

The boosting method is a type of cumulative learning algorithm that 

consists of combining several weak classifiers to lead to a strong learning 
model same as the bagging algorithms [34]. In this method, learning is 
done sequentially, in other words, the base model depends on the 
previous models and combines the result to achieve a definite result 
[35]. Figure 2 shows the boosting method. 

5. Methodology 

The main goal of this research is to use deep learning algorithms for 
classifying fractured and non-fractured zones within the scope of two 
investigated wells. For this reason, after obtaining the required data and 
loading them into the software system, seismic and petro-physical data 
are processed and checked in two separate sections. First, the petro-
physical data are used as the input of deep learning algorithms for 
classifying fractured and non-fractured zones by using the supervised 
model, and in the next step, seismic data, especially seismic attributes 
such as three-dimensional curvature, dip deviation, instantaneous 
frequency, relative acoustic impedance, attenuation, are used as inputs 
to the deep learning algorithm. 

5.1. Applying 1D-CNN on well-logging data 

Before implementing the algorithms on any type of data, it is 
necessary to introduce the basic knowledge of the investigated problem 
properties of the network. Therefore, in the first step, to identify the 
points and intervals with fracture characteristics and extract the labels 
1, meaning the presence of fracture, and 0 meaning the absence of 
fracture, image logs were analyzed. In this research, among the analyzed 
data to identify fractures, only two wells had image log information. In 
well number 1, FMI log, and in well number 2, UBI log. After completing 
the mentioned Phase, applying the deep learning algorithm, and 
performing the training and testing processes, image logs are used in the 
final step to validate the results. By checking the logs of the driven wells, 
the conventional logs that exist in the two wells are extracted, and by 
placing the corresponding depth intervals from the structural logs next 
to the labels extracted from the image logs in the previous step, the 
desired data set for the algorithm is obtained. Common logs in two wells 
include neutron porosity, density, sonic, formation photoelectric index, 
and measured values from gamma-ray logs such as potassium, uranium, 
and thorium. Therefore, the values corresponding to each log will be 
introduced to the network as features from the Sarvak depth Formation. 
Table 2 shows the inputs of the algorithm. 

 

 
Figure 1. Structure of bagging method algorithm [34]. 

 

 
Figure2. Structure of boosting method algorithm [34]. 
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Table 2. Well-logging data as input of the algorithm. 

Gamma-ray sonic photoelectric  density  Neutron 

URAN 

DT PEF RHOB NPHI POTA 

THUR 

 
Before the process of training and applying the algorithm, it is 

necessary to preprocess the data so that the data acquires the 
appropriate capability and form to feed into the network. These steps 
include a) data normalization: When different numerical features are 
available for each sample, and since each of these features has a different 
scale, it is necessary to bring all the features in a common interval 
between zero and one, so the features with larger values won't affect the 
performance of the network. [36]. If we call the desired data sample X 
and denote the normalized value of the sample by N, each sample can 
be placed between zero and one, using the following formula. 

 

𝑁 =
𝑋−𝑀𝑖𝑛

𝑀𝑎𝑥−𝑀𝑖𝑛
                     (2) 

 

b) Feature selection: In any machine learning algorithms prediction, 
it is necessary to select the related input features according to the 
objective variable before the training process so that the network can 
train and learn in the most optimal mode. The presence of inappropriate 
features will decrease the performance of the network and will cause the 
model to overfit [37]. In this research, different algorithms were selected 
and examined to find suitable features, each of which acted 
independently in introducing important features. Also, due to the type 
of problem investigated and the lack of direct relationship between the 
considered features (well log values and the presence of fractures), the 
lack of a clear trend in distinguishing the features of both classes in 
visual evaluations and since the algorithms used in this research has the 
deep structure, the extraction of suitable features can be done 
automatically by the deep learning algorithm during the training phase 
[38]. c) Data balancing: The unbalanced number of samples belonging 
to each class is one of the common issues in most classification problems 
[39]. Various algorithms have been presented by programmers to 
overcome this problem. In this research according to the evaluation of 
results obtained from various algorithms, the algorithm that ultimately 
led to the highest possible accuracy in the evaluation was the random 
sampling algorithm. In any classification problem where the number of 
samples of each class is unbalanced, we face two types of samples, the 
majority class and the minority class. These methods are based on the 
examples in the minority class, which are the important category for 
learning in the target problem, the reproduction and simulation of the 
data samples belonging to the minority class lead to an increase in the 
desired examples [40].In Tables 3 and 4 the number of samples in each 
class before and after applying the balance method is shown. d) Splitting 
data in train and test set: In every process of machine learning and deep 
learning, it is necessary to determine the training and test data. In this 
research, after applying balancing algorithms, the number of available 
samples belonging to both categories increased to 4958 samples in two 
wells. Due to the small and limited number of available wells and the 
lack of enough samples for the desired class, which is a fractured type, 
the training and learning of the algorithm are done on a part of the data 
of both wells. A part of both wells is also set aside randomly to be used 
in the test process for validating the trained network. 70 percent of the 
samples were for training, 20 percent for testing, and 10 percent for 
validation. In the test dataset which has been set aside before, the 
number of samples that belong to each class is shown in table 5. 

 

Table 2. The number of samples in each class before applying the random sample 
method. 

Number of samples Class 

2479 Non- fractured 

662 Fractured 

 

Table 3. The number of samples in each class after applying the random sample 
method. 

Number of samples Class 

2479 Non- fractured 

2479 Fractured 

 
Table 4. The final number of sample data for the testing algorithm. 

Number of samples Class 

486 Non- fractured 

506 Fractured 

 
In previous Phases, the training data were processed and prepared to 

feed the deep learning algorithm. The structure used in the network 
consists of two convolution layers, two Max Pooling layers, and 
connected layers. In addition, the hyper-parameters such as the size of 
the kernels, padding, strides, dropout rate, and activation function were 
selected. The specification of each parameter is explicated below: 

 
a) Kernel: It specifies the size of the convolutional window. Its 

optional arguments can be set in the network [41]. b) Padding: the 
number of pixels added to the image during processing by the 
convolution layer [42]. c) Stride: Refers to the step number of each 
convolutional layer [41]. d) Dropout rate: It is a technique that is added 
on layers to prevent model overfitting and it means to invalidate some 
neurons randomly in the neural network. In other words, to avoid 
gaining the importance of, some neurons in the model they can be left 
out [43]. e) Activation function: In artificial neural networks, the activation 
function of a node defines the output of that node given an input or set 
of inputs. By making changes or processing the data, they produce the 
output of the neural network. In some sources, they are also referred to 
as transfer functions [44]. Activation functions have different types such 
as sigmoid, rectified linear, and tangential [45]. In this study tangential 
activation function gave the best results. 

In this study, the network performs learning and training operations 
with 512 input neurons and 200 training steps. It should be noted that, 
during the trial and error process, the desired parameters were used to 
adjust the network. After reaching the optimal level and increasing the 
accuracy of the results, the optimal values of each parameter were 
determined and hyper-parameter tuning was done by the greed search 
algorithm. Figure 3 shows the architecture of a one-dimensional 
convolutional neural network on the well-logging data for classification. 

5.2. Applying the 1D-CNN on Seismic data 

After loading the seismic data in PETREL software, the steps related 
to loading the well data, well survey curves, and transferring the well 
data to the time domain were done. By uploading the labels extracted 
from the image log reports for each depth interval in binary form, which 
was done before, the fractured area was identified. Because the fractures 
are located at the Sarvak formation and considering the coordinates 
from the highest and lowest depths of the Sarvak formation to extract 
seismic attributes in this range, the time slice on Seismic data was 
applied. In Figure 4, the matching of the well tops data in the middle of 
the Sarvak horizon is shown next to the binary diagram resulting from 
the fracture density. The red areas represent the presence of fractures 
and the blue areas mean the absence of fractures in the target range. 

After determining the limitations related to the presence of fractures 
in wells No. 1 and 2 in the seismic data and creating a time slice, in the 
desired range, the attributes of dip deviation, envelop, variance, chaos, 
amplitude attenuation, three-dimensional curvature, instantaneous 
frequency, which were introduced in the previous section, were 
extracted and used as input of the learning algorithm in the second part 
of the research. More information about these attributes is explained 
below:

https://en.wikipedia.org/wiki/Artificial_neural_network
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Figure 3. The architecture of the 1D_CNN algorithm for this research. 

 

 
Figure 4. Depth matching for Sarvak well tops and binary diagram extracted from 
fracture density in Sarvak horizon. 

 

a) Variance: Variance is an edge detection technique, it calibrates the 
dissimilarities from a mean value to produce computationally proficient 
results that are much sharper than coherency [21, 46]. The variance 
attribute can detect the discontinuities sharply. b) Chaos: The term 
chaoticness is used for highlighting the reflector discontinuities using 
differences in azimuth and dip [21, 47]. c) curvature: measured the 
bending extent of a surface at a specific point using volumetric methods. 
A curvature is an effective tool for detecting small-scale faults and 
fractures with low displacement [48]. d) envelope: it’s the 
representation of the amplitude E(t) of an oscillatory function f(t). It is 
used to highlight the main seismic features such as discontinuities, 
lithology changes, faults, variations in sedimentary deposits, tuning 
effects, and sequence boundaries.[49] The envelope formula is shown 
below: 

 

𝐸(𝑡) = √(𝑅𝑒 𝑠 (𝑡))^2 + (𝐼𝑚 𝑠 (𝑡))^2                       (3) 
 

e) The dip deviation attribute is one of the edge detection methods 
that identifies sudden changes in the local slope. This attribute can 
distinguish features such as faults and channel margins from the slope 
of the reflections [50]. f) Instantaneous frequency: This physical attribute, 
which is defined to be the time rate of instantaneous phase change, is used 
to identify specific events, such as abnormal events and thin layer tuning 
based on its frequency content [51]. The formula is as follows: 

 
 

                              (4) 
 

g) Attenuation: Theoretically, the attenuation is associated with the 
movement of fluid in the pore; hence the existence of hydrocarbon in 
the pore will be represented by the attenuation attribute directly. It can 
be formulated as: 

 

𝑄 =
2𝜋𝐸

𝛥𝐸
                     (5) 

Q represents the attenuation or rock quality factor; the numerator of 
the upper fraction represents the energy of the seismic wave and the 
denominator of the fraction represents the energy lost during one wave 
cycle [50]. 

After applying the seismic attributes, in the next step, it is necessary 
to extract the time interval of attributes where the fractures have been 
determined for feeding into algorithms. Performing this part requires 
the application of preliminary steps to extract seismic attributes at 
specific time intervals corresponding to pre-loaded tags representing 
fractured and non-fractured depth intervals. These steps include 
gridding, building the horizon in the desired range, layering, scaling 
seismic data and binary diagram extracted from the image logs, and 
finally extracting attributes from the area of two wells and the Sarvak 
zone. 

Just like the part of applying the algorithm on the data obtained from 
well logging, the process of training the network on new inputs also 
requires initial processing. These steps include removing missing values, 
normalizing data, determining features and objective functions, 
checking input features, balancing the number of samples belonging to 
both classes and finally selecting the training and the test data. 

To use deep learning algorithms, it is necessary to have a sufficient 
number of training samples. owing to the limitation of the number of 
training samples in the upcoming research due to the limitation in the 
number of available wells, in this section, to achieve the desired accuracy 
and implement the 1D-CNN algorithm, which is an example of deep 
networks, the combined algorithms of machine learning and Deep 
learning were also used. It should be noted that 70% of the data was used 
for training, the remaining 10% was used as algorithm validation data, 
and 20% was used as test data. As in the previous section, where the 
input of the network was the outputs obtained from the well-logging 
tools, first, the 1D-CNN algorithm was used for data training and 
classification. This network performs the training process with an 
optimal amount of 512 input neurons and three convolutional layers. 
The optimal values were obtained by trial and error method and 
reaching the minimum desired accuracy, and then by optimizing the 
parameters using the greed search algorithm. Also, to increase network 
efficiency, Max pooling, Flatten, and Dense layers were added and 
finally, the values that lead to an increase in network performance were 
used with the optimal amount of 100 training steps. 

5.3. Applying deep-majority voting algorithm 

Since the results of the previous stage did not show appreciable 
accuracy for this algorithm, to achieve the desired accuracy, the 
cumulative algorithm was used along with the 1D-CNN algorithm. In 
other words, in this approach, feature extraction by the deep algorithm 
and classification by cumulative algorithm done, which is a combination 
of LGBM, random forest, and decision tree algorithms, perform the 
learning process with the majority voting approach. Figure 5 shows the 
structure of the combined algorithm.
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Figure 5. The structure of the combined algorithm. 

 

6. Results and discussions 

In this study, the ROC curve and the report of the confusion matrix 
were used to evaluate the results. The final results have been explained 
below. 

The training and test accuracy values provide important information 
because they give us a better insight into how the learning performance 
changes over the number of epochs and help us diagnose any problems 
with learning that can lead to an underfit or an overfit model. As seen in 
Figure 6, the training process of the algorithm through the training steps 
is shown in these curves the good fit is the goal of the learning 
algorithms and is identified by a training and validation loss that 
decreases to a point of stability with a minimal gap between the two final 
loss values [52]. Figure 6 shows the training process of the algorithm 
through the training steps. By setting the optimal parameters for the 
network, the accuracy of the test data reaches 94%. 

 

 
Figure 6. Training curve of 1D-CNN on petrophysical data, the blue curve for the 
train set, and the orange curve for the validation set. 

 

Figure 7 shows the results of the confusion matrix for the test data. 
A confusion matrix is a table that is used to define the performance of 
a classification algorithm. A confusion matrix visualizes and summarizes 
the performance of a classification algorithm [53]. each row of 

the matrix represents the instances in an actual class while each column 
represents the instances in a predicted class. As can be seen in the figure, 
among the 506 samples that belonged to class 1, 487 samples were 
fractured and were correctly classified as class 1 or fractured samples. In 
the same way, among the 486 samples that belonged to the zero class or 
un-fractured class, 425 samples were correctly classified in this category.  
As shown in the confusion matrix the Y-axis shows the true values and 
X-axis shows the predicted values, so the true positive rate is equal to 
487, the true negative rate is 425, the false positive rate is 61, and the 
false negative is equal to 19. So, the result shows that this algorithm can 
classify the samples correctly.  

Another evaluation metric that was used in this research is the 
receiver operating characteristic curve (ROC), which is shown in Figure 
8. roc_auc_score is defined as the area under the ROC curve, which is 
the curve having False Positive Rate on the x-axis and True Positive Rate 
on the y-axis at all classification thresholds. According to this curve, in 
a binary classification, an algorithm with the best performance is closer 
to number one, in other words, it has the largest area under the curve.  

 

 
Figure 7. Confusion matrix of the test set. the darker color of the block, the stronger 
the class recognition. 

 

This graph shows how well the algorithm can distinguish false 
positives from true positives. As can be seen in the figure, the level under 
the curve approaches the number one and has a maximum of 0.94, 
which is an acceptable percentage. 

https://www.sciencedirect.com/topics/engineering/classification-algorithm
https://en.wikipedia.org/wiki/Matrix_(mathematics)
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Figure 8. roc_auc_score as the area under the ROC curve. 

6.1. Validation of the results with image log 

For each depth sample in the test data, the corresponding predicted 
label was also obtained by the 1D-CNN algorithm in the previous 
section, At this stage, the validation of the obtained results is done by 
putting together the real labels that were initially extracted from the 
image logs and the labels predicted by the algorithm for the test set. In 
other word, the corresponding depth of the test set was already available. 
In the reports presented from the image logs for these depths, in which 
we considered the corresponding conventional log values as the test 
samples, the presence or absence of fracture was determined, therefore, 
A column titled real Label was created. The algorithm also evaluated the 
total final test samples according to the training and test that it had done 
before and presented the predicted labels. Figure 9 shows the results 
related to the depth range of the test. The white lines are the depth 
intervals with fractures and the black lines are the depth intervals 
without the presence of the fracture. 

 

 
Figure  9. Validation of the predicted labels from the 1D-CNN algorithm on the 
right side and the real labels from image logs on the left side. 

6.2. The results of 1D_CNN vs. cumulative 1D-CNN majority voting 
algorithm on seismic data 

Using the confusion matrix evaluation criteria and the receiver 
operating characteristic diagram, the results of the 1D-CNN network are 
evaluated. As seen in Figure 10, the algorithm training graph is shown 
on the validation data. The test curve shown in orange has strong 
fluctuations and it shows that the training process is not done well. Also, 
in Figure 11 from the confusion matrix, it can be concluded that the 
performance of the network is not accurate enough to distinguish test 
samples belonging to both classes. According to the figure in the test 
data, among the 55 samples in class 1, the algorithm has correctly 
classified 39 samples as class 1, and among the 221 samples in class 0, 151 
samples have been correctly classified as zero, and 76 samples were 
classified wrongly. Also, Figure 12 shows the ROC. The area under the 
curve shows a value of 0.69, which indicates an average level of accuracy 
and is not suitable enough. 

As mentioned in the previous section, a combination of deep and 
cumulative algorithms was used to increase the accuracy of the model. 

The main benefit of CNN compared to its predecessors is that it 
automatically identifies the relevant features without any human 
supervision. These algorithms are suitable for when we have a lot of 
data, in other words, having a lot of data is one of the requirements to 
use them. Since in the second part of the research, which is the use of 
seismic data, few data were available, in such cases, the use of shallow 
algorithms can obtain higher accuracy. By comparing the results 
obtained from the so-called machine learning algorithms and the 
combination of the majority and deep voting algorithms, it is concluded 
that using deep algorithms and majority voting sequentially has an 
acceptable effect in increasing accuracy. 

 
 

 
Figure 10. Training curve for applying 1D-CNN on seismic data. 

 

 

 
Figure  11. Confusion matrix of the 1D-CNN algorithm on seismic data. There is no 
balance in distinguishing samples that belong to class one and zero. 
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Figure 12. ROC of applying 1D_CNN on the test set of seismic data as shown in 
the area under the curve is near 0.5 and it shows a moderate level of accuracy. 

 

Considering the seismic attributes as features and fracture labels at 
the well scale, and the inability of the algorithm to find the relationship 
between the features and labels, as a solution A one-dimensional 
convolutional algorithm was used to automatically extract suitable 
patterns from existing features and create the feature itself. In the 
following, the features created by the one-dimensional algorithm are fed 
into three algorithms: random forest, LGBM, and decision tree, strictly 
using the majority vote method for each input sample to classify it. 
Figure 13 shows a view of the process of the majority vote algorithm. As 
seen in the figure, each sample enters the different classifier separately, 
according to the training that each category has had on the training 
samples, it predicts a class for the new sample. Finally, the new sample 
belongs to the class that gets the most votes based on the prediction of 
existing classification algorithms is known. 

 

 
Figure 13. Majority voting algorithm structure. 

 

According to the final results, the cumulative algorithm gives better 
accuracy compared to the implemented deep algorithm. As seen in 
Figure 14, among the 55 samples in the fractured class, the algorithm has 
classified 48 samples correctly and only 7 samples have classified 
wrongly as the non-fractured category. Also, out of 221 samples 
belonging to the non-fractured class, the algorithm correctly has 
classified 163 samples as the zero class and made a mistake in only 64 
samples. 

Also, Figure 15 shows the ROC of the combined algorithm. As it is 
clear from the area under the curve, this algorithm can classify the 
samples in the test data with 80% accuracy. 

In Figure 16, the validation of the predicted labels for the time zones 
in the test data has been extracted. Similar to the validation of network 
results on well-log data, the actual time zone labels of the test data were 
already available. This information was placed alongside the results 
obtained from network classification (predicted labels) on seismic data. 

The white color indicates the presence of the fracture and the black 
color indicates the absence of it among test data. 

6.3. Generalizing the training algorithm on the entire reservoir cube 
attributes 

By coding on the desired ranges and obtaining the accuracy of the 
results related to the test data, the attributes were extracted from the 
entire Sarvak zone, so that this time, the algorithm was applied to the 
entire seismic cube limited area. In other word, the network was 
previously trained on the time zones that had zero and one labels and 
was tested with acceptable accuracy on the test data. Now, this trained 
network was applied to the entire reservoir area, which means that this 
time the test data is the entire reservoir area and the network should 
provide coordinates that can contain fractures or not. In this section, 
entering the entire coordinates of the reservoir zone as the input to the 
algorithm was a challenge. Due to the large volume of input data, which 
were coordinate samples of the entire reservoir, applying the algorithm 
on them would cause problems in the network's performance, and the 
process would face bugs. Therefore, the samples were fed to the network 
in separate sections, so the 1D-CNN algorithm extracts the features, and 
classification algorithms vote the related label by evaluating the 
characteristics of each sample, which are the seismic attributes 
corresponding to each coordinate. Therefore, the cumulative algorithm 
predicts the label of each coordinate node, and the predicted output of 
the entire reservoir cube is created. 

Figure 17 shows the fracture density map in the total reservoir area. It 
should be noted that the blue color indicates the absence of the fracture 
and the red color indicates its presence. 

 

 
Figure  14. The result of a confusion matrix for applying cumulative deep-majority 
voting classifier on a test set of seismic data. 

 

 

Figure  15. ROC of the test set driven from cumulative deep-majority voting 
algorithm, as shown the area under the curve is near to one in comparison of 
previous ROC from 1D-CNN. 
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Figure 16. Validation of predicted labels from combining 1d_CNN and majority 
voting classifiers on the test set, on the left side, and real labels on the left side. 

 

 
Figure  17. Fracture density map obtained from deep-cumulative algorithm on 
Sarvak reservoir cube. 

 

7. Conclusion 

In this research, it was tried to use deep learning algorithms to 
identify fractures in a carbonate reservoir. According to the previous 
studies, the fractures were on the fault scale, the present research was 
investigated to identify the fractures on the well scale. Considering the 
importance of carbonate reservoirs due to fracture and permeability and 

the uncertainty of the tools used, using deep networks with high 
precision can help to identify fracture, which is one of the most complex 
and effective parameters in reservoirs. According to the analysis, the 
results are as follows : 

1) Detection of fractured and non-fractured samples with 94% 
accuracy by validation data using a one-dimensional 
convolutional algorithm . 

2) Achieving higher accuracy equivalent to 80% in the application 
of the cumulative-deep algorithm on seismic data compared to 
the application of the deep learning algorithm individually . 

3) Using a one-dimensional convolutional algorithm to extract 
features has a significant effect on increasing the accuracy. 

4) Using seismic data with higher representation quality in 
fractured intervals is suggested. 

5) Since in this study there were a small number of wells, a part of 
the data from both wells was used as blind data. To achieve more 
effective results, it is recommended an area with a large number 
of wells with more fracture characteristics for predicting the 
zones of at least one well. 

6) Using drilling, exploitation, and reservoir data as fracture 
presence indicator besides the seismic and well log data is 
helpful. 

7) Majority voting algorithms are beneficial and the novelty of this 
research is applying these algorithms with deep learning 
methods. 
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