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A B S T R A C T 

 

This research presents a case study that employs the Fuzzy Ordered Weighted Averaging (FOWA) method to develop mineral 
prospectivity/potential maps (MPM) for the Chahargonbad district in southeastern Iran. The primary objective of the study is to uncover 
intricate and concealed relationships between various evidence layers and known ore occurrences through a comprehensive analysis of multi-
disciplinary geospatial data. Consequently, thirteen evidence layers were meticulously derived from existing databases, encompassing 
geological, geochemical, geophysical, and remote sensing data, which were then integrated using the FOWA multi-criteria decision-making 
approach to delineate favorable zones for porphyry Cu mineralization. 
The FOWA methodology employs a diverse array of decision strategies to synthesize input geospatial evidence by incorporating multiple 
values for an alpha parameter. This parameter serves as the cornerstone of the algorithm, influencing experts' perspectives on MPM risk. The 
methodology generates seven mineral potential maps to identify the most suitable one(s). By considering a prediction-area plot for data-
driven weight assignment to each evidence map, the hybrid FOWA outputs were scrutinized to pinpoint the most appropriate map for 
targeting significant Cu occurrences. The resulting synthesized evidence map indicates an ore prediction rate of 77%, with known Cu deposits 
primarily located within favorable zones occupying 23% of the entire district area. 
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1. Introduction 

Mineral potential or prospectivity mapping (MPM) serves as a 
fundamental exploration tool, aiming to investigate all geological 
processes responsible for mineral deposit distribution and employ this 
knowledge to map areas with potential mineralization [1, 2, 3]. The 
growing availability of geospatial databases and the need to pinpoint 
areas susceptible to ore mineralization have spurred exploration teams 
to utilize a wide range of geospatial datasets and cutting-edge statistical 
techniques for systematic evaluation. These approaches are 
instrumental in uncovering concealed spatial patterns in the data linked 
to mineralization processes. However, there remains a dedicated focus 
on the utilization, development, and proposition of innovative and valid 
MPM methods [4]. 

Within the field of MPM, geospatial databases predominantly consist 
of geological, geochemical, remote sensing, and geophysical attributes. 
These attributes serve as key indicators that are integrated into a single 
favorability map targeting the desired mineralization objective [5, 6]. 
The primary goal of MPM revolves around the identification of regions 
highly conducive to ore formation, including fluid reactions and 
trapping processes, within prospective areas. Additionally, MPM 
endeavors to expand existing ore occurrences or even discover new ones 
[7, 8]. Simultaneously, it strives to maximize the profitability derived 
from mineral exploration endeavors, while concurrently minimizing the 
associated costs and risks associated with preliminary exploration 
activities [9]. 

 
 
 
 

In the contemporary landscape of mineral potential/prospectivity 
mapping (MPM), there is a notable departure from traditional 
categories, specifically the knowledge- and data-driven techniques. Two 
modern variants of MPM have garnered significant attention [10, 11]. 

Hybrid Approach that arises from the integration of knowledge- and 
data-driven methods, simultaneously incorporating expert opinions and 
the spatial characteristics of known mineral deposits [12, 13, 14]. 

On the other hand, in Data-Driven Weight Assignment, weights are 
assigned to continuous spatial evidence layers without relying on expert 
judgments. Instead, it relies on a data-driven methodology for weight 
calculation [15, 16]. 

Taking all the aforementioned factors into account, the successful 
implementation of MPM necessitates careful concurrent selection of the 
appropriate target area and meticulous preparation of input geospatial 
evidence/criteria (such as geological, geochemical, remote sensing, and 
geophysical layers) tailored to the specific type of deposit being sought. 
In this regard, MPM can be likened to an MCDM problem. 

FOWA, recognized as one of the practical MCDM methods [21] but 
less commonly applied in MPM, possesses the capability to model 
uncertainty and risk during criteria aggregation [20]. To harness this 
unique feature, the study utilizes the concentration–area (C–A) fractal 
model [22], prediction–area (P–A) plot, and normalized density 
method [23, 24] for classifying, evaluating, and assigning data-driven 
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weights to evidence layers. This enhances the evaluation and validation 
of the Cu favorability map. 

The hybrid FOWA method is examined with varying input 
parameters that control experts' risk attitudes when synthesizing 
geospatial layers. This approach yields reliable insights into mineralized 
areas and can be a valuable tool in future studies and other regions of 
interest, offering the flexibility to produce different outputs according 
to expert preferences. 

2. Geological features of the study area 

Chahargonbad district is located within the southern part of the 
Urumieh–Dokhtar volcanic belt, an Andean-like magmatic arc, north of 
the city of Sirjan in Kerman Province, Iran. This portion of the 
Urumieh–Dokhtar magmatic belt (UDMB) is known for some well-
known porphyry Cu deposits, such as Sarcheshme, Darehazar, Meidok, 
and Chahargonbad [25, 26], which were the result of subducting the 
Neotethys oceanic plate beneath the Iranian plate. The studied region is 
~2,600 square kilometers, and outlined by the quadrangle map of 
Chahargonbad at a scale of 1:100,000 (Fig. 1a) by the Geological Survey 
of Iran (GSI) [27]. Due to its tectonic and geological characteristics, a 
part of the Zagros orogenic belt, which are similar to other copper belts 
in the world, the UDMB is highly favorable for copper mineralization. 
From a geological point of view, the study area mainly consists of the 
Eocene pyroclastic complex and two narrow zones of Oligocene-
Miocene limestone and intrusive quartz diorite, which were probably 
emplaced after the Miocene. The host pyroclastic complex is mainly 
composed of andesitic tuffs, tuffite with limestone, conglomerate, and 
andesitic flows. Porphyritic quartz diorites are the only intrusive rocks 
that shows an outcrop in the Chahargombd area, forming several 
irregularities that are stretched in the east-west direction, and are most 
likely post-Miocene in age. The main manifestation of these fertile 
intrusions on the nearby rocks is extensive and locally intense 
hydrothermal alteration of various types [27, 28]. Most rock outcrops in 
the Chahargonbad district are formed of Eocene volcano-sedimentary 
rocks. Southwest of the study area, the oldest geological unit is exposed 
as a tiny outcrop of a metamorphic sequence. Quaternary alluviums are 
the youngest geological units in the target area, with greater distribution 
in the northeastern part (Fig. 1b) [27]. The notable tectonic activity of 
late Miocene age has caused the structure to be folded. Furthermore, the 
faulting of most rocks in this area shows a dominant NW-SE trend. The 
late brittle activity arrised to differential dilatancy in the older rocks 
facilitating the high-level emplacement of quartz dioritic magmas and 

locally co-eruptive products, as well as infiltration and then circulation 
of hydrothermal-magmatic fluids. The Cu-bearing occurrences are 
typically closely related to these coincident geological features, with 
intrusions spatially and temporally linked to several types of alteration. 

3. Methodology 

3.1. Evidence mapping 

Evidence layers were derived from comprehensive processing of 
geological, geophysical, geochemical data, and satellite images, forming 
the basis of a geospatial database designed for porphyry Cu mineral 
potential mapping (MPM). Detailed discussions of the thirteen evidence 
layers are available in previous works by the authors (see [19, 29, 30, 
31]). Figure 2 provides a concise and schematic flowchart illustrating the 
management of geospatial data within this region. This diagram 
succinctly elucidates all the necessary steps leading to the final stage of 
data integration crucial for implementing the hybrid FOWA method. 

To generate the remote sensing evidence layers, satellite imagery data 
underwent a series of processing techniques. These methods included 
False color composition, band ratio analysis, Ls-Fit, principal 
component analysis, as well as spectral-based approaches such as 
spectral angle mapper and mixture tuned matched filtering. These 
techniques were applied to ASTER and OLI data, resulting in the 
creation of hydrothermal alteration layers representing argillic, phyllic, 
propylitic, and iron oxide mapping. 

Beyond the diverse alteration types, lineament mapping was 
conducted using directional filters to emphasize structural features 
within the region. 

Through a comparative analysis of various filters applied to the 
aeromagnetic geophysical data, two key layers, the analytic signal (AS) 
and total horizontal derivative (TDX), were integrated into a single map. 
This map was instrumental in delineating magmatic intrusive units 
responsible for magnetic signatures and the ore-forming processes, thus 
serving as a geophysical layer. Furthermore, hidden deep-seated faults 
and magnetic lineaments were extracted using directional derivative-
based filters, specifically the total horizontal derivative of the tilt angle 
(THDR) and the theta angle on the aeromagnetic data. Additionally, a 
ratio of K/eTh, derived from airborne radiometric data (as described in 
Mohebi et al. 2015) [38], was computed. This ratio aided in mapping 
areas associated with potassic alteration, a characteristic frequently 
observed in porphyry-type ore-bearing systems. 

 
Fig. 1. (a) simplified structural geology map of Iran showing the location of the study area (modified after Alavi, 1991), and (b) detailed geological map of the Chahargonbad 
district at the Urumieh–Dokhtar magmatic belt in Iran (reproduced from [27]). 
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Fig. 2. A schematic flowchart of porphyry Cu potential mapping through a hybrid FOWA method. 

 
The surficial geochemical evidence features were prepared by 

applying the catchment basins method to the stream sediment 
geochemical data for Cu, Mo, Zn, Pb, Ag, Co, Ni, Cr, and Ba to mitigate 
the adverse impact of background lithological variations on the 
concentrations. Several univariate and multivariate analysis methods, 
including factor analysis (FA), were employed to examine the 
geochemical data with a focus on Cu porphyry mineralization. Three 
evidence layers were selected, which encompassed Cu and Mo 
concentrations, as well as the primary geochemical factor determined 
through FA. Furthermore, the lithological map of the region was 
incorporated into the geospatial database. This involved digitizing the 

1:100,000 geological map and scoring the rock units based on their 
significance for hosting known porphyry Cu mineralization. A fault 
density map was included as a final evidence layer, derived from surface 
field observations reported on the geological map. It is worth noting that 
structurally favorable brittle features, delineated by numerous 
lineaments and faults, serve as conduits for the hypabyssal emplacement 
of intrusions [39] and the concentration of fluid flow. These locations 
provide suitable environments for the concentration and deposition of 
ore [40-42]. In this district, there are currently 28 known and active 
porphyry-related Cu mines [43], as illustrated in Fig. 1b. These mines 
play a crucial role in plotting the P-A (prediction-area) curve, which is 
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essential for deriving the weights of each evidence layer and 
subsequently conducting mineral potential mapping (MPM) using a 
hybrid FOWA method. 

The P-A curve for each evidence layer (as depicted in Fig. 2) guides 
the determination of the ore prediction rate and the resulting occupied 
area at the intersection point. Subsequently, the weight of each evidence 
layer is computed based on the normalized density relationship, which 
involves the ratio of ore prediction to occupied area. Table 1 provides a 
summary of the parameters extracted from the P-A plot and the 
corresponding weights assigned to each evidence layer. 

3.2. Hybrid FOWA method 

The OWA operator linked to the ith alternative, corresponding to a 
sample point with x and y coordinates in the geospatial database, 
produces the output as following [21, 32, 33]: 

 

𝑂𝑊𝐴𝑖 = ∑ (
𝑢𝑗𝑣𝑗

∑ 𝑢𝑘𝑣𝑘
𝑛
𝑘=1

𝑛
𝑗=1 )𝑧𝑖𝑗 , 𝑖 = 1,2, . . . , 𝑚                                              (1) 

 

It should be noted that the AND and OR operators represent the 
extreme values of the Ordered Weighted Averaging (OWA) operator, 
corresponding to the MIN and MAX operations, respectively. Here, the 
ordered weights 𝑣𝑖 are at an interval of [0,1] provided that ∑ 𝑣𝑗 = 1𝑛

𝑗=1 , 
and 𝑧𝑖1 ≥ 𝑧𝑖2 ≥ ⋯ ≥ 𝑧𝑖𝑛 is the sequence obtained by reordering the 
criterion (evidence layer) scores. In addition, 𝑢𝑗 represents the reordered 
criterion weight according to the criterion score 𝑧𝑖𝑗 .  

In the context of criteria integration using a fuzzy linguistic 
characterization quantity Q, the process involves making statements 
about the relationships between the evaluation criteria. These 
statements govern the combination strategy, which can vary. For 
instance, the combination strategy might be specified as "most criteria 
must be met," "at least half of the criteria must be met," "all criteria must 
be met," and so on. This procedure aligns with the concept of qualitative-
guided quantitative multi-criteria evaluation [21, 32]. 

Yager (1998) introduced the concept of a quantifier-guided Ordered 
Weighted Averaging (OWA) method, building upon Zadeh's (1983) 
linguistic quantifier idea [32, 34]. In a quantifier-guided aggregation 
process, the decision-maker (DM) provides a strategy with a linguistic 
quantifier that defines the criteria necessary for an acceptable solution 
[34]. The conventional decision strategy can be phrased as "the criteria 
for Q must be satisfied by an acceptable alternative," where a linguistic 
quantity replaces Q. There are two categories of quantifiers used: (1) 
absolute quantifiers for quantifying linguistic variables, such as "~5" and 
"~10", and (2) relative quantifiers, used in statements like "a few," 
"almost," "most," and so on [35]. Empirical evidence confirming the 
suitability of these two classes of linguistic quantifiers for multi-criteria 
decision-making (MCDM) problems is currently lacking [21, 32, 36]. 
These quantifiers can be represented as fuzzy sets within unit intervals 
[0, 1]. In this approach, a class of relative quantifiers known as regular  
 

increasing monotone (RIM) quantifiers is utilized, which is more 
commonly employed in personalized systems [21, 32]. In this context, 
Q(r) for each [0, 1] ∈ r represents the membership that indicates the 
compatibility of r with the concept represented by Q [21]. 

 

𝑄(𝑟) = 𝑟𝛼 , 𝛼 ≥ 0                                                                                    (2) 
 

Adjusting the parameter α allows for the generation of various types 
of quantifiers and corresponding operators that span the spectrum 
between the two extreme states: maximum (OR operator, associated 
with risk-taking) and minimum (AND operator, associated with risk-
aversion) for the desired criteria in decision-making. When α equals 1, 
Q(r) is directly proportional to r and is termed the identity quantity. 

Given the criterion weights (determined, in this case, through the P-
A plot) and the ordered weights, the calculation of the hybrid Fuzzy 
Ordered Weighted Averaging (FOWA) operator proceeds as follows 
[21], 

 

𝐹𝑂𝑊𝐴𝑖 = ∑ ((∑ 𝑢𝑘
𝑗
𝑘=1 )

𝛼
− (∑ 𝑢𝑘

𝑗−1
𝑘=1 )𝛼𝑛

𝑗=1 )𝑧𝑖𝑗 , 𝑖 = 1,2, . . . , 𝑚              (3) 
 

The hybrid FOWA operator can produce multiple outputs by 
considering various values of α, with each value corresponding to a 
different level of risk-taking (lower values of α) or risk-aversion (higher 
values of α) in the final decision-making process [20, 37]. 

4. Results and Discussion 

Once all the evidence layers were prepared, and the significance of 
each layer in identifying the target was determined based on the P-A 
plots summarized in Fig. 2 and Table 1, the hybrid FOWA method was 
executed for seven values of α. The α parameter can take various values 
ranging from 0 to infinity, and each result must be evaluated 
individually. To this end, the values 0, 0.1, 0.5, 1, 2, 10, and infinity were 
examined. 

In Fig. 3, the Cu potential maps resulting from different values of the 
α parameter are displayed. It is evident that for α values of 0, 10, and 
infinity, the potential maps appear less reliable upon visual inspection 
and were subsequently excluded from further evaluation. These values 
correspond to the extreme cases of the OR and AND operators when 
assigning low and high values to the α parameter, respectively. 

Table 2 presents the parameters extracted from the P-A plots of the 
synthesized evidence layers, assuming α parameters equal to 0.1, 0.5, 1, 
and 2. 

Upon assessing the prediction rates for each of the synthesized maps 
with different α values, it becomes evident that the prediction rate is at 
its highest when the α parameter in the hybrid FOWA algorithm is set 
to 0.5. Consequently, this map is chosen as the final Cu favorability map. 
Figure 4 displays this map, and a C-A (concentration-area) fractal model 
has been utilized to categorize the continuous map into distinct 
populations. 

 
Table 1. Extracted parameter from the P-A plots for each evidence layer. 

Evidence Layer Prediction Rate% Occupied area% Normalized density (Nd) P-A method Weight 

Argillic alteration 75 25 3 1.1 

Phyllic alteration 67 33 2.03 0.708 

Propylitic alteration 63 37 1.7 0.532 

Iron Oxide 61 39 1.56 0.447 

Lineaments (RS) 66 33 1.94 0. 663 

Lithology 69 31 2.22 0.78 

Faults 59 41 1.44 0.365 

Cu enrichment 62 38 1.63 0.49 

Mo enrichment 60 40 1.5 0.405 

Factor Analysis 68 32 2.125 0.754 

K/eTh 63 37 1.7 0.53 

Magmatic bodies Analytic Signal, TDX 65 35 1.86 0.62 

Magnetic lineaments TTHD, Theta angle 73 27 2.7 0.99 
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Fig. 3. Mineralization potential maps from applying the hybrid FOWA method for (a) α=0, (b) α= 0.1, (c) α=0.5, (d) α=1, (e) α=2, (f) α=10, and (g) α= 

infinity. 

Table 2. Extracted parameters from the intersection point of the P–A plots using the hybrid FOWA method (for different α values). 

Map Prediction rate (Pr) % Occupied area (Oa) % Normalized density (Nd) Weight 

FOWA, α=0.1 75 25 3 1.1 

FOWA, α=0.5 77 23 3.35 1.21 

FOWA, α=1 76 24 3.167 1.15 

FOWA, α=2 70 30 2.34 0.85 

 

Additionally, the P-A (prediction-area) plot indicated an ore 
prediction rate of 77% within a favorable region occupying 23% of the 
total area. This information is valuable for guiding further advanced 
exploration investigations. 

By analyzing the intersection point on the P-A plot derived from the 
final FOWA mineral potential mapping (MPM), a threshold value of 
0.58 was identified. This threshold serves to separate background values 
from areas of notable mineral potential. Subsequently, a two-class map 
was created using this threshold value (Fig. 5). This map effectively 
highlights the areas with exploration potential for mineralized 
porphyries and establishes the relationship between known 
mineralization occurrences and areas with Cu-bearing potential. 

Notably, these favorable zones appear to align with the NW-SE 
structural trend, including faults and lineaments. According to this 
model, the majority of areas with exploration potential are situated in 
the western half of the study area, particularly in the NW and SSW 
regions. A comparison of this map with other individual pieces of 
evidence reveals that the MPM generates a higher ore prediction rate 

within a much smaller percentage of occupied area. 

5. Conclusion 

The accurate selection of mineralization areas for further exploration, 
with the potential for future mining activities, is a complex undertaking 
that necessitates the concurrent consideration of multi-disciplinary 
geospatial datasets and the implementation of suitable methods to 
delineate and define favorable mineralized zones. In this study, it was 
imperative to establish a systematic procedure for identifying indicators 
of porphyry copper deposits and prioritizing potential areas for in-depth 
investigation and exploration activities within the Chahargonbad 
district. 

To address this challenge, a hybrid Fuzzy Ordered Weighted 
Averaging (FOWA) method, well-known in the field of multi-criteria 
decision-making (MCDM) problems, was employed. This approach 
facilitated the synthesis of evidence layers through a variety of different 
strategies. 
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Fig. 4. (a) Hybrid FOWAα=0.5 for porphyry copper potential mapping; (b) log-log plot of concentration-area fractal model; (c) classified map based on the fractal analysis; 
(d) prediction-area plot. 

 

 
 

Fig. 5. Final MPM from FOWAα=0.5, classified to two classes of the favourable 
areas and the background. 

 
By assigning data-driven weights to criteria and incorporating a fuzzy 

approach to risk assessment, the method proved effective in producing 
robust and accurate synthesized maps for copper exploration. It 
employed a broad spectrum of decision strategies, yielding several 
porphyry copper mineral potential/prospectivity maps (MPM). The 

final MPM was developed by harnessing a wealth of available geospatial 
datasets, showcasing a strong alignment of high-potential zones with 
previously known working mines and copper deposits. 

The hybrid (FOWA) method, with an alpha value of 0.5, yielded the 
most suitable potential map in this study, achieving an ore prediction 
rate of 77%. This corresponds to just 23% of the total area considered, 
making it ideal for further detailed exploration efforts. 

The hybrid multi-criteria decision-making (MCDM) method 
employed here, incorporating the location of known ore occurrences in 
weight assignment, successfully addresses the issue of biased weight 
assignment to evidence layers. As a result, it enhances the accuracy of 
mineral potential mapping (MPM) and generates more dependable 
target areas for exploratory purposes. By focusing subsequent 
exploration activities on the high-potential areas identified, as depicted 
in Fig. 5, significant time and cost savings can be realized. 

In terms of geological evaluation and a comparison of the final results 
related to mineralization potential, it is evident that the outcrops of 
felsic intrusive masses exhibit a close spatial relationship with 
mineralized areas. This observation is particularly pronounced in the 
northern part of KouhPanj and the surrounding regions of the 
Chahargonbad deposits, where potential areas of porphyry copper 
mineralization align with lithological units composed of granodiorite 
and quartz diorite. 

Taking these empirical observations into account and referencing the 
final prospecting map, the lithological units most closely associated with 
porphyry copper mineralization areas are andesitic volcanic breccias, 
lava flows, dacites, dacitic pyroclastic rocks, and intrusive dacite 
porphyries. Consequently, based on the results obtained and the factors 
influencing porphyry copper mineralization, the study area has been 
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identified as a high-priority zone for exploration in pursuit of porphyry 
Cu mineralization. The scattered areas with the greatest potential are 
predominantly located in the northwest, center, and southwest regions 
of the area under consideration, aligning well with known 
mineralization occurrences. 
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