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A B S T R A C T 

 

The large-scale open-pit mine production planning problem is an NP-hard issue. That is, it cannot be solved in a reasonable computational 
time. To solve this problem, various methods, including metaheuristic methods, have been proposed to reduce the computation time. One of 
these methods is the genetic algorithm (GA) which can provide near-optimal solutions to the problem in a shorter time. This paper aims to 
evaluate the efficiency of the GA technique based on the pit values and computational times compared with other methods of designing the 
ultimate pit limit (UPL). In other words, in addition to GA evaluation in UPL design, other proposed methods for UPL design are also 
compared. Determining the UPL of an open-pit mine is the first step in production planning. UPL solver selects blocks whose total economic 
value is maximum while meeting the slope constraints. In this regard, various methods have been proposed, which can be classified into three 
general categories: Operational Research (OR), heuristic, and metaheuristic. The GA, categorized as a metaheuristic method, Linear 
Programming (LP) model as an OR method, and Floating Cone (FC) algorithm as a heuristic method, have been employed to determine the 
UPL of open-pit mines. Since the LP method provides the exact answer, consider the basics. Then the results of GA were validated based on 
the results of LP and compared with the results of FC. This paper used the Marvin mine block model with characteristics of 53271 blocks and 
eight levels as a case study. Comparing the UPL value's three ways revealed that the LP model received the highest value by comparing the 
value obtained from GA and the FC algorithm's lowest value. However, the GA provided the results in a shorter time than LP, which is more 
critical in large-scale production planning problems. By performing the sensitivity analysis in the GA on the two parameters, crossover and 
mutation probability, the GA's UPL value was modified to 20940. Its UPL value is only 8% less than LP's UPL value.  
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1. Introduction 

Planning an open-pit mine includes determining open-pit mines' UPL 
and production schedule. The UPL is designed to select the waste dump 
location, surface facilities, extractable reserves, and the amount of waste 
removal. The UPL is also called the economic area of the mine where 
the outside mining is no longer economical. This area is determined 
based on the economic block model. The economic block model of the 
deposit is prepared by considering its economic parameters. 
Accordingly, in the UPL design methods, a group of blocks that 
maximize a selected parameter such as profit, metal content, or net 
present value is considered for determining the UPL[1, 2]. 

UPL design methods can be divided into heuristics, metaheuristic 
techniques, and operational research (OR) methods. In 1965, Pana 
introduced the Floating Cone Algorithm (FC), as a heuristic method, 
for determining the UPL. This algorithm cannot provide an accurate 
answer or a mathematical guarantee to provide an optimal solution 
because it depends on the direction of the search and does not have a 
mathematical base[1]. The OR methods include the Linear 
Programming (LP) model, dynamic programming, graph theory, and 
network flow theory[3]. Lerchs-Grossmann, in 1965, developed graph 
theory that converts the economic block model of the deposit into a 
directional diagram. In a directional diagram, each vertex represents 
blocks, and each arc represents the interdependence of the blocks. The 

direction of arcs from one end to the other shows the priority of 
extracting the second block to the first block, and the weights are 
obtained from the economic values of the blocks. This algorithm 
assumes that the UPL problem is equal to finding the maximum weight 
of the weighted directional graph. Zhao and Kim tried to improve the 
Lerchs-Grossmann algorithm by considering the arcs defined in the ore-
waste interfaces[1, 4]. Johnson, in 1968, used network flow theory to 
solve the UPL optimization problem. In this network, two hypothetical 
blocks, Source Node, and Sink Node are created at the bottom and top 
of the block model. Each block is considered a node, and arcs connect 
all the blocks in the block model. After networking, operational research 
methods can solve the maximum flow problem [5] . Also, Underwood 
and Tolwinski 1998 determined the UPL using a network flow 
algorithm[6]. These algorithms arrive at a real optimal solution because 
using a mathematical model to solve the problem of open-pit mine UPL. 
However, the LP method in block models with many blocks responds 
over a long time due to many decision variables. Therefore, to design the 
UPL of Large block models, methods that quickly return near-optimal 
solutions are often necessary. Metaheuristic methods are easily 
adaptable to optimization problems in open-pit mines and provide 
suitable solutions rapidly [7 ,8] .  

In recent years, metaheuristic algorithms have been used to solve 
complex real-life problems from different fields, such as the large-scale 
open-pit mine production planning problem. Most metaheuristic 
algorithms are inspired by the biological evolution process, swarm 
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behavior, and physics law[9]. Metaheuristic methods include neural 
networks, particle swarm optimization, genetic algorithms (GA), tabu 
search (TS), simulated annealing (SA), and ant colony optimization 
(ACO) [1 ,7 ,10] . Accordingly, researchers, including Denby and 
Schofield (1994 and 1998), simultaneously used GA to solve open-pit 
mine planning [2] . Shishvan and Sattarvand proposed a new 
metaheuristic method based on ACO to solve the problem of open-pit 
mining planning [11] . Kumral and Dowd also used SA to solve an open 
pit mine planning problem [12] . Khan et al. used a particle swarm 
optimization algorithm to solve the problem of long-term open-pit 
production planning [13] . 

The large-scale open-pit mine production planning problem is an NP-
hard issue. That is, it cannot be solved in a reasonable computational 
time. Among the existing methods, the GA, based on the correct 
definition of its parameters (such as population size, crossover 
probability, mutation probability, and fitness function), offers a near-
optimal solution at a sufficient time in open pit planning problems[14]. 
In this paper, to evaluate the efficiency of the GA technique based on 
pit values and computational times, the GA has been used to determine 
the UPL of the Marvin test mine[15]. Sensitivity analysis was performed 
to achieve the maximum UPL value obtained from the GA. The UPL 
value results of the GA were compared with the LP model and the FC 
algorithm values to validate the capability of the GA. 

 
Background: 
As mentioned, the LP model, GA, and FC are used to design the UPL 

of open-pit mines. Based on the economic block model of the deposit 
and slope constraints, the LP model designs the UPL. The total value of 
the blocks in the UPL must be the highest possible. Equations 1 and 2 
show this mathematically[15, 16]. 

(1) 
 𝑀𝑎𝑥 ∑ 𝑥𝑖𝑣𝑖

𝑁

𝑖=1

    

(2) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:   𝑥𝑖 ≤ 𝑥𝑗      𝑖 = 1,2,∙∙∙, 𝑁   ∀𝑗 ∈ 𝑃𝑖         
𝑥𝑖 ∈ {0,1} 

(3) 𝑣𝑖 = 𝑅 × 𝑆𝑃 × 𝐺𝑟𝑖 − (𝑀𝐶 + 𝑃𝐶) 
 

Where 𝜈𝑖 represents the economic value of block i, and N is the total 
number of blocks in the block model. R is the ore recovery percent. SP 
is the selling price of ore per ton. MC is the mining cost per ton, and PC 
is the processing cost per ton. Gr is the ore grade in block i. 𝑥𝑖 is a binary 
variable for block 𝑖 . if a block is within the UPL, its value is one; 
otherwise, it is zero. j is the precedence block of block i, which means it 
must be extracted before block i, provided that the slope constraint is 
met. 𝑃𝑖  is a set of blocks located in the extraction cone of block 𝑖. For 
this reason, an upward cone with a slope of 45 degrees is created for 
each block. The cone's vertex should be in the Geometric center of that 
block. Then all the blocks whose Geometric centers are inside this cone 
are placed in the𝑃𝑖 (figure 1). As the size of the block model (the number 
of blocks) increases, so does the number of variables and decision 
constraints.  

 

 
Figure 1: A set of blocks in the extraction cone of a block[17]. 

 

The following method for designing UPL is the FC algorithm that 
Pana introduced in 1965. This algorithm first designed an upward cone 
for ore blocks based on the desired slope angle. Then the value of all the 
blocks in the cone is added together. If the result is a positive value, all 
the blocks inside the cone are removed. Otherwise, it is ignored. In this 
case, other ore blocks are searched, and cones are formed. This process 

continues until there are no more ore search blocks left. The results of 
this algorithm depend on the direction of the investigated model. This 
algorithm cannot provide an accurate answer or a mathematical 
guarantee of an optimal solution[1]. The Final algorithm for designing 
the UPL is GA. John Holland introduced the GA in the early 1970s. This 
algorithm is a search technique used to find accurate or approximate 
solutions to optimization problems. A GA is a class of evolutionary 
algorithms that use evolutionary biology-inspired processes such as 
inheritance, mutation, selection, and crossover [18] . 

The GA begins the search with random solutions called populations. 
A chromosome represents a random solution, and a chromosome 
comprises several components called genes. Some of these 
chromosomes are randomly paired to produce offspring. The viability of 
solutions for future generations depends on their quality (fitness 
value) [19] . Then, a method such as the roulette wheel was used to select 
a new population based on the calculated fitness values for each 
chromosome[20]. After creating a new population, the crossover 
probability combines selected chromosomes to produce new solutions, 
while the mutation probability provides possible diversity in the 
population. Using the crossover probability alone to create a child 
causes the genetic algorithm to get stuck in the local optimal. The 
mutation probability was used to reduce this problem by proving the 
difference between new children and parents and encouraging diversity. 
The process of evolution was repeated until the final condition for 
obtaining the chromosome with the highest fitness value was met; this 
is known as termination criteria[19, 21]. Since the GA is a flexible 
method, the results can be improved by changing its parameters. In 
other words, by performing sensitivity analysis on a number of its 
parameters, the UPL presented by the GA is checked, and the best value 
is selected[22, 23]. Figure 1 shows the applying steps of the GA. 

 

 
Figure 2. The applying steps of the GA. 

2. Methodology 

This paper aims to determine the UPL of the Marvin test mine, one 
of the instances of the MineLib library[15]. The Marvin block model has 
53271 blocks in 8 levels, and the size of each block is 30*30*30 meters. 
First, applying the GA to this model needs to define the chromosome. 
Chromosome length equals the number of columns (the blocks in the 
same X and Y direction and different levels on top of each other in the 
block model) with at least a positive block in the economic block model. 
For example, figure 3 shows a 2D block model with five columns with 
positive blocks. Accordingly, the number of states per chromosome gene 
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equals the number of positive blocks in the corresponding column. The 
fitness function for this problem is the value of the corresponding pit of 
a chromosome. Each gene of a chromosome corresponding block in the 
block model is indicated, and the extraction cone is constructed; the 
combination of the extraction cones indicates the pit limit. The total  

value of the blocks located in the identified pit is the chromosome's 
fitness. Then the value of the parameters related to the GA must be 
selected correctly, which is done using sensitivity analysis to achieve the 
maximum value of UPL(Fitness). 

 

  
Figure 3: The number of columns with at least a positive block. 

 

As mentioned before, using sensitivity analysis, the best deals are got 
for the parameters of the GA, namely crossover and mutation, obtained 
when the maximum UPL value is received. One simplest and most 
common approach to using sensitivity analysis is changing one factor at 
a time to see what effect this produces on the output. That appears to be 
a logical approach as any change observed in the result will 
unambiguously be due to the single parameter change. Furthermore, 
one can keep all other parameters fixed to their central or baseline 
values by changing one parameter simultaneously. That increases the 
comparability of the results (all 'effects' are computed regarding the 
same central point in space) and minimizes the chances of computer 
program crashes, more likely when several input factors are changed 
simultaneously[24]. Then, by drawing a convergence plot, the 
sensitivity analysis results are checked to determine whether the results 
converge to constant values. The convergence plot is drawn based on 
the best fitness value of each iteration, and this iteration continues until 
the algorithm reaches the best fitness value. In other words, the 
repetition is done until the fitness value is no longer improved. The 
maximum UPL value is then determined based on the maximum 
convergence value. Also, based on the maximum UPL value, the best 
crossovers and mutations are determined. This paper changed 
crossovers and mutations between [0.03,0.7] and [0.05,0.15]. Also, in this 
paper, the chromosome numbers of the initial population were 
considered 40, and the termination criterion was considered 300. 

3. Results and discussion 

As described in the previous section, the LP, the FC, and the GA were 
applied to the Marvin block model to obtain the UPL. The numerical 
study was implemented on the Intel (R) Core i7computer (3.4 GHz 
CPU) with 16 gigabytes of RAM running under Windows 7. 

In GA, by performing sensitivity analysis on a number of its 
parameters, the UPL presented by the GA was checked, and the best 
value was selected. In this article, each time, one of the two parameters 
of crossover probability and mutation probability was changed 
randomly by keeping the number of population and termination 
constant. Table 1 shows the numerical results of the sensitivity analysis. 

Table 1: Sensitivity Analysis based on Crossover and Mutation probability 
changed. 

UPL block 
Num. 

Waste 
block Num. 

Ore block 
Num. 

UPL value 
($) Mutation Crossover  

16772 12034 4738 18127 0.01 0.1 Run 1 
16773 12091 4682 18583 0.01 0.15 Run 2 
17046 12307 4739 19271 0.01 0.2 Run 3 
16389 11659 4730 16697 0.01 0.3 Run 4 
17245 12471 4774 19748 0.01 0.4 Run 5 
16422 11736 4686 17219 0.01 0.5 Run 6 
16478 11776 4702 17309 0.01 0.6 Run 7 
17573 12789 4784 20940 0.01 0.7 Run 8 
16458 11859 4599 18053 0.05 0.03 Run 9 
16403 11714 4689 17149 0.1 0.03 Run 10 
17359 12573 4786 20145 0.15 0.03 Run 11 

By changing the crossover probability to 0.7, the maximum UPL value 
was equal to 20940. Changing the mutation probability to 0.15 allowed 
the maximum UPL value to 20145. After drawing the convergence plot 
for the sensitivity analysis results shown in Figure 4, an examination of 
the graph shows that the crossover and the mutation associated with 
Run5 provided the maximum value for the UPL. 

 

 
Figure 4: The convergence plot of sensitivity analysis. 

 

As a result, when the crossover and the mutation probability are 0.7 
and 0.01, the UPL value is the highest. Table 3 shows the UPL 
specifications obtained from UPL design methods based on the UPL 
value, the number of waste, and ore blocks within the UPL.  

Table 2: UPL from LP, GA, and FC. 

Run 
time(s) 

UPL 
blocks 

numbers 

Waste 
blocks 

numbers 

Ore 
blocks 

numbers 

UPL 
values($) Description 

95.4 5130 818 4312 22786 LP 
4.1 17573 12789 4784 20940 GA 
2.3 4690 1901 2789 12747 FC 

 

According to Table 2, the UPL value obtained from the FC algorithm 
has the lowest value. Comparing the LP model and GA, although the 
value of the UPL in the LP model is higher than in the GA, run time in 
GA is less than in LP, which means that GA is faster than LP, which is 
more critical in large-scale production planning problems. 

4. Conclusion 

This paper aims to evaluate the efficiency of the GA technique based 
on the pit values and computational times compared with other 
methods of designing the UPL. In other words, in addition to GA 
evaluation in UPL design, other proposed methods for UPL design are 
also compared. The GA offers a suitable solution based on the correct 
definition of GA parameters (such as population size, crossover 
probability, mutation probability, and fitness function). The UPL 
obtained from the GA was compared with the UPL obtained from the 
LP to evaluate the GA. All three methods were applied to the block 
model of the Marvin mine. Comparing the GA and other methods 
revealed that the LP model received the highest UPL value. The UPL 
value obtained from each mentioned method and the FC algorithm got 
the lowest values. However, compared to LP, the GA provided the 
results in a shorter time, which is more critical in large-scale production 
planning problems. By performing the sensitivity analysis in the GA on 
the two parameters, crossover and mutation probability, when the 
crossover and the mutation probability were 0.7 and 0.01, the GA's UPL 
value is modified, and its UPL value is only 8% less than LP's UPL value. 

Nevertheless, the UPL value of FC is 44% less than that of LP. Unlike 
the FC algorithm, GA is not dependent on search direction. By 
performing sensitivity analysis, the best values for the parameters 
related to the GA were determined to provide the best response by this 
algorithm. 
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