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A B S T R A C T 

 

Dealing with numerous reviews and widespread inquiries, it has been concluded that much more information and interpretive parameters 
are accessible regarding the subsurface structures when using a particular frequency range in the spectral induced polarization (SIP) 
measurements. Therefore, the interpretation uncertainty would diminish which causes studies with more valid and authentic outcomes. This 
could be achieved by using a comprehensive and general model which is appropriate for representing electrical features variation in terms of 
frequency, known as the Cole-Cole model. By using the SIP method and applying a defined broad of frequencies, it would be conceivable to 
describe items such as medium properties, spectral behavior of the studied area, and the intensity of each single parameter. The widespread 
use of the SIP method requires accurate and fast modeling and inversion algorithms. An integral part of every geo-electrical data inversion is 
an accurate and efficient forward modeling resulting in numerical simulation of responses for a given physical property model. In other words, 
like every other geophysical method, a reliable spectral-induced polarization inversion is highly dependent on the accuracy of the forward 
problem. Forward modeling is accomplished over a 2D earth structure to generate complex resistivity data by simulating current flow into 
the earth's surface and solving the Poisson equation containing complex values. In this contribution, a finite difference algorithm is applied 
to solve the complex partial differential equations (PDEs) restricted by a mixed boundary condition. A spatial Fourier transform of the PDEs, 
with respect to a defined range of wavenumbers, is carried out along the strike direction to elucidate 3D source characteristics. Eventually, it 
is necessary to conduct an inverse Fourier transform to obtain potential solutions in the spatial domain. To verify the accuracy of the proposed 
numerical algorithm, some synthetic models are simulated and the forward responses, including resistance and phase values with respect to 
a specific frequency spectrum, are calculated. Furthermore, a comparison between our numerical results and those of Geotomo geo-electrical 
software is provided. 
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1. Introduction 

Electrical conduction (charge transport) and polarization (charge 
separation) are two principal physical properties of subsurface 
materials. The physical property representing either conduction or 
polarization phenomenon at frequencies less than 10 𝑘𝐻𝑧 is defined as 
complex conductivity, which can be demonstrated as a frequency-
dependent complex value with both magnitude and phase. This physical 
parameter explicates the electrical response of a rock to an electrical 
excitation and illustrates its electrical behavior in terms of frequency. 

The basis of geophysical data interpretation in various studies, such 
as exploration and environmental problems is the acquaintance of the 
electrical properties of rock. Electrical resistivity and polarization 
phenomena are applied in the geo-electrical resistivity and induced 
polarization methods, respectively. An alternative method called 
complex resistivity or equivalently, spectral induced polarization (SIP), 
would be generated by combining these two cited methods, in which 
electrical properties of rocks and minerals are measured by frequency 
alteration of the input signal (sinusoidal current). Due to the variation 
in electrical properties of rocks with frequency alteration of transmitted 
current, it would be feasible to reveal various physical properties of 
subsurface materials. With the innovation of the method, SIP has been 
predominantly used for mineral resources exploration, specifically  

 
 
 
sulfide deposits [1], so that the responses of measured parameters could 
be applicable to a more accurate recognition of these deposits and 
sulfide ore type determination as well [2]. Recently, owing to 
remarkable progress in instrumentation, forward modeling and 
inversion capabilities [3], the SIP method has been revisited as an 
auspicious tool in environmental and engineering applications. The 
widespread usage of the SIP method requires precise, accurate, and fast 
forward calculations. Furthermore, a reliable solution for sensitivity 
function and the inversion process is extremely dependent on the 
accuracy of the forward modeling. 

Several probes and scrutiny have been accomplished concerning the 
numerical solution of the forward problem for a two-dimensional 
complex resistivity distribution. But early attempts in the numerical 
solution of electrical resistivity were focused on the potential 
distribution calculation without considering the effect of the frequency 
variation. For instance, [4] presented the basis of forward calculation 
based on finite-difference method. Later, an improvement in boundary 
conditions was presented by [5]. [6] enhanced the quality of the forward 
results by the singularity removal technique. But the first study on the 
calculation of the impedance (the ratio of complex voltage to current) 
distribution in terms of the frequency variation was made by [7]. [8] 
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developed a regularized SIP inversion method for multi-frequency IP 
data using the finite-element method based on the Cole-Cole model. [9] 
proposed a finite-element algorithm aimed at forward calculation of 
spectral IP responses at a set of frequencies less than 100 𝐻𝑧 . [10] 
proposed wavenumber integration using a combination of Gauss-
Legendre and Gauss-Laguerre nodes. [11] presented finite-element 
analysis on irregularly discretized triangular meshes. [12] conducted a 
2D SIP forward modeling using the finite-element method without 
considering electromagnetic induction. [13] represented an induced 
polarization forward modeling using the finite-element method and the 
fractal model. [14] resolved the problem for single frequencies based on 
complex calculus. [15] used the finite-element method to conduct 2D 
SIP forward modeling in 2D SIP inversion data using MPI parallel 
algorithm. Despite significant progresses in numerical procedures for 
calculating spectral induced polarization forward responses, it is still an 
extensively open-research area to better describe SIP signatures of soils 
and rocks. 

In this paper, the main goal is the presentation of resistivity and phase 
angle pseudo-sections obtained from the forward problem solved in a 
2.5-dimensional space for some synthetic arbitrarily shaped 2D 
structures by applying a certain electrode configuration in a specific 
range of frequencies. 

The most widely applied numerical procedures for solving the 
forward modeling of SIP data can be classified into three categories, the 
integral equation method, the finite difference method, and the finite 
element method [13]. The integral equation method uses Green's 
function of a uniform medium and is mostly appropriate for simple and 
uncomplicated model geometries such as an inhomogeneous body 
embedded in a homogeneous medium, and it will probably fail when it 
comes to more flexible structures. The finite-element method is able to 
model an arbitrary complex 2D and 3D mediums which allows a great 
flexibility with respect to the geometrical shape of topography and it 
does not suffer from the singularity problem at the source point in a geo-
electrical modeling. Some of its disadvantages can be categorized as 
being time-consuming and taking longer execution time compared with 
finite element method (FEM), requiring a forceful digital processor and 
the probability of notable output results varying for a certain subsurface 
medium. In this paper, we develop a finite difference method to 
numerically solve complex partial differential equations (PDEs) for 
arbitrarily shaped 2D bodies. One of the superiorities of this method is 
presenting fairly identical potential distribution for different current 
injection positions, so, there is no need to recalculate the potential 
distribution by moving the current electrode. Correspondingly, the 
algorithm speed would augment multiple times. Using a simple system 
of equations, containing sparse matrixes and small memory requirement 
are some of the other significant advantages of the FEM procedure. 

It should be noted that all used formulations and concepts are written 
in the MATLAB programming language and all the pseudo-sections are 
derived using relevant codes and plot functions in the MATLAB 
medium. To ensure the fact that the implemented codes yield valid and 
flawless outcomes, the results will be compared to a true model 
mentioned in a published paper. 

The Paper continues with a review of fundamental concepts of 
spectral-induced polarization (complex resistivity) in Section 2. Section 
3 provides the basis for the forward modeling formulation. The 
derivation of the finite difference equation is discussed in section 4. 
Section 5 copes with the numerical results based on several arbitrary 
simulated earth models. Eventually, a brief conclusion is drawn in 
Section 6. 

2. Methodology 

Considering the fact that alternating or harmonic current is 
transmitted into the ground and a complex voltage is measured at the 
receiver, conventional analyses of SIP data comprise measuring 
impedance either by using multiple sinusoidal frequencies or by 
sampling the transient response to a pulse. The ratio of the complex 
electrical voltage 𝑉  (or electrical potential) divided by the input 

electrical current 𝐼 is defined as impedance, denoted by: 
 

Ȥ =  
𝑉

𝐼
                                                                                                     (1) 

 

Where Ȥ  is a complex quantity containing real and imaginary 
components which are frequency dependent, unlike using direct current 
in which the ratio would be called electrical resistance which is not a 
complex quantity [16]. Subsequently, complex resistivity is derived by 
multiplying the impedance with the geometric factor 𝐾 relative to the 
electrode array 

 

𝜌∗  =  𝐾Ȥ        (2) 
 

Measurements using alternating current cause a phase difference 
between the input current and the recorded voltage, which in this case, 
the complex output voltage is defined by summation of the real 
component (in-phase) and imaginary component (out-of-phase), thus, 
impedance can be represented as below: 

 

Ȥ(ɷ)  =  Ȥ𝑅(ɷ) + Ȥ𝐼(ɷ)          (3) 
 

ȤR and ȤI are the measured in-phase and out-of-phase impedance 
components, respectively. 

Theoretically, the in-phase and out-of-phase potentials alteration 
with frequency can bring about more information regarding the 
subsurface medium compared with standard DC resistivity and time-
domain IP methods [17]. Hence, the SIP method could be efficient and 
beneficial in various terms such as extracting much more information 
about the studied area, distinguishing between different IP sources, and 
diverse subsurface properties estimation. 

The frequency dependence can be expounded by models 
representing the general behavior of the amplitude and phase spectra in 
different frequency intervals and for various rock types. The most widely 
used one in modeling SIP effects, interpreting SIP data, discriminating 
different IP sources, and demonstrating electrical property variation 
with frequency is the Cole-Cole model, which is an empirical extension 
of the classic Debye relaxation model. In terms of complex resistivity, 
the electric voltage response to an electric current excitation can be 
demonstrated as [10]. 

 

𝜌∗(ɷ)  =  𝜌0 (1 −  𝑚 (1 − 
1

1+(𝑖𝜏ɷ)𝑐
 ))     (4) 

 

Where 𝜌0 denotes the asymptotic resistivity value measured at zero 
frequency,𝑚defines chargeability, 𝜏  time constant of the relaxation 
process, and 𝑐 characterizes frequency dependence. In addition, ɷ and 𝑖 
stand for angular frequency and √−1, respectively. As explained above, 
apart from the DC resistivity 𝜌 and chargeability 𝑚 parameters used in 
conventional IP surveys, the Cole-Cole model holds two additional 
parameters, 𝜏 and 𝑐 . While the parameters 𝑚 and 𝜏 are related to the 
amount of polarizable grains and their size respectively, the exponent 𝑐 
is affected by the size distribution of the polarizable materials [1]. 

Recalling the SIP surveying process, we alluded that it is essential to 
record the amplitude (|𝜌| Ωm) and phase angle (𝜑 rad) of the complex 
resistivity 𝜌∗over a wide frequency range, usually between 1 mHz and 
several kHz. Considering 𝜌∗ as a complex number quantity, it can be 
mathematically formulated by amplitude and phase angle: 

 

𝜌∗(ɷ)  =  𝜌  (ɷ)  +  𝑖 𝜌  (ɷ)      (5) 
 

𝜌∗(ɷ)  =  |𝜌| ℯ𝑖𝜑  =  |𝜌| (𝑐𝑜𝑠 𝜑 +  𝑖 𝑠𝑖𝑛 𝜑)     (6) 
 

or equivalently in terms of conductivity 
 

𝜎∗(ɷ)  =  𝜎  (ɷ)  +  𝑖 𝜎  (ɷ)      (7) 
 

𝜎∗(ɷ)  =  | 𝜎 | ℯ𝑖𝜑  =  | 𝜎 | (𝑐𝑜𝑠 𝜑 +  𝑖 𝑠𝑖𝑛 𝜑)    (8) 
 

both the real part 𝜌  (or 𝜎 ) and the imaginary part 𝜌  (or 𝜎 ) are frequency 
dependent. Thus: 

 

|𝜌∗(ɷ)|  =   √𝜌  (ɷ)2 + 𝜌 (ɷ) 2 (Ω𝑚)     (9) 
 

And, 
 

𝜑 (ɷ)  =  𝑎𝑟𝑐 𝑡𝑎𝑛 
𝜌̋ (ɷ)

𝜌̋  (ɷ)
  (𝑚𝑖𝑙𝑙𝑖𝑟𝑎𝑑)  

since the complex resistivity 𝜌∗ is the inverse of the complex 
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conductivity 𝜎∗ . 

 

𝜌∗(ɷ)  =  
1

𝜎∗(ɷ)
           (10) 

 

resistivity measurements can be transformed into conductivity and 
vice versa. Thereupon, the equations (9) and (10) can be rewritten as 
follows: 

 

|𝜎∗(ɷ)|  =   √𝜎  (ɷ)2 + 𝜎 (ɷ) 2 (𝑆/𝑚)                 (11) 
 

𝜑 (ɷ)  =  𝑎𝑟𝑐𝑡𝑎𝑛 
𝜎 (ɷ)

𝜎  (ɷ)
  (𝑚𝑖𝑙𝑙𝑖𝑟𝑎𝑑)                                                         (12) 

 

It is worth noting that the amplitude parameter correlates with the 
magnitude of the recorded complex resistivity and the phase angle 
corresponds to the phase shift between the injected current signal and 
the measured voltage caused by polarization [18]. Generally, the 
imaginary quantity is responsible for the polarization behavior of the 
materials. 

3. Forward modelling formulation 

The purpose of this section is to briefly review and analyze the 
mathematical formulation required to construct the forward modeling 
code algorithm written in the MATLAB programming language. The 
modeling of the electrical complex potential (the potential measured at 
the receiver containing real and imaginary components) is stated in 
terms of the partial differential equations (PDEs). To numerically solve 
PDEs, it is indispensable to transform them into algebraic terms. This 
can be implemented by using finite difference method, by which the 
continuous variables are represented by their values at a finite set of 
points and derivatives are approximated by differences between values 
at adjacent points. The finite difference method transforms PDEs or 
even ODEs, which may be nonlinear, into a system of linear equations 
that can be solved by matrix algebra techniques. In other words, by 
applying FDM, the continuous domain is discretized and the differential 
terms of the equation are converted into a linear algebraic equation. 
Modern computers can precisely implement these linear algebra 
computations, which along with their relative ease of implementation, 
has contributed to the widespread use of FDM in modern numerical 
analysis. 
 

Generally, electromagnetic phenomena within material media can be 
macroscopically described by Maxwell's equation: 

 

𝛻 ×  𝐻 =  𝐽                    (13) 
 

Where 𝐻  (Tesla) denotes the magnetic field and 
𝐽 ( 𝐴

𝑚2
 𝐴𝑚𝑝𝑒𝑟𝑒 𝑝𝑒𝑟 𝑚𝑒𝑡𝑒𝑟 𝑠𝑞𝑢𝑎𝑟𝑒) expresses the total current density: 

 

𝐽 =  𝐽𝑐  +  𝜕𝑡 𝐷 + 𝐽𝑠                     (14) 
 

Where 𝐽𝑐  , D ( 𝐶

𝑚2
 𝐶𝑜𝑢𝑙𝑜𝑚𝑏 𝑝𝑒𝑟 𝑚𝑒𝑡𝑒𝑟 𝑠𝑞𝑢𝑎𝑟𝑒 ), and 𝐽𝑠  stand for 

conduction currents, dielectric displacement, and any source current, 
respectively.  𝜕𝑡 𝐷  also defines the displacement current. Assuming a 
linear, isotropic, and time-invariant medium in the frequency domain, 
the current density 𝐽 and dielectric displacement 𝐷 are related to the 
electric field 𝐸 (

𝑉

𝑚
 𝑉𝑜𝑙𝑡 𝑝𝑒𝑟 𝑚𝑒𝑡𝑒𝑟)  by electrical conductivity 

𝜎∗ (
𝑆

𝑚
 𝑆𝑖𝑒𝑚𝑒𝑛𝑠 𝑝𝑒𝑟 𝑚𝑒𝑡𝑒𝑟)  and dielectric permittivity 

𝜀∗ (
𝐹

𝑚
 𝐹𝑎𝑟𝑎𝑑 𝑝𝑒𝑟 𝑚𝑒𝑡𝑒𝑟), respectively. 

 
𝐽 = 𝜎∗ (ɷ) 𝐸                      (15) 
 

𝐷 = 𝜀∗(ɷ) 𝐸                      (16) 
 

The last two equations describe the electrical properties of the 
subsurface medium as a scalar function of angular frequency ɷ. Since 
the electric field is stationery and curl-free (in the absence of magnetic 
sources 𝜕𝑡𝐵 = 0), which means 𝛻 × 𝐸 = 0, it can be written as: 

 

𝐸 =  − 𝛻𝜙∗                      (17) 
 

Which 𝜙∗  indicates a complex scalar potential, and  ∗  denotes a  

 

complex value. By recalling equation (16) and combining it with 
equation (18), it yields: 

 

𝐽 =  −𝜎∗(ɷ)𝛻𝜙∗                              (19) 
 

Applying the charge conservation theory over a volume and 
continuity equation to the recent equation, it is obtained: 

 

𝛻⸳𝐽 =  
𝜕ƿ

𝜕𝑡
  𝛿(𝑥 − 𝑥𝑠)𝛿(𝑦 − 𝑦𝑠)𝛿(𝑧 − 𝑧𝑠)   =  −𝐼 𝛿(𝑟 − 𝑟𝑠)                 (20) 

 

Where ƿ (
𝐶

𝑚
 𝐶𝑜𝑢𝑙𝑜𝑚𝑏 𝑝𝑒𝑟 𝑚𝑒𝑡𝑒𝑟)  denotes the charge density 

specified at a point in the Cartesian 𝑥 − 𝑦 − 𝑧  space, 𝛿  delta Dirac 
function, and 𝑟𝑠  =  (𝑥𝑠⸴𝑦𝑠⸴𝑧𝑠)  indicates the coordinates where the 
current is fed into the ground in the 𝑥 − 𝑦 − 𝑧 space. Since any arbitrary 
electrode configuration can be applied via pertinent superposition, here 
only a single electrode current source needs to be considered. This shall 
be indicated as a point source at 𝑟𝑠 . 

Regarding equations (16) and (19), it has been displayed that the 
conductivity is a complex and frequency-dependent quantity. In other 
words, the electric field 𝐸 and the conduction current density 𝐽 are not 
necessarily in-phase, but rather might hold both in-phase and out-of-
phase values. Considering Maxwell's equation again, it can be rewritten 
using frequency-dependent complex quantities which are 𝜎 and 𝜀 : 

 

𝛻 × 𝐻 = (𝜎∗(ɷ) + 𝑖 ɷ𝜀(ɷ))𝐸 + 𝐽𝑠 + 𝜕𝑡 𝐷                   (21) 
 

Equation (21) represents Maxwell's equation in the frequency 
domain. Regarding Equation (21), the quasi-static theory ɷ|𝜀|

|𝜎|
≪ 1 can be 

considered and applied for normal earth material on the condition that 
the 𝑓 =  

ɷ

2𝜋
< 10 𝑘𝐻𝑧  criterion is met. Therefore, the conventional 

displacement currents 𝜕𝑡 𝐷 can be neglected. So, the previous equation 
turns into: 

    

𝛻 × 𝐻 = (𝜎∗(ɷ) + 𝑖ɷ𝜀(ɷ)) 𝐸 + 𝐽𝑠                    (22) 
 

By taking the divergence of equation (22), it eventually yields: 
 

𝛻⸳ (𝜎∗(ɷ)𝐸)  −  𝛻⸳𝐽𝑠  =  0                     (23) 
 

Which will grow into the well-known Poisson equation considered as 
the basis of the forward modeling algorithm. It is reminded that 
equation (23) is mathematically utterly identical to the conventional DC 
resistivity problem one, except that it is stated at an appointed frequency 
ɷ. 

Having obtained all these relations, if we merge the equations (23) 
and (18), it leads to the following equation: 

 

−𝛻⸳ (𝜎∗(ɷ)𝛻𝜙∗(ɷ)) − 𝛻⸳𝐽𝑠  =  0                                   (24) 
 

Hence, it can be written for a three dimensional medium as: 
 

−𝛻⸳(𝜎∗(𝑥⸴𝑦⸴𝑧)𝛻𝜙∗(𝑥⸴𝑦⸴𝑧)) =  
𝜕ƿ

𝜕𝑡
 𝛿(𝑥 − 𝑥𝑠)𝛿(𝑦 − 𝑦𝑠)𝛿(𝑧 − 𝑧𝑠)                (25) 

 

With the assumption that the 𝑦 direction is considered parallel as 
strike direction of the model and there would be no charge in the 
conductivity distribution of strike direction, we obtain: 

 

𝜕

𝜕𝑦
 (𝜎∗(𝑥⸴𝑦⸴𝑧))  =                                    (26) 

 

Henceforth the complex conductivity can be presented as : 
 

𝜎∗(𝑥⸴𝑦⸴𝑧) = 𝜎∗(𝑥⸴𝑧)                                 (27) 
   

accordingly, equation (25) is rewritten as: 
 

−𝛻⸳(𝜎∗(ɷ⸴𝑥⸴𝑧)𝛻𝜙∗(ɷ⸴𝑥⸴𝑦⸴𝑧)) =  
𝜕ƿ

𝜕𝑡
 𝛿(𝑥 − 𝑥𝑠)𝛿(𝑦 − 𝑦𝑠)𝛿(𝑧 − 𝑧𝑠)               (28) 

 

Similarly, it can be presented like this : 
  

𝛻⸳(𝜎∗(ɷ⸴𝑥⸴𝑧)𝛻𝜙∗(ɷ⸴𝑥⸴𝑦⸴𝑧))  =  −𝐼 𝛿(𝑥 − 𝑥𝑠)𝛿(𝑦 − 𝑦𝑠)𝛿(𝑧 − 𝑧𝑠)                     (29) 
 

By applying some elementary vector calculus on equation (28) and 
considering the fact that: 

 

𝛻𝜎∗⸳𝛻𝜙∗ =
𝐼

2
 (−𝜎∗𝛻2𝜙∗ + 𝛻2(𝜎∗𝜙∗) − 𝜙∗𝛻2𝜎∗)                                            (30) 

 

By substituting the former relation for equation (29), we obtain: 
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𝜎∗(ɷ⸴𝑥⸴𝑧)𝛻2 𝜙∗(ɷ⸴𝑥⸴𝑦⸴𝑧) − 𝜙∗(ɷ⸴𝑥⸴𝑦⸴𝑧)𝛻2 𝜎∗(ɷ⸴𝑥⸴𝑧) +

𝛻2 (𝜎∗(ɷ⸴𝑥⸴𝑧)𝜙∗(ɷ⸴𝑥⸴𝑦⸴𝑧)) =  −𝐼 𝛿(𝑥 − 𝑥𝑠)𝛿(𝑦 − 𝑦𝑠)𝛿(𝑧 − 𝑧𝑠)                 (31) 
 

Equation (31), which is another form of the Poisson equation 
illustrated in equation (23) and generated by acting upon some 
mathematical operations, is considered as the main governing equation, 
equivalently a PDE, defining the forward problem in the frequency 
domain. 

Before proceeding further with the discussion, it is preferable to 
remark on two important tips assumed in all forward modeling 
processes. Considering the first case, it is stated that within the scope of 
this paper, only the electrical properties of rocks at frequencies less than 
10 𝑘𝐻𝑧 are of interest. At this scale, polarization effects entailing the 
movement of charge carriers over distances up to the order of 
centimeters give rise to the observed delay of the response to an 
impressed excitation. Propounding the second case, we assume that the 
region of interest may be served as a 2D complex resistivity distribution. 
However, the source used in geo-electrical prospection is assumed to 
hold a 3D distribution (the electrical potential distribution 𝜙∗(ɷ⸴𝑥⸴𝑦⸴𝑧)  
due to a point source is 3D). Consequently, the problem can be 
considered as a 2.5D one [19]. To put it in another way, the advantage 
of a 2.5D approach is that a physically realistic representation, involving 
a 3D source, is obtained by solving several problems with a 2D geometry 
in the wavenumber domain. Hence, the computational time is 
exceptionally decreased compared to a full 3D modeling process. 
Therefore, the first and essential step would be formulating and solving 
a 2.5D complex resistivity forward modeling. To do so, the Poisson 
equation discussed heretofore is used to simulate the current flow into 
the earth. 

In order to reckon on 3D source characteristics and for computational 
simplicity, we need to perform a spatial Fourier transform on the partial 
differential equations by transforming 𝑦 into the 𝑘𝑦 domain with regard 
to a range of wavenumbers along the strike direction, in order to solve 
the equations in Fourier transformed space (𝑥⸴𝑘𝑦⸴𝑧) . This 
transformation is functioned in the forward and backward direction by 
the following two equations. Since 𝜙 (𝑥⸴𝑦⸴𝑧) is even in 𝑦 direction, it is 
obtained as: 

 

𝜙 ᷉(𝑥⸴𝑘𝑦⸴𝑧) = 2∫ 𝜙 ᷉(𝑥⸴𝑦⸴𝑧) cos(𝑘𝑦)𝑑𝑦
∞

0
                                                           (32) 

 

𝜙∗(𝑥⸴𝑦⸴𝑧) =  2/𝜋 ∫ 𝜙 ᷉(𝑥⸴𝑘𝑦⸴𝑧) cos(𝑘𝑦𝑦)𝑑𝑘𝑦
∞

0
                                           (33) 

 

Where 𝜙᷉  and 𝑘 denote the transformed complex potential in the 
Fourier domain and real wavenumber, respectively. 

By applying the mathematical definition of equation (32) to the 
potential quantity in Poisson equation (31), the three-dimensional 
potential distribution 𝜙(𝑥⸴𝑦⸴𝑧) due to a point source at (𝑥𝑠⸴𝑦𝑠⸴𝑧𝑠) over a 
2D complex conductivity distribution 𝜎∗(ɷ⸴𝑥⸴𝑧) is reduced to a 2D 
transformed potential 𝜙 ᷉(𝑥⸴𝑘𝑦⸴𝑧), which is a solution of the equation 
(31). 

 

𝜎∗(ɷ⸴𝑥⸴𝑧) 𝛻2 𝜙 ᷉(𝑥⸴𝑘𝑦⸴𝑧) − 𝜙
᷉(𝑥⸴𝑘𝑦⸴𝑧)𝛻

2 𝜎∗(ɷ⸴𝑥⸴𝑧) + 𝛻2  (𝜎∗(ɷ⸴𝑥⸴𝑧) 𝜙 ᷉(𝑥⸴𝑘𝑦⸴𝑧)) 

   – 2𝑘𝑦2 𝜎∗(ɷ⸴𝑥⸴𝑧) 𝜙 ᷉(𝑥⸴𝑘𝑦⸴𝑧)  =  −𝐼 𝛿(𝑥 − 𝑥𝑠) 𝛿(𝑦 − 𝑦𝑠) 𝛿(𝑧 − 𝑧𝑠)                 (34) 
 

And similarly: 
 

− 𝛻⸳(𝜎∗(ɷ⸴𝑥⸴𝑧)𝛻𝜙 ᷉(𝑥⸴𝑘𝑦⸴𝑧)) + 𝑘𝑦
2 𝜎∗(ɷ⸴𝑥⸴𝑧) 𝜙 ᷉(𝑥⸴𝑘𝑦⸴𝑧)  =  −𝐼 𝛿(𝑥 −

          𝑥𝑠)𝛿(𝑦 − 𝑦𝑠)𝛿(𝑧 − 𝑧𝑠)                                      (35) 
 

Which is a 2D partial differential equation known as the Helmholtz 
equation, which has to be solved for a 2D domain restricted by mixed 
boundary conditions regarding several discrete wavenumbers. The 
boundary conditions are 

1) 𝜙∗(ɷ⸴𝑥⸴𝑦⸴𝑧) must be continuous across each boundary of the 
physical property distribution of 𝜎∗(ɷ⸴𝑥⸴𝑧). 

2) The normal component of 𝐽 must be continuous across each 
boundary as well. 

The main objective is to calculate 𝜙 ᷉(𝑥⸴𝑘𝑦⸴𝑧). A proper discretization 
of the (𝑥⸴ 𝑘𝑦⸴ 𝑧) space in the form of a rectangular grid with nodes at the 
cell center is required to numerically solve the equation (34). In this 

contribution, a finite difference algorithm is applied to discretize the 
simulated models restricted by mixed boundary conditions. (One of the 
privileges of the finite difference method over other ones is its capability 
to quickly approximate the solution for any arbitrary and complex 
structure models and also its higher speed against the finite element 
method). 

The generalized form of equations (34) and (35) can be demonstrated 
as: 

 

− 
𝜕

𝜕𝑥
(𝑃(𝑥⸴𝑧) 

𝜕𝜙 ᷉

𝜕𝑥
 (𝑥⸴𝑘𝑦⸴𝑧) −

𝜕

𝜕𝑧
 ( 𝑃(𝑥⸴𝑧) 

𝜕𝜙 ᷉

𝜕𝑧
 (𝑥⸴𝑘𝑦⸴𝑧) +

          𝜎∗(𝑥⸴𝑧) 𝜙᷉ (𝑥⸴𝑘𝑦⸴𝑧))  =  𝑓(𝑥⸴𝑧)                  (36) 
 

This statement is defined in a set of ℜ, which is assumed to be closed 
and connected to have a sufficiently regular boundary. The 𝑃  and 
𝑓 functions are at least piecewise continuous in ℜ. 

To define a semi-infinite half-space medium with an arbitrary 
complex conductivity distribution, the set of ℜ is arranged for artificial 
boundaries simulating infinitely distant planes in both the horizontal (x-
direction) and vertical (z-direction) extent. Such a half-space is 
indicated by the grid shown in figure 1. 

The grid is chosen to be rectangular with an arbitrary irregular 
spacing of the nodes in the the x and z directions. The rectangular grid 
comprising nodes in the  x direction and 𝑧 direction are indicated by 𝑖 =
1⸴2⸴3⸴… ⸴𝑁 and 𝑗 = 1⸴2⸴3⸴… ⸴𝑀, respectively. Considering the left, right 
and bottom infinite edges of the half-space, they are designed by the 
lines 𝑖 = 1, 𝑖 = 𝑁 and 𝑗 = 𝑀, respectively. 

Therefore, choosing a sufficiently large number of 𝑀  and 𝑁  and 
applying mentioned boundary conditions, will lead to the infinite edges 
simulation by a finite choice of 𝑀 and 𝑁. The representative equation 
(34) is then applied to any existing node (𝑖⸴𝑗) in the grid to yield an 
approximate complex potential quantity over area ∆A, which is 
illustrated by the hatched portion in figure 1. 

 

∆𝐴 =
(∆𝑥𝑖+∆𝑥𝑖−1)×(∆𝑧𝑗+∆𝑧𝑗−1)

4
                  (37) 

 
 

 
Figure 1. Rectangular discretization grid used to discretize the transformed 
equation (34). Discretization is usually implemented in both directions so that the 

intervals are considered major near the boundaries and become more minor as 
approaching to center of the studied area. Subsequently, the  middle medium 
recedes from the boundary conditions. 

 

After constructing a discrete model in the form of rectangular grids, 
the next step is replacing the existing partial derivatives with finite 
difference formula. 

4. Derivation of the finite difference equation 

Discretization in the framework of the finite difference method can 
be applied in two ways, discretization by points and discretization by 
area. The first approach deals with the known physical property 
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distribution, the complex conductivity 𝜎∗(ɷ⸴𝑥⸴𝑧) , which has to be 
discretized at each node by 𝜎𝑖⸴𝑗

∗ . Then, in terms of the numerical solution, 
a discrete set of 𝜎𝑖⸴𝑗

᷉  at each node has to be evaluated. In this paper, the 
first approach is ignored and it is concentrated on the second one, 
discretization by area. 

As mentioned in the third section, at any node in the set of ℜ, the 
fundamental relation for the desired unknown potential 𝜙 ᷉(𝑥⸴𝑘𝑦⸴𝑧)can 
be presented by the following partial differential equation: 

 

− 𝛻⸳(𝜎∗(ɷ⸴𝑥⸴𝑧)𝛻𝜙 ᷉(𝑥⸴𝑘𝑦⸴𝑧)) + 𝑘𝑦
2 𝜎∗(ɷ⸴𝑥⸴𝑧) 𝜙 ᷉(𝑥⸴𝑘𝑦⸴𝑧)  =  −𝐼 𝛿(𝑥 −

         𝑥𝑠)𝛿(𝑦 − 𝑦𝑠)𝛿(𝑧 − 𝑧𝑠)                  (38) 
 

Here, the physical property distribution 𝜎∗(ɷ⸴𝑥⸴𝑧) at any node (𝑖⸴𝑗) 
of the rectangular grid indicates the conductivity in a region restricted 
by the nodes (𝑖⸴𝑗) and (𝑖 + 1⸴ 𝑗) in the x-direction and the nodes (𝑖⸴ 𝑗 +
1)  and (𝑖 + 1⸴ 𝑗 + 1)  in the z-direction. The aim is to evaluate the 
numerical solution of equation (34) that contains a discrete set of 𝜎𝑖⸴𝑗

᷉  at 
each node. The four side-bounded regions are illustrated in figure 2, 
holding the previously mentioned equation (37) 

 

 
Figure 2. Illustration of the discretized area element ∆𝐴𝑖𝑗 ,followed by a detailed 
description of 𝜎𝑖⸴𝑗

᷉  distribution at the representative mesh area ∆𝐴𝑖𝑗 and the line 
contour 𝐿𝑖𝑗 about the node (𝑖⸴𝑗) 

 

As indicated above, the contour integration along the line Lij  is 
subdivided into 8 subsections. 

For each node (𝑖⸴𝑗), for which 𝜎𝑖𝑗
᷉  is unknown, the equation (37) is 

integrated over the corresponding mesh region ∆Aij to obtain: 
 

−∬ 𝛻⸳ (𝜎∗(𝑥𝑖⸴𝑧𝑗)𝛻𝜙(᷉𝑥𝑖⸴𝑘𝑦⸴𝑧𝑗))𝑑𝑥𝑖𝑑𝑧𝑗
 

∆𝐴𝑖𝑗
+

∬ 𝑘𝑦
2 (𝜎∗(𝑥𝑖⸴𝑧𝑗)𝜙᷉(𝑥𝑖⸴𝑘𝑦 𝑧𝑗))𝑑𝑥𝑖𝑑𝑧𝑗 = ∬

𝐼

2
𝛿(𝑥 − 𝑥𝑠)𝛿(𝑦 − 𝑦𝑠)𝛿(𝑧 −

 

∆𝐴𝑖⸴𝑗 

 

∆𝐴𝑖𝑗

𝑧𝑠)𝑑𝑥𝑖𝑑𝑧𝑗                              (39) 
 

The next step is applying Green's theorem integrating along the entire 
path 𝐿𝑖𝑗 . It is noted that to refrain from using complicated mathematical 
formulations in this step, some processes of obtaining the main required 
formulation are dropped. The detailed explanation can be found in [4]. 

Eventually, the self-joint difference equation indicates the solution of 
𝜙᷉  at node (𝑖⸴𝑗)  which is dependent only on the values of 𝜙᷉  at the 
adjacent nodes (𝑖 − 1⸴ 𝑗)⸴(𝑖 + 1⸴ 𝑗)⸴(𝑖⸴ 𝑗 − 1) and (𝑖⸴ 𝑗 + 1) are related to 
each other by: 

 

𝐶𝐿
𝑖𝑗
𝜙𝑖−1⸴𝑗
᷉ + 𝐶𝑅

𝑖𝑗
𝜙𝑖+1⸴𝑗
᷉ + 𝐶𝑇

𝑖𝑗
𝜙𝑖⸴𝑗−1
᷉ + 𝐶𝐵

𝑖𝑗
𝜙𝑖⸴𝑗+1
᷉ + 𝐶𝑃

𝑖𝑗
𝜙𝑖⸴𝑗
᷉  =  

𝐼

2
 𝛿(𝑥 −

      𝑥𝑠) 𝛿(𝑧 − 𝑧𝑠)                   (40) 
 

Where,  
 

𝐶𝐿
𝑖𝑗
 =  − 

∆𝑧𝑗−1𝜎𝑖−1⸴𝑗−1
∗ +∆𝑧𝑗𝜎𝑖−1⸴𝑗

∗  

2∆𝑥𝑖−1
                     (41) 

 

𝐶𝐿
𝑖𝑗
 is the self-coupling coefficient in the left x-direction between 

nodes (𝑖⸴𝑗) and (𝑖 − 1⸴ 𝑗) 
. 

𝐶𝑅
𝑖𝑗
 =  − 

∆𝑧𝑗−1𝜎𝑖⸴𝑗−1
∗ +∆𝑧𝑗𝜎𝑖⸴𝑗

∗  

2∆𝑥𝑖
                 (42) 

 

𝐶𝑅
𝑖𝑗
 is the self-coupling coefficient in the right x-direction between 

nodes (𝑖⸴𝑗) and (𝑖 + 1⸴ 𝑗). 

𝐶𝑇
𝑖𝑗
= − 

∆𝑥𝑖−1𝜎𝑖−1⸴𝑗−1
∗ +∆𝑥𝑖𝜎𝑖⸴𝑗−1

∗  

2∆𝑧𝑗−1
                 (43) 

 

𝐶𝑇
𝑖𝑗
 is the self-coupling coefficient in the top z-direction between 

nodes (𝑖⸴𝑗) and (𝑖⸴ 𝑗 − 1). 
 

𝐶𝐵
𝑖𝑗
 =  − 

∆𝑥𝑖−1𝜎𝑖−1⸴𝑗
∗ +∆𝑥𝑖𝜎𝑖⸴𝑗

∗  

2∆𝑧𝑗
                 (44) 

 

𝐶𝐵
𝑖𝑗
 is the self-coupling coefficient in the bottom z-direction between 

nodes (𝑖⸴𝑗) and (𝑖⸴ 𝑗 + 1). 
 

𝐶𝑃
𝑖𝑗
 =  − ( 𝐶𝐿

𝑖𝑗
 +  𝐶𝑅

𝑖𝑗
 +  𝐶𝑇

𝑖𝑗
 +  𝐶𝐵

𝑖𝑗
 –  𝐴(𝜎𝑖𝑗

∗ ⸴𝐴𝑖𝑗))                 (45) 
 

𝐶𝑃
𝑖𝑗
 is the self-coupling coefficient at position (𝑖⸴𝑗) , in which 

𝐴(𝜎𝑖𝑗
∗ ⸴𝐴𝑖𝑗) is defined as: 

 

𝐴(𝜎𝑖𝑗
∗ ⸴𝐴𝑖𝑗) =  

1

4
 𝑘𝑦

2(𝜎𝑖⸴𝑗−1
∗ ∆𝑥𝑖∆𝑧𝑗−1 + 𝜎𝑖⸴𝑗

∗ ∆𝑥𝑖∆𝑧𝑗 + 𝜎𝑖−1⸴𝑗
∗ ∆𝑥𝑖−1∆𝑧𝑗 +

     𝜎𝑖−1⸴𝑗−1
∗ ∆𝑥𝑖−1∆𝑧𝑗−1)                    (46) 

  

The self-coupling functions are known functions related to geometry 
and physical property distribution and have nothing to do with the 
position of the current electrode. 

Equation (40) is a linear equation containing five potentials: one main 
potential at the center and four adjacent potentials surrounding it. This 
equation is valid for a single node, particularly (𝑖⸴𝑗). The process should 
be carried out by calculating the equation for all nodes. Once the process 
is implemented and the discrete representation for the governing 
equations and boundary conditions at all existing nodes is achieved, the 
transformed forward problem can be written as a set of simultaneous 
equations for all the nodes in the grid: 

 

𝐶∗ 𝜙᷉ =  𝑞                     (47) 
 

In which 𝑞  denotes the source vector and 𝐶  represents 𝑀𝑁 ×𝑀𝑁 
complex, sparse, symmetric five-band capacitance matrix containing all 
self-coupling coefficients, and it is a function of geometry and physical 
property distribution in the grid. It is worth mentioning that for multiple 
source locations, matrix 𝐶 remains unaltered. Hence, only one inversion 
of 𝐶  in terms of different wavenumbers provides the solution with 
different sets of vectors 𝜙᷉ for the various source positions. 

Formerly, it was mentioned that the equation (47) has to be solved 
for vector 𝜙᷉ , which contains potentials for all existing nodes. 

 

𝜙᷉ = (𝐶∗)−1 𝑞                   (48) 
 

For this purpose, it is required to reverse the formerly-calculated 
capacitance matrix and multiply it by the source vector. Once the 
operation is accomplished computing the Fourier transformed potential 
for a sufficiently large number of discrete wavenumbers 𝑘, an inverse 
Fourier transform is implemented then to obtain the potential solutions 
in the spatial domain 𝜙∗(𝑟). 

 

𝜙∗(𝑥⸴𝑦⸴𝑧) =
2

𝜋 ∫ 𝜙 ᷉(𝑥⸴𝑘𝑦⸴𝑧) cos(𝑘𝑦𝑦)𝑑𝑘𝑦
∞

0

                 (49) 
 

Which 𝜙∗(𝑥⸴𝑦⸴𝑧) indicates 3D complex potential distribution. 
Note that further details about the solution of the governing 

equations as well as the discretization of the model in terms of the finite 
difference algorithm can be found in [4]. 

As mentioned beforehand, a complex quantity holds in-phase and 
out-of-phase components (real and imaginary parts or equivalently, 
amplitude and phase). Once the in-phase and out-of-phase values are 
available, the amplitude and phase angle can be obtained using: 

 

| 𝜎∗(ɷ)|  =   √𝜎  (ɷ)2 + 𝜎 (ɷ) 2                    (50) 
 

𝜑 (ɷ)  =  𝑎𝑟𝑐 𝑡𝑎𝑛 
𝜎 (ɷ)

𝜎  (ɷ)
                    (51) 

 

It is noted that the two previous equations can be illustrated in the 
form of complex resistivity as well. 

5. Synthetic test models 

In this section, the results from three synthetic tests of forward 
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modeling using the finite difference method are presented. Synthetic 
case studies are used to verify and evaluate the accuracy and efficiency 
of the numerical strategy for 2.5D forward modeling from both 
geometrically simple and complicated body. In the first two synthetic 
models, two relatively complex models are used, while, the third model 
has been derived from a published article in which the pseudo-sections 
are presented and the results are compared with those in the published 
paper. It is noteworthy that the presented results consist of amplitude 
and phase angle pseudo-sections. All the computations were carried out 
on a 1.9 GHz Core (TM) i5-based desktop PC. 

Before further proceeding, as all the discussed methods deal with 
complex resistivity, it is first needed to generate complex apparent 
resistivity (or conductivity) data using the MATLAB code in order to 
construct various geological models and compare their responses with 
observed data to obtain a valid model for the area of interest. All the 
relations mentioned in the following are basically dependent on 
complex resistivity values. The substantial necessity in all mentioned 
cases is gaining acquaintance of complex resistivity values in a 
discretized half-space medium for an arbitrarily shaped structure. In 
other words, it is required to appoint a specific complex resistivity value 
to every single discretized cell. To do so, first, considering a slightly 
arbitrary geological structure, the rectangular-shaped cell medium 
should be parameterized with constant resistivity, chargeability, time 
constant, and frequency-dependent constant in every single existing cell. 
Once the four parameters are attributed to each cell, according to the 
geological structure, henceforth, it is required to apply the Cole-Cole 
model to obtain complex resistivity, attributed to each cell: 

 

𝜌∗(ɷ)  =  𝜌0 (1 −  𝑚 (1 − 
1

1+(𝑖𝜏ɷ)𝑐
 ))                (52) 

 

or equivalently, 
 

𝜎∗(ɷ)  =  𝜎0 (1 + 
𝑚

1−𝑚
 (1 − 

1

1+(𝑖𝜏ɷ)𝑐
))               (53) 

 

Now, a 2D complex resistivity 𝜌∗(ɷ) distribution is available to be 
used in the next steps. 

5.1. Model 1 

The first synthetic model consists of five different mediums in terms 
of Cole-Cole parameters. There are two consecutive layered mediums, 
starting from the ground surface, with 4 𝑚  and 3 𝑚  thicknesses, 
respectively. Two structures are embedded in a relatively conductive 
medium. An inclined dyke with 100 𝑚  width is stretches from the 
bottom of the second layered medium toward the bedrock. Also, there 
is a 10 𝑚 × 50 𝑚 polarizable box located at the southeast of the main 
medium (Figure 3). Table 1 also represents the geological structures 
simulated in the first synthetic model. 

 

 
Figure 3.  Representation of the first synthetic model containing five different 
mediums. 

 
The in-phase and out-of-phase apparent impedance values for the 2D 

synthetic model shown in Fig.3 are calculated for ten frequencies using 

the finite difference method. The frequency values are 0.001, 0.01, 0.1, 1, 
10, 100, 500, 1000, 5000, and 10000 𝐻𝑧. It is essential to remark that this 
wide frequency range is necessary in order to obtain reliable values for 
characteristic parameters. However, in real field measurements, the 
highest and lowest used frequencies are limited by practical limitations. 
The lowest frequency value is limited by the available survey time, for 
example, a frequency of 0.001𝐻𝑧 requires 1000 𝑠 per cycle, while each 
measurement technically needs at least several cycles. The highest 
frequency is limited by EM coupling, which sets mostly a limit between 
10 to 100 𝐻𝑧. 

 
Table 1. Five different environmental regions used in the first synthetic model. 

Number Region 

1 
2 
3 
4 
5 

First layered medium 4 meters' thickness 
Second layered medium 3 meters' thickness 

Relatively conductive medium 
Inclined dyke 

Polarizable box 

 
The in-phase and out-of-phase apparent impedance values for the 2D 

synthetic model shown in Fig.3 are calculated for ten frequencies using 
the finite difference method. The frequency values are 0.001, 0.01, 0.1, 1, 
10, 100, 500, 1000, 5000, and 10000 𝐻𝑧. It is essential to remark that this 
wide frequency range is necessary in order to obtain reliable values for 
characteristic parameters. However, in real field measurements, the 
highest and lowest used frequencies are limited by practical limitations. 
The lowest frequency value is limited by the available survey time, for 
example, a frequency of 0.001𝐻𝑧 requires 1000 𝑠 per cycle, while each 
measurement technically needs at least several cycles. The highest 
frequency is limited by EM coupling, which sets mostly a limit between 
10 to 100 𝐻𝑧. 

The apparent impedance values are calculated by applying the 
Dipole-Dipole array for 9 n-level. While the amount of the injected 
current is 1𝐴, the number of stations is 40, and the electrode spacing is 
considered as 15 𝑚 . As mentioned beforehand, it is required to 
determine 4 Cole-Cole parameters for each desired medium. The 
quantities of the Cole-Cole parameters for the first synthetic model are 
presented in Table 2. 

 

Table 2. Properties of the first synthetic model region illustrated in Figure .3 based 
on the Cole-Cole model parameters: Resistivity ρ, chargeability m, time constant 
𝜏, and frequency dependence c which is a dimensionless quantity 

Number Region ρ (Ωm) m (mV/V) τ(s) c (-) 

1 

2 

3 

4 

5 

Layered earth 1 

Layered earth 2 

Background 

Inclined dyke 

Box 

150 

75 

1000 

500 

10 

0.035 

0.4 

0.01 

0.1 

1 

0.6 

0.1 

0.3 

0.5 

0.05 

0.45 

0.5 

0.6 

0.75 

0.2 

 

Applying the finite difference algorithm written in the MATLAB 
programming language to the determined synthetic model, the outcome 
of amplitude and phase angle pseudo-sections in terms of the different 
frequency ranges are illustrated in Figure 4 and Figure 5, respectively. 

As shown in Fig.4, no substantial variations are detected in ten 
pseudo-sections and all of them can be considered identical. Although, 
a roughly 2-layer behavior is observed and well resolved. Moreover, 
existing  values in pseudo-sections acceptably conform to the chosen 
quantities in the synthetic model. Due to the nearby contrast of the 
inclined dyke with its inclusive surroundings, it has not been resolved 
well, but there is a region, particularly with a lower resistivity quantity 
in approximate distance of 200 to 250 𝑚  from the beginning of the 
profile, which represents the lower-resistive inclined dyke rather than 
the higher-resistive surrounding. Along the higher-resistive setting, 
beginning from the approximate depth of 22 𝑚 and extending to the 
end of the pseudo-section while encompassing the whole lower part of 
it, at an approximate distance of 480 𝑚 from the outset of the profile, a 
region with a much lower resistivity quantity than the surrounding 
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Figure 4. Apparent resistivity (amplitude) pseudo-sections for the first synthetic model shown in Fig.3, in terms of ten different frequency values. 

 

 
Figure 5. Phase angle pseudo-sections for the first synthetic model shown in Fig.3, in terms of ten different frequency values. 

 
setting is observed that can be interpreted as the conductive block 
named by number 5 in the synthetic model, which resistivity is 
prominently lower than medium 3. It should be noted that some artifacts 
towards the bottom boundary and below the second layered medium 
can be observed, which is probably due to the effect of the boundary 
conditions. 

Heeding the phase angle pseudo-sections, it is obvious that the 

inclined conductive dyke cannot be distinguished by applying higher 
frequencies, probably due to its lower contrast with the surrounding 
setting. As the frequency decreases, the inclined dyke is marked more 
clearly. It is probably deduced that two low-contrast mediums can be 
distinguished using a broad range of frequencies rather than one single 
frequency. Despite amplitude pseudo-sections, another noteworthy tip 
about phase pseudo-sections is their clear discrepancy from each other 
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over applying a broad range of frequencies, so that the form of 
anomalies in every single pseudo-section differs remarkably from others. 

5.2. Model 2 

The second model is composed of three different geological 
phenomena. A joined continuous tectonic uplift and graben with an 
approximate length of 40 𝑚 attaches the first and second medium to 
each other. These two mediums share a smooth boundary in the 
following. The second medium is more conductive than the first one and 
holds much more chargeability value as well. There is also a more 
conductive 2 𝑚 × 10 𝑚 box than the two previous mediums embedded 
in the east part of the second medium with the relative distance of 60 𝑚 
from the outset of the profile (see Fig. 6). Table 3 also lists these tectonic 
phenomena. 

 

 
 

Figure 6. Representation of the second synthetic model containing three different 
mediums. 

 

The in-phase and out-of-phase apparent impedance values for a 2D 
model shown in Fig.6 are calculated for ten frequencies, different from 
the ones used in the previous model (i.e., 0.001, 0.01, 0.1, 1, 10, 20, 50, 100, 
500, 1000 𝐻𝑧). The same Dipole-Dipole electrode array is used for the 
simulations of the second model, so that the apparent impedance values 
are calculated for the 10 n-level. While the amount of the injected 
current is 1𝐴, the number of stations is chosen to be 40 and the electrode 
spacing is considered as 2 𝑚. The values of the Cole-Cole parameters for 
the second synthetic model are summarized in Table 4. 

 

Table 3. Three different environmental regions simulated in the second synthetic 
model. 
 

Number region 

1 

2 

3 

Medium 1 

Medium 2 

Box 

 

Table 4. Properties of the second synthetic model region illustrated in Fig.6 based 
on the Cole-Cole model parameters: Resistivity ρ, chargeability m, time constant 
𝜏 and frequency dependence c which is a dimensionless quantity. 

Number Region ρ (Ωm) m (mV/V) τ(s) c (-) 

1 

2 

3 

Medium1 

Medium2 

Box 

20 

60 

100 

8 

90 

45 

0.006 

0.0015 

0.09 

0.4 

0.7 

0.55 

 
Considering the Cole-Cole model parameters for each medium, the 

potential response of the simulated earth model is calculated using the 
proposed finite difference algorithm at different frequencies. Figure 7 
and Figure 8 show the retrieved apparent amplitude and phase 

distributions for all frequencies, respectively. 
As seen in Figure 7, the first point that comes to mind is just like the 

first model, the amplitude images are not altering much along frequency 
variation and look analogous. Nevertheless, the sites and quantities of 
phenomena have been retrieved perfectly. The first medium, which is 
observed clearly in the southwest region of the pseudo-section (left-
hand side), is considered a more resistive than the second medium, 
representing a low-resistance region depicted by blue color. As we 
proceed towards the east part of the pseudo-section, the effect of the 
first medium is diminished. This might be because of the presence of the 
third medium, which is much more conductive than the first two 
models. 

According to the phase angle pseudo-sections shown in Fig.8, in 
contrast to the amplitude pseudo-sections which do not vary along 
different frequencies, the phase angle images are more interesting and 
show quite different anomalies than amplitude. Although it does not 
show remarkable changes and looks like a smooth spectral behavior at 
first glance, by more accurate analysis and more detailed review, some 
discrepancies over a broad range of frequencies are observable. It should 
be mentioned that the phase pseudo-sections sharply delineate the 
whole conductive block and two other mediums. Despite not 
representing clear alteration for the first two mediums on the left-hand 
side of the pseudo-sections, by considering the polarizable box on the 
right-hand side at low frequencies, the phase images show values up to 
0.06 𝑚𝑟𝑎𝑑 and as we proceed to higher frequencies, the phase decreases 
up to 0.02 𝑚𝑟𝑎𝑑 and fades out in terms of the intensity of anomaly. 

5.3. Model 3 

In order to assure reliability and evaluate the efficiency of the written 
the MATLAB code algorithm, the pseudo-sections obtained from the 
written code were tested by the outcome of a synthetic model used by 
[9]. The goal is to provide a visual comparison between our numerical 
results and those obtained by [9] in terms of amplitude and phase 
pseudo-sections. 

The last synthetic model consists of two rectangular blocks embedded 
in a uniform medium of resistivity of 10 𝛺𝑚, chargeability of 10 𝑚𝑉/𝑉, 
a time constant of 1 𝑠 and a relaxation constant of 0.2 (Fig.9). The Cole-
Cole parameters of these two blocks are set to be different from the 
background medium, instead of a totally homogenous model. Table 5 
represents the Cole-Cole parameters associated with example 3. Both 
rectangular blocks have a transitional layer to simulate the smooth 
variation in the electrical parameters. 

Considering Fig.9, the apparent impedance values for this 2D model 
are calculated at ten frequencies (i.e., 0.001, 0.01, 0.1, 1, 10, 20, 25, 50, 100, 
and 1000 𝐻𝑧) using the finite difference method. 

The complex apparent electrical resistivity responses of the synthetic 
model are simulated using the linear dipole-dipole configuration from 
position 0 up to 25 𝑚  with fixed electrode spacings of 1 𝑚  up to 10 
levels ( 𝑛 = 1 − 10 , where 𝑛  indicates the number of receiver-
transmitter dipole separation). Figures 10 and 11 indicate the resistivity 
and phase pseudo-sections derived from the third synthetic model, 
respectively. 

In addition, for further appraisal, the resulting simulations of the 
corresponding synthetic example are compared with those represented 
by [9] for the frequency of 1 𝐻𝑧  (see Fig. 12 and 13).  In spite of 
calculating the apparent complex impedance values for the defined 
frequency range, it is noted that the comparison is only done for the 
frequency of 1 𝐻𝑧 (the same frequency used by [9]). 

Visually comparing the resulting pseudo-sections, it is observed that 
there is a trivial difference between the apparent resistivity and phase 
contours obtained from the proposed algorithm and those from [9]. The 
left block is less well resolved, probably due to its lower contrast with 
the surrounding medium compared to the right block. As mentioned 
earlier, The right block is perfectly resolved due to its sufficient contrast 
with the surrounding medium. Although, as we proceed to higher 
frequencies, the left block is much better presented at the lower 
frequencies. It is probably concluded that even a minor contradiction of  
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Figure 7. Apparent resistivity (amplitude) pseudo-sections for the second synthetic model shown in Fig.6, in terms of ten different frequency values. 

 

 
Figure 8. Phase angle pseudo-sections for the second synthetic model shown in Fig.6, in terms of ten different frequency values.
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a specific medium with its surrounding setting would be distinguished 
by applying a broad range of frequencies, while only a single frequency 
usage in this matter would presumably fail. Just like conclusions 
obtained from the last two synthetic models, no remarkable variation in 
amplitude pseudo-sections can be observed, and it seems that the use of 
SIP might be somewhat useless. But the variations are obvious and 
discernible if Cole-Cole parameters sections are obtained by applying 
the inversion algorithm thereinafter. 
 
Table 5. Properties of the third synthetic model region illustrated in Figure 9 based 
on the Cole-Cole model parameters: Resistivity ρ, chargeability m, time constant 
𝜏 and frequency dependence c which is a dimensionless quantity. 

Number ρ (Ωm) m (mV/V) τ(s) c (-) 

1 

2 

3 

4 

5 

10 

7 

5 

5 

3 

10 

50 

100 

70 

150 

1 

3 

10 

6 

40 

0.2 

0.3 

0.4 

0.4 

0.6 
 

Figure 9. Representation of the third synthetic model used in [9] containing five 
different mediums.  

 
 

 
Figure 10. Apparent resistivity (amplitude) pseudo-sections for a broad frequency range related to the synthetic model shown in Fig.9, used in [9]. 

6. Conclusion 

By using the SIP method and applying a defined broad range of 
frequencies, it is possible to describe items such as medium properties, 
spectral behavior, and the intensity of every single parameter. The broad 
application of the SIP method requires accurate and fast modeling and 
inversion algorithms. An accurate and efficient forward calculation is 
the basis of most inversion processes and it is a helpful means to 
enhance physical understanding of the subsurface structures. Like any 
other geophysical method, a reliable spectral induced polarization 
inversion and modeling is highly dependent on the accuracy of the 
forward problem. Hence, a general algorithm in the MATLAB 
programming language was developed to simulate the response of an  

 

 
 

arbitrary 2D distribution of the Cole-Cole model parameters for desired 
arrays of current and potential electrodes. 

The proposed numerical method is based on the solution of Poisson’s 
equation in the framework of the finite difference scheme. Our results 
proved that the forward responses, including the amplitude and phase 
values derived from the subsurface structures with different Cole-Cole 
model parameters are highly dependent on the variation of frequency 
values. We also compared the resistivity and phase pseudo-sections 
derived from the proposed algorithm with those obtained from the 
Geotomo geo-electrical forward modeling.
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Figure 11. Phase angle pseudo-sections for a broad frequency range related to the synthetic model shown in Figure 9, used in [9]. 

 

 
Figure 11. Apparent resistivity (amplitude) pseudo-section for the frequency of 1Hz derived by [9]. 

 

 
Figure 13. Phase angle pseudo-section for the frequency of 1Hz derived by [9]. 
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