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A B S T R A C T 

 

In the open-pit mining method, it is necessary to design the ultimate pit limit before mining to determine issues, such as the amount of 
minable reserve, the amount of waste removal, the location of surface facilities, and production scheduling. If the obtained profit from the 
extraction of the pit limit becomes maximum, it is called the optimum pit limit. Various algorithms have been presented based on heuristic 
and mathematical logic for determining the optimum pit limit. Several algorithms, such as the floating cone algorithm and its corrected forms, 
the Korobov algorithm and its corrected form, dynamic programming 2D, the Lerchs and Grossmann algorithm based on graph theory have 
been presented to find out the optimum pit limit. Each of these algorithms has particular advantages and disadvantages. The designers of the 
corrected form of the Korobov algorithm claim that this algorithm can yield the true optimum pit in all cases. Investigation shows that this 
algorithm is incapable of yielding the true optimum conditions in all models, and in some models the method produces an optimum with a 
negative value. In this paper, this algorithm has been evaluated, and a modification model is also presented to overcome its disadvantage. This 
new algorithm was named the Korobov algorithm III. In this paper, this new algorithm was considered in different models of two and three-
dimensional space. A case study for designing of the optimum pit limit in three-dimensional space was done for a gold mine in the sewed 
country. The outcomes of Table 9 show that this new method designs a pit limit with a value of 69428.59 that has better results than previous 
Korobov algorithms. 
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1. Introduction 

The open pit method is one of the most famous surface mining 
methods. The most essential issue in the design of open pit mines is the 
design of the ultimate limit of the mine, which represents the shape of 
the mine at the end of its life. With the determination of the ultimate 
limit of the mine, parameters such as the dimensional of longitudinal, 
lateral, and depth of the mine, access routes to the mineral material, the 
location of the tailing’s depot, the site of the surface facilities, the ratio 
of tailing removal, the mine's lifespan, the amount of mineable reserve, 
the amount of tailings removal, and production scheduling can be 
estimated [1]. 

The design of the optimal limit of open pit mines is mainly based on 
block models. For this purpose, firstly, the grade block model is 
prepared, and then, with the determination of the revenues and costs of 
extracting blocks of ore and waste, the economic block model is 
designed. In this block model, blocks of ore have a positive value, waste 
blocks have a negative value, and air blocks that are above the 
topographic level have a value of zero. In most of the design methods, 
the economic block model is used to determine the ultimate optimal 
limit. The main goal of all of these is to find a group of ore blocks where 
their extraction profit based on economic science and technical 
limitations is maximized [2]. 

Various algorithms, such as the floating cone methods [3-8], dynamic 
programming [9-11], the Lerchs and Grossmann algorithm based on 
graph theory [12,13], the Korobov algorithm [14], the corrected form of 
the Korobov algorithm [15,16], the genetic algorithm [17,18], and the  

 
 
flashlight algorithm [19] have been used for designing the optimal limit. 
Each of these methods has particular advantages and disadvantages. 

The floating cone algorithm is one of the easiest and fastest 
algorithms for the determination of the ultimate limit, but it is not able 
to design the true optimum limit. Two algorithms, dynamic 
programming (2D), and Lerchs and Grossmann (3D) always design the 
true optimum limit. However, the Lerchs and Grossmann algorithm 
depends on graph theory which has its own complexity. 

The Korobov algorithm and its corrected model were presented for 
eliminating the disadvantages of the floating cone method and avoiding 
the complexity of the graph theory algorithm. Despite these corrections, 
these two methods are not able to obtain the true optimum limit in all 
models, because Investigations have shown that the corrected form of 
the Korobov algorithm occasionally produces a result with a negative 
value. Therefore, this method needs more corrections. This paper 
presents a new edition of the Korobov algorithm for covering the 
shortcomings of previous methods. This new method is named the 
Korobov algorithm III. 

2. Technical limitations of extraction 

Designing the ultimate pit limit is one of the main purposes of open-
pit mines. The ultimate pit limit involves a set of extraction cones. Each 
extraction cone is approximately similar in shape to an inverse cone in 
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three-dimensional space. Also, each extraction cone should be drawn 
based on the technical limitations of extraction. From a theoretical point 
of view, different models, such as 1-3, 1-5, 1-5-9, and conical models with 
fixed and variable slopes have been defined for the technical limitations 
of extraction. If the geometric center of gravity of each of the blocks of 
the economic block model is inside the technical limitations of 
extraction, then those blocks are considered to be a part of the extraction 
cone [20,21]. 

a. Model 1-3 

This model is a technical limitation of extraction in two-dimensional 
space. Accordingly, for the extraction of any ore block, it is necessary to 
remove three blocks of a higher level (Figure 1).  

 
 

 
Figure 1. The technical limitation of extraction for the model 1-3 [20]. 

 

b. Model 1-5 

This model is a technical limitation of extraction in three-dimensional 
space. Accordingly, for the extraction of any ore block, five blocks of the 
higher level should be removed. The interpretation of this model for an 
ore block at level 2 has been presented in Figure 2. 

c. Model 1-9 

This model is a technical limitation of extraction in three-dimensional 
space. Accordingly, for the extraction of any ore block, nine blocks of a 
higher level should be removed. The Interpretation of this model for an 
ore block at level 2 has been presented in Figure 3. 

 

 
Figure 2. The technical limitation of extraction for the model 1-5 [20,21]. 

 

 
 

Figure 3. The technical limitation of extraction for the model 1-9 [20,21]. 

 

d. Model 1-5-9 

This model is a technical limitation of extraction in three-dimensional 
space. Accordingly, for the extraction of any ore block, five blocks from 
a higher level should be removed, followed by removing nine blocks 
from its two upper levels. For example, to extract an ore block on the 
third level, 26 blocks must be removed from the two upper levels. The 
interpretation of this model for an ore block at level 3 has been 
presented in Figure 4. 

e. Conical Model 

This model is a technical limitation of extraction in two and three-
dimensional space. In this model, according to Figure 5, an inverse cone 
with a fixed or variable slope is drawn based on slope stability at the 
geometric center of gravity of the ore block. Blocks inside this extraction 
cone are selected for the next stage of design. 

 

 
Figure 4. The technical limitation of extraction for the model 1-5-9 [21]. 

 

 
Figure 5. The technical limitation of extraction for the conical model. 

3. An overview of Korobov algorithms 

3.1.  The Korobov algorithm 

This method was presented by David et al. in 1974, similar to the 
floating cone method based on the economical block model [14]. The 
stages of this algorithm are as follows: 

a. Based on the technical limitations of extraction; an extraction cone 
is formed for each positive block (ore).  

b. The positive value of each extraction cone is allocated to negative 
blocks. In this step, each extraction cone of the positive block is allocated 
to its positive value The positive value of each extraction cone is 
allocated to negative blocks. negative blocks until no blocks with 
negative values exist or until the positive block value is zero. 

c. Selection of the ultimate limit. If the positive block value of each 
extraction cone remains positive, at this stage, all the blocks inside the 
cone are considered to be a part of the ultimate limit, and the search for 
another positive block from the remaining blocks with the initial value 
continues. If the positive block value of each extraction cone remains 
zero, at this stage, this cone is not considered to be part of the ultimate 
limit, and the search for another positive block from the next block 
continues. 

Although this algorithm is simple and easy to understand, but is not 
able to yield a true optimum pit limit. For example, for the economical 
block model shown in Figure 6, when the final dip of the pit is 1:1, the 
Korobov algorithm produces an optimum pit limit with the value of -2 
(Table 1 and Figure 7). 

3.2. The corrected form of the Korobov algorithm 

The corrected form of the Korobov algorithm was introduced and 
presented by Dowd and Onur in 1992. The Korobov algorithm has an 
error caused by blocks that are common to both cones. It was corrected 
by the following logic: “If two or more cones have blocks in common, 
then blocks not in common must be paid for first; common blocks are 
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only paid for after all blocks, not in common have been paid for” [15]. 
The stages of this algorithm are as follows: 

a. Formation of ore groups. In this stage, groups of ore blocks are 
formed on each level based on positive blocks, and within each group, 
several compounds are created according to table 2 (Ci, ore block).  

b. Identification of common blocks. In this step the compositions that 
have common blocks in their extraction cones are identified.  

c. Allocation of positive to negative values. This allocation is done 
firstly for non-common blocks and then for common blocks, but each 
positive block become zero for both the non-common and common 
blocks within its extraction cone.  

d. Selection of the ultimate limit, if the remaining value of each ore 
blocks remains positive, in this case, the ore block along with its 
extraction cone is selected as part of the ultimate limit, the search then 
begins for the next common compositions of the remaining blocks with 
the initial value of the economic block model. Also, if the residual value 
of any of any ore blocks is not positive, in this case is not selected for the 
ultimate limit. Therefore, the search for the next common composition 
starts from the next level of the economic block model. Also, 
compositions that do not have common blocks must be calculated 
according to the Korobov algorithm. 

 

9 8 7 6 5 4 3 2 1  

-2 -2 -2 -2 -2 -2 -2 -2 -2 1 

-4 -4 -4 -4 -4 -4 -4 -4 -4 2 

-6 -6 +18 -6 +12 -6 +14 -6 -6 3 

Figure 6. The first economic block model. 

 

9 8 7 6 5 4 3 2 1  

-2 -2 -2 -2 -2 -2 -2 -2 -2 1 

-4 -4 -4 -4 -4 -4 -4 -4 -4 2 

-6 -6 +18 -6 +12 -6 +14 -6 -6 3 

Figure 7. The Optimum pit limit by the Korobov algorithm. 

 
Table 1. The stages of the Korobov algorithm. 

Stage Block No Block value Remains value Minable? Search method? 

1 (3,3) +14 0 No Next 

2 (3,5) +12 0 No Next 

3 (3,7) +18 +2 Yes Initial 

4 (3,3) +14 0 No Next 

5 (3,5) +12 +4 Yes Initial 

6 (3,5) +12 +2 Yes Initial 

 
The validation performed on the corrected form of the Korobov 

algorithm shows that this algorithm cannot design the true optimal limit 
in all models and needs to be corrected again [16]. For example, in the 
economical block model shown in Figure 6, when the final dip of the pit 
is 1:1, according to the graph theory and dynamic programming 2D 
algorithm, the optimal limit does not exist in this economic block model, 
but the corrected form of the Korobov algorithm produces an optimum 
limit with a value of -2 would be obtained (Table 3 and Figure 8). The 
stages of this algorithm are as follows: 

a. The only level that contains ore blocks is the third level with three 
blocks of ore. According to Table 2, this level consists of seven different 
compositions from columns 1 to 3. Four compositions of them are 
common blocks, and another three compositions are not in common 
blocks. The names of common compositions are C1&C2, C1&C3, 
C2&C3, and C1&C2&C3.  

b. Allocation of positive to negative values: according to Table 3, 

firstly, the values are allocated for each of the three compositions that 
have two members in common, such as C1&C2, C1&C3, and C2&C3. 
The results show that none of the above three compositions can be 
extracted. Therefore, the only common combination that remains is the 
combination C1&C2&C3. The allocation of the positive to negative 
values is done according to steps 4 to 6 of Table 2 and this composition 
can be extracted. Finally, the ultimate pit limit and other limits are 
presented in Figures 8, and 9 with the value of 2. 

 
Table 2. Groups of ore blocks [15]. 

Group n … 4 3 2 1 

 Cn … C4 C3 C2 C1 

 Cn&Cn-1 … C4&C3 C3&C2 C2&C1  

 Cn&Cn-2 … C4&C2 C3&C1   

 . .. … C4&C1 C3&C2&C1   

 . .. … C4&C3&C2    

 . .. … C4&C3&C1    

 Cn&C1 … C4&C2&C1    

 Cn&Cn-1&Cn-2 … C4&C3&C2&C1    

 Cn&Cn-1&Cn-3      

 . ..      

 Cn&Cn-1&C1      

 . ..      

 Cn&Cn-1&…C1      

 
Table 3. Stages of the corrected form of the Korobov algorithm. 
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1 3 Yes 
(3,3) 

C1&C2 
+14 +2 0 No Next 

(3,5) +12 0 0 No composition 

2 3 Yes 
(3,3) 

C1&C3 
+14 0 0 No Next 

(3,7) +18 0 0 No composition 

3 3 Yes 
(3,5) 

C2&C3 
+12 0 0 No Next 

(3,7) +18 +6 0 No composition 

4 3 Yes 

(3,3) 

C1&C2&C3 

+14 +2 0 No 

Initial (3,5) +12 +8 0 No 

(3,7) +18 +6 +2 Yes 

5 3 Yes 

(3,3) 

C1&C2 
+14 

+12 

+2 

+8 

0 

+2 

No 
Yes 

Initial 
(3,5) 

6 3 No (3,3) C1 +14 +2 Yes Initial 

4. The Korobov algorithm III 

Although the corrected form of the Korobov algorithm overcomes 
some disadvantages of the Korobov algorithm, in some models, this 
method cannot design a true optimum pit limit. Therefore, a new 
correction is needed. The style of allocating positive values to negative 
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values for common blocks is an error in this algorithm. To solve this 
error, the weight of common blocks and cones needs to be calculated. A 
flowchart of the Korobov algorithm III is shown in Figure 10. The stages 
of this algorithm are as follows: 

 

9 8 7 6 5 4 3 2 1  

-2 -2 -2 -2 -2 -2 -2 -2 -2 1 

-4 -4 -4 -4 -4 -4 -4 -4 -4 2 

-6 -6 +18 -6 +12 -6 +14 -6 -6 3 

Figure 8. Optimum pit limit by the corrected form of the Korobov algorithm. 
 

 1 2 3 4 5 6 7 8 9   1 2 3 4 5 6 7 8 9 

1 0 0 -2 -2 -2 -2 -2 0 0  1 0 0 0 0 0 0 0 0 0 

2 -
4 

0 0 -4 0 -4 0 0 -
4 

 2 -
4 

0 0 -4 0 0 0 0 -
4 3 -

6 
-6 +2 -6 +8 -6 +6 -

6 

-
6 

 3 -
6 

-6 0 -6 0 -6 +2 -
6 

-
6  

             Allocative positive values                                Allocative positive value to 

     to negative non-common blocks                                negative common blocks 
  

 1 2 3 4 5 6 7 8 9   1 2 3 4 5 6 7 8 9 

1 -2 -2 -2 -2       1 0 0 -2 -2      

2 -4 -4 -4 -4 -4    -4  2 -4 0 0 -4 0    -4 

3 -6 -6 +14 -6 +12 -6  -6 -6  3 -6 -6 +2 -6 +8 -6  -6 -6 

          The first optimum pit limit                 Allocative positive values to  
                                                                              negative non-common blocks 

 

 1 2 3 4 5 6 7 8 9   1 2 3 4 5 6 7 8 9 

1 0 0 0 0       1 -2 -2        

2 -4 0 0 0 0    -4  2 -4 -4 -4      -4 

3 -6 -6 0 -6 +2 -6  -6 -6  3 -6 -6 +14 -6  -6  -6 -6 

   Allocative positive value to                           The second optimum pit limit 
         negative common blocks.  

 1 2 3 4 5 6 7 8 9   1 2 3 4 5 6 7 8 9 

1 0 0         1 -2 -2 -2 -2 -2 -2 -2 -2 -2 

2 -4 0 0      -4  2 -4 -4 -4 -4 -4 -4 -4 -4 -4 

3 -6 -6 +2 -6  -6  -6 -6  3 -6 -6 +14 -6 +12 -6 +18 -6 -6 

            Allocative positive value to            Final optimum pit limit with value of -2 
            negative blocks                                 
 

Figure 9. The fourth to sixth stages of the corrected form of the Korobov algorithm. 
 

3.1. Finding ore blocks (positive blocks) from the first level of the 
economic block model to other levels, and also in each level, all ore 
blocks up to the first level are considered. 

3.2. Formation of extraction cones for all ore blocks, using technical 
restrictions such as 1-3, 1-5, 1-5-9, and conical models. 

3.3. Non-common blocks between extractive cones for each positive 
block must become zero. 

3.4. Common blocks between extractive cones of each positive block 
must become zero. It is as follows: 
3.4.1. Calculation of the importance degree for each of the negative 
common blocks. This is equivalent to the number of times that the block 
is repeated in different extraction cones. 

3.4.2. Calculation of the importance degree for each of the extraction 
cones. This is equivalent to the sum of the importance degree of the 
common blocks in its extraction cone. 

3.4.3. Sorting extraction cones based on their importance degree in 
ascending method. 

3.4.4. Sorting common blocks for each extraction cone based on their 
importance degree in ascending method.  

 
 

Figure 10. Flowchart of the Korobov algorithm III. 

 
3.4.5. Allocating positive to negative values for the first ore block 

based on the sorted negative blocks, while the value of the ore block is 
zero or no negative block remains. 

3.4.6. Allocating positive to negative values for other ore blocks based 
on the sorted values. 

3.5. Checking the residual value for each of the ore blocks as follows: 
3.5.1. If the value of each ore blocks remains positive, its extraction 

cone is selected as part of the ultimate pit limit. Then the search for 
another pit limit continues from the first level of the remaining blocks 
whit the initial value of the economical block model. 

3.5.2. If all ore blocks become zero, its extraction cone is not selected 
as part of the ultimate pit limit. Then the search for another pit limit 
from the next level of the remaining blocks with the initial value of the 
economical block model continues. 

The stages of the Korobov algorithm III are explained by a simple 
example according to the economical block model presented in Figure 
6. According to the information below, this algorithm dose not design a 
pit limit because there is not a true optimum pit limit in this example 
(the final dip of the pit is 1:1). 

The first level that contains ore blocks is the third level. The different 
stages of the algorithm for this level are as follows: 
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Stage 1: Calculation of the importance degree of common blocks, 
according to Figure 11. 

Stage 2: Calculation of the importance degree of extraction cones 
along with ascending sorting, as presented in Table 4. 

Stage 3: Ascending sorting of the common blocks based on their 
weights, as presented in Table 5. 

Stage 4: Allocation of the ore blocks values to negative non-common 
blocks of its extraction cone, as presented in Figure 12.   
Stage 5: Allocation of the positive block value (+2) to negative common blocks for 
extraction cone (3,3), as presented in Figure 13. 

Stage 5: Allocation of the positive block value (+2) to negative 
common blocks for extraction cone (3,3), as presented in Figure 13.    

Stage 6: Allocation of the positive block value (+6) to negative 
common blocks for extraction cone (3,7), as presented in Figure 14.   

Stage 7: Allocation of the positive block value (+8) to negative 
common blocks for extraction cone (3,5) according to Figure 15.    
 

 1 2 3 4 5 6 7 8 9 

1 0 0 2 2 3 2 2 0 0 

2 0 0 0 2 0 2 0 0 0 

3 0 0 0 0 0 0 0 0 0 

Figure 11. Importance degree of common blocks. 
 

Table 4. the weight of extraction cones along with ascending sorting. 

level Number of blocks Weight 

3 

(3,3) 9 

(3,7) 9 

(3,5) 15 

 

Table 5. Ascending sorting of common blocks. 

 Number of extraction cone 

 (3,3) (3,7) (3,5) 

N
um

be
r 

of
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om
m

on
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ks
 

(1,3) (1,6) (1,3) 

(1,4) (1,7) (1,4) 

(2,4) (2,6) (1,6) 

(1,5) (1,5) (1,7) 

- - (2,4) 

- - (2,6) 

- - (1,5) 

 

 1 2 3 4 5 6 7 8 9 

1 0 0 -2 -2 -2 -2 -2 0 0 

2 -4 0 0 -4 0 -4 0 0 -4 

3 -6 -6 +2 -6 +8 -6 +6 -6 -6 

Figure 12. Allocation of positive blocks value to negative non-common blocks. 
 
 

 1 2 3 4 5 6 7 8 9 

1 0 0 0 -2 -2 -2 -2 0 0 

2 -4 0 0 -4 0 -4 0 0 -4 

3 -6 -6 0 -6 +8 -6 +6 -6 -6 
 

Figure 13. Allocative of positive block value to negative common blocks for 
extraction cone (3,3). 

 

After the allocation of the value of the positive block to negative 
blocks for each extraction cone, it is observed that the residual ore 
blocks value in this model are not positive. Therefore, these extraction 
cones are not accepted as a part of the optimum pit limit. Therefore, 
there is not a true optimum pit limit in this example.  

Example 2 

In order to show the ability of the Korobov algorithm III, another 
simple example is shown in Figure 16. In this model, the final dip of the 
pit is 1:1. Both the Korobov algorithm and its modification produce a pit 
with a value of +3, as presented in Table 6, Table 7, and Figure 17. Also, 
the results of the Korobov algorithm III are reported in Table 8 and 
Figure 18. The results of this new method are perfect matching the 
dynamic programming 2D algorithm, and it creates a true optimum pit 
with a value of +6, as presented in Figure 19. 

 
 

 1 2 3 4 5 6 7 8 9 

1 0 0 0 -2 -2 0 0 0 0 

2 -4 0 0 -4 0 -2 0 0 -4 

3 -6 -6 0 -6 +8 -6 0 -6 -6 

Figure 14. Allocation of the positive block value to negative common blocks for 
extraction cone (3,7). 

 

 1 2 3 4 5 6 7 8 9 

1 0 0 0 0 -2 0 0 0 0 

2 -4 0 0 0 0 0 0 0 -4 

3 -6 -6 0 -6 0 -6 0 -6 -6 

Figure 15. Allocation of the positive block value to negative common blocks for 
extraction cone (3,5). 
 

 1 2 3 4 5 6 7 8 9 

1 -2 -2 -2 -2 -2 -2 -2 -2 -2 

2 -4 +6 +8 -4 -4 -4 -4 -4 -4 

3 -6 -6 -6 -6 -6 +12 +10 -6 -6 

4 -8 -8 -8 +23 -8 -8 -8 -8 -8 

Figure 16. The second economical block model. 
 

 

Table 6. The stages of the Korobov algorithm. 

Stage Block 

No 

Block 

value 

Remains 

value 

Minable? Search 

method? 1 (2,2) +6 0 No Next 

2 (2,3) +8 +6 Yes Initial 

3 (2,2) +6 +4 Yes Initial 

4 (3,6) +12 0 No Next 

5 (3,7) +10 0 No Next 

6 (4,4) +23 +1 Yes Initial 

7 (3,6) +12 +6 Yes Initial 

6 (3,7) +10 +4 Yes Initial 
 

 

Table 7. Stages of the corrected form of the Korobov algorithm. 
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1 2 Yes 

(2,2) 

C1&C2 
+6 +4 0 No 

Initial 
(2,3) +8 +6 +6 Yes 

2 2 No (2,2) C1 +6 +4 Yes Initial 

3 3 Yes 

(3,6) 

C1&C2 
+12 +8 0 No Next 

(3,7) +10 +4 0 No composition 

4 4 No (4,4) C1 +23 +1 Yes Initial 

5 3 Yes 

(3,6) 

C1&C2 
+12 +12 +6 Yes  

(3,7) +10 +4 +4 Yes Initial 
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Table 8. Stages of the Korobov algorithm III. 

st
ag

e 

le
ve

l 

C
om

m
on

 b
lo

ck
s?

 

N
um

be
r 

of
 b

lo
ck

s 

W
ei

gh
t o

f c
on

es
 

co
m

po
si

ti
on

 

B
lo

ck
 v

al
ue

 

R
em

ai
ns

 v
al

ue
 o

f 
un

co
m

m
on

 b
lo

ck
s 

R
em

ai
ns

 v
al

ue
 o

f 
co

m
m

on
 b

lo
ck

s 

M
in

ab
le

? 

Se
ar

ch
 m

et
ho

d?
 

1 2 Yes 

(2,2) 4 

C1&C2 
+6 +4 0 No 

Initial 
(2,3) 4 +8 +6 +6 Yes 

2 2 No (2,2) - C1 +6 +4 Yes Initial 

3 3 Yes 

(3,6) 12 

C1&C2 
+12 +8 0 No Next 

(3,7) 12 +10 +4 0 No composition 

5 3 Yes 

(3,7) 16 

C1&C2&C3 

+10 +4 0 No 

Next 
composition (4,4) 16 +23 +1 0 No 

(3,6) 20 +12 +12 0 No 

 

 1 2 3 4 5 6 7 8 9 

1 -2 -2 -2 -2 -2 -2 -2 -2 -2 

2 -4 +6 +8 -4 -4 -4 -4 -4 -4 

3 -6 -6 -6 -6 -6 +12 +10 -6 -6 

4 -8 -8 -8 +23 -8 -8 -8 -8 -8 

Figure 17. Optimum pit limit of the Korobove algorithm and its modification. 

 
 

 1 2 3 4 5 6 7 8 9 

1 0 2 2 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 

a: Weight of common blocks. 

 

 1 2 3 4 5 6 7 8 9 

1 0 -2 -2 0 -2 -2 -2 -2 -2 

2 -4 +4 +6 -4 -4 -4 -4 -4 -4 

b: Allocative to negative non-common blocks. 
 

 1 2 3 4 5 6 7 8 9 

1 0 0 0 0 -2 -2 -2 -2 -2 

2 -4 0 +6 -4 -4 -4 -4 -4 -4 

c: Allocative to negative common blocks. 
 

 1 2 3 4 5 6 7 8 9 

1 -2    -2 -2 -2 -2 -2 

2 -4 +6  -4 -4 -4 -4 -4 -4 

d: The first pit limit. 

 1 2 3 4 5 6 7 8 9 

1 0    -2 -2 -2 -2 -2 

2 -4 +4  -4 -4 -4 -4 -4 -4 

e: Allocative to negative blocks. 
 

 1 2 3 4 5 6 7 8 9 

1     -2 -2 -2 -2 -2 

2 -4   -4 -4 -4 -4 -4 -4 
f: The second pit limit. 

 1 2 3 4 5 6 7 8 9 

1 0 0 0 0 2 2 2 2 0 

2 0 0 0 0 0 2 2 0 0 

3 0 0 0 0 0 0 0 0 0 

g: Weight of common blocks. 

 1 2 3 4 5 6 7 8 9 

1     -2 -2 -2 -2 0 

2 -4   -4 0 -4 -4 0 -4 

3 -6 -6 -6 -6 -6 +8 +4 -6 -6 

h: Allocative to negative non-common blocks. 

 1 2 3 4 5 6 7 8 9 

1     0 0 0 0 0 

2 -4   -4 0 0 -4 0 -4 

3 -6 -6 -6 -6 -6 0 0 -6 -6 

i: Allocative to negative common blocks. 

 1 2 3 4 5 6 7 8 9 

1 0 0 0 2 3 3 3 2 0 

2 0 0 0 0 2 3 2 0 0 

3 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 

j: Weight of common blocks 

 1 2 3 4 5 6 7 8 9 

1     -2 -2 -2 -2 0 

2 -4   0 -4 -4 -4 0 -4 

3 -6 -6 0 0 0 +12 +4 -6 -6 

4 -8 -8 -8 1 -8 -8 -8 -8 -8 

k: Allocative to negative non-common blocks. 

 1 2 3 4 5 6 7 8 9 

1     0 0 0 0 0 

2 -4   0 0 -3 0 0 -4 

3 -6 -6 0 0 0 0 0 -6 -6 

4 -8 -8 -8 0 -8 -8 -8 -8 -8 

l: Allocative to negative common blocks 

Figure 18. Stages of the Korobov algorithm III. 
 

 1 2 3 4 5 6 7 8 9 

1 -2 -2 -2 -2 -2 -2 -2 -2 -2 

2 -4 +6 +8 -4 -4 -4 -4 -4 -4 

3 -6 -6 -6 -6 -6 +12 +10 -6 -6 

4 -8 -8 -8 +23 -8 -8 -8 -8 -8 

Figure 19. Dynamic programming algorithm 2D. 

5. Case study 

In this section for a more accurate investigation of the Korobov 
algorithms, a case study in three-dimensional space is used. In this case 
study, the results obtained from the Korobov algorithms on a three-
dimensional block model have been performed based on the technical 
limitation of a conical model with fixed slopes. The case study is the 
geological block model of the BjÖrkdal gold mine, which is 
approximately 35 km northeast of Skellefteå in Sweden [14]. Firstly, the 
economic block model of this mine has been prepared using Pitwin32 
software. This software identifies ore and waste blocks based on the 
grade block model and cut-off grade. Then, an economical block model 
is created based on different characteristics, such as block height in the 
vertical direction, block length in the north-south direction, block width 
in the east-west direction, ore density, waste density, ore price, 
extraction cost, processing cost, smelting cost, refining cost, waste 
removal cost, and overall efficiency. 

In this case study, the dimensions of each block in the east-west 
directions are equal to 15 meters, north-south direction equals 10 meters, 
and in the vertical direction equal to 5 meters, and the slope of the 
extraction conical is equal to 58 degrees. Also, the dimensions of this 
economical block model are equal to 101 × 82 × 36, with 101 blocks in 
the east-west direction, 82 blocks in the north-south direction, and 36 
blocks in the vertical direction. To determine the ultimate pit limit of 
this mine, a computer program was written in the C ++ language for the 
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Korobov algorithms. Accordingly, after running the computer program, 
the results of the ultimate pit limits of the case study are presented in 
Table 9. According to Table 9, the ultimate pit limit of the Korobov 
algorithm III has a higher value than the Korobov algorithm and its 
corrected model. In other words, the Korobov algorithm III produces an 
ultimate pit limit with a higher value. 

 
Table 9. Overall results of the Korobov algorithms. 

6. Conclusion 

Various methods have been reported to design the ultimate pit limit 
of open mines. One of them is the Korobov algorithm and its modified 
model. The execution of extraction technical limitations with different 
methods, such as methods 1-3, 1-5, 1-5-9, conical model in fixed and 
variable slopes without any limitation is used in the Korobov algorithms. 

Although the corrected form of the Korobov algorithm overcomes 
the disadvantages of the Korobov algorithm, but examples were 
presented in this paper, where the corrected form has produced a pit 
limit with a negative value. Accordingly, the Korobov algorithm III was 
presented in this paper to eliminate its disadvantages. 

The disadvantage of the Korobov's previous algorithms is related to 
allocation positive to negative blocks value. In the Korobov algorithm 
III, for rectifying disadvantages, the issues of the importance degree of 
extraction cones and commons blocks have been discussed. Therefore, 
in the Korobov algorithm III, firstly, the common blocks are identified, 
and then, based on the priority of their importance, the allocation of 
positive to negative block values is done. 

According to Table 9, the results of the case study of the gold mine 
show that the economic block model includes 298,152 blocks, and the 
Korobov algorithm III was able to design a more profitable range than 
the previous two methods. In this case study, the value of the ultimate 
pit limit for the Korobov algorithm is equal to 69238.57, the corrected 
form of the Korobov algorithm is equal to 69327.53, and the Korobov 
algorithm III is equivalent to 69428.59. Therefore, it can be expressed 
that the new method has been able to eliminate some of the 
disadvantages of the previous methods of the Korobov algorithm. 
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