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A B S T R A C T 

 

The fragment size of blasted rocks considerably affects the mining costs and production efficiency. The larger amount of blasthole diameter 
(ϕh) indicates the larger blasting pattern parameters, such as spacing (S), burden (B), stemming (St), charge length (Le), bench height (K), 
and the larger the fragment size.  In this study, the influence of blasthole diameter, blastability index (BI), and powder factor (q) on the 
fragment size were investigated. First, the relation between each of X20, X50, and X80 with BI, ϕh, and q as the main critical parameters were 
analyzed by Table curve v.5.0 software to find better input variables with linear and nonlinear forms. Then, the results were analyzed by 
multivariable linear regression (MLR) procedure using SPSS v.25 software and gene expression programming (GEP) algorithm for prepared 
datasets of four open-pit mines in Iran. Relations between each of X20, X50, and X80 with the combination of adjusted BI, ϕh, and q were 
obtained by MLR procedure with good correlations of determination (R2) and less root mean square error (RMSE) values of (0.811, 1.4 cm), 
(0.874, 2.5 cm) and (0.832, 5.4 cm) respectively. Moreover, new models were developed to predict X20, X50, and X80 by the GEP algorithm with 
better correlations of R2 and RMSE values (0.860, 1.3 cm), (0.913, 2.49 cm), and (0.885, 5.6 cm) respectively and good agreement with actual 
field results. The developed GEP models can be used as new relations to estimate the fragment sizes of blasted rocks. 
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1. Introduction 

Despite the development of advanced rock cutting and excavation 
machines, nowadays drilling and blasting as an important flexible 
method is applied for excavating hard rock and different rock mass 
conditions in mining and civil engineering projects. Blasting operations 
are used for rock fragmentation and displacement in which only around 
15 to 20 percent of the transmitted explosive energy is utilized and 
improper utilization of energy not only leads to improper larger 
fragments but also results in side effects such as more ground vibrations, 
flyrock, etc. [1-7]. The degree of rock fragmentation and fragment size 
distribution can also be different for special applications [8]. Rock 
fragment size needs to be suitable for loading and without a high 
percentage of large boulders. On the other hand, fine fragments lead to 
high consuming energy and dust pollution. The cost of loading, haulage, 
and rock crushing decreases with an increase in rock fragmentation, 
whereas drilling and blasting costs increase [9]. For these reasons, the 
fragment size is a more significant result of blasting operations. 

The fragment size of blasted rocks mainly depends on some in-situ 
rock mass properties and blasthole parameters.  Due to the complexity 
of effective parameters on the rock fragmentation results, accurate 
prediction of fragment size distribution has long been an important 
problem in blasting operations. Different methods have been presented 
to evaluate the fragment size in blasting operations including empirical 
methods [10-12], artificial intelligence algorithms [13-16], rock 
engineering systems [17,18], and multivariate analytical methods [19].  

 
 
 
Rock mass properties, blasting pattern parameters, and powder factor 
significantly vary from one mine to another. The fragment size 
distribution results can also vary from one zone to another in different 
mines. For the development of comprehensive relations to assess rock 
fragmentation by blasting operation in open-pit mines, data with wide 
ranges of rock mass properties, powder factor, and blasting pattern 
parameters are necessary. For using the results of one mine with one 
blasthole diameter (ϕh), there is not a very wide variation in rock mass 
properties and the blasthole diameter as a critical parameter that 
represents the scale factor in drilling and blasting has a constant value. 
The larger amount of ϕh generally indicates the larger blasting pattern, 
such as spacing, burden, stemming length, blasthole depth, and the 
larger the fragments. On the other hand, a powerful method is needed 
to analyze different types of inhomogeneous data to achieve reliable 
models. Empirical models such as Kuznetsov’s model, Kuz-Ram model, 
and modified Kuz– Ram model have widely been used for the 
assessment of rock fragmentation in blasting operations. Due to the 
complexity of the affecting parameters on the fragmentation results of 
blasted rocks, as well as detailed knowledge of geo-mechanical 
conditions, the performance of these models is not more acceptable in 
different surface mining blasting (e.g. 32.6 to 39.9% error has been 
reported) [20]. 

Because of the high ability of artificial intelligence algorithms and 
multivariate analytical procedures in analyzing complex problems, these 
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techniques have been used to improve the problems in several fields of 
mining engineering especially rock fragmentation [21-35]. 
Monjezi et al. [36] used Fuzzy logic (FL) for predicting the size of 
fragmented rocks in the Golgohar iron ore open-pit mine. They used 
parameters of spacing (S), burden (B), specific drilling (SD), blasthole 
depth (L), stemming length (St), the charge per delay (Ch), rock density 
(RD), and powder factor (q) as input parameters. The results showed 
that fuzzy logic has a high ability to predict rock fragmentation. 
Ebrahimi et al. [37] applied artificial neural networks (ANNs) and ant 
bee colony (ABC) algorithm for the prediction and optimization of rock 
fragmentation and backbreak in Anguran lead and zinc open-pit mine, 
and B, S, St, L, and q were used as input parameters. In another study, 
for predicting rock fragmentation and flyrock in the Tajareh limestone 
mine, the ANN technique and firefly algorithm (FAA) were 
implemented considering B, S, L, SD, Ch, q, and geological strength 
index (GSI) as input parameters by Faraji asl et al. [38]. Hassanipanah 
et al. [28] investigated the feasibility of the PSO*-ANFIS† model for the 
prediction of rock fragmentation (X80) using B, S, St, q, and Ch as input 
parameters and compared the results with SVM‡ and NMR§ methods. 
Their results presented the high capability of the PSO-ANFIS model in 
predicting rock fragmentation. The relation between blast parameters 
(B, S, St, L, q, and Ch) and rock size distribution (RSD) was performed 
using a combination of different AI techniques such as ant colony 
optimization - boosted regression tree (ACO - BRT), FFA– ANN and 
PSO – ANFIS by Zhang et al. [15] in a limestone mine in Vietnam. 
According to their results, the ACO-BRT model revealed more accuracy 
than other methods. Cat swarm optimization (CSO) as another sub-
branch of AI and the PSO methods were applied to predict the rock 
fragment size (X80) as a function of the blast parameters (B, S, St, q, Ch) 
and RMR by Huang et al. [39]. A comparison of the results showed that 
the CSO has higher accuracy than the PSO model in predicting rock 
fragmentation. Fang et al. [29] predicted blast-induced rock 
fragmentation in a limestone quarry in Vietnam by SVM, FFA-ANN, 
FFA-BGAM, Gaussian process regression, and k-nearest neighbors 
(KNN) methods.  In this study, the inputs were the same as the inputs 
of the most reported studies in the field of predicting rock 
fragmentation including controllable blast parameters (bench height, q, 
Ch, St, B, and S). The results presented that the FFA-BGAM method has 
the highest correlation of determination (R2) and lowest root mean 
square error (RMSE) and mean absolute error (MAE). 

Most previous studies on the evaluation and prediction of rock 
fragment sizes such as X50 or X80 have been carried out based on the 
blast data in one mine.  Hence, the presented models are reliable for the 
conditions in which the studies have been performed and cannot be 
generalized to further open-pit mines. Moreover, the user input 
parameters in most of the studies are more or less similar and include 
the controllable blast pattern parameters and less attention has been 
paid to using the blastability index (BI) as representative of the effects 
of important parameters on rock fragmentation including uniaxial 
compressive strength (UCS), rock mass description, joint plane 
orientation, joint plane spacing a Specific gravity influence parameters. 
On the other hand, most of the used controllable blast parameters such 
as bench height, spacing, burden, stemming, blasthole depth, and sub–
drilling considered as input parameters in these mentioned studies, have 
a directly and closely related to the blasthole diameter that have parallel 
effects the same as blasthole diameter on rock fragments size. Hence, for 
the first time, these parallel parameters have not been considered in this 
study, and effective parameters including blasthole diameter, powder 
factor, and BI were applied as input parameters for evaluation and 
prediction of blast-induced rock fragmentation (X20, X50, and X80).  X20, 
X50, and X80 are the important fragment sizes of blasted rocks as X80 - X50 
= X50 – X20 =30 and uniformity index (n) of fragment size distribution 

 

 

 
* Particle swarm optimization 
† Adaptive neuro fuzzy inference system 

curve in Rosin-Rammler [43] equation is determined by X50 and X80,     
[n = 0.842 / (ln X80 – ln X50)] or X20 and X50, [n=1.133 / (ln X50 – ln X20].  
For this purpose, 53 datasets from different zones of four open-pit mines 
were prepared to achieve comprehensive and new relations for the 
evaluation of rock fragmentation by MLR procedure and GEP 
algorithm. 

2. Methodology 

2.1. Multivariable linear regression procedure 

Multivariable linear regression (MLR), a common procedure in 
multivariate analysis, is based on a linear relationship between input or 
independent variables and the output or dependent variable. If a linear 
relationship is recognized between a dependent variable and an 
independent variable, the regression technique is called simple linear 
regression. However, if several descriptive or independent variables are 
used for analysis, the regression analysis is called multivariable linear 
regression [40, 44].  In this study, the dependent variable is each 
fragment size (X20, X50, and X80), and the independent variables are ϕh, 
q, and BI.  The larger amount of blasthole diameter (ϕh) indicates the 
larger blasting pattern parameters, such as spacing (S), burden (B), 
stemming (St), charge length (Le), bench height (K), and the larger the 
fragment size.  Therefore, blasthole diameter represents the role of S, B, 
St, Le, and K on the fragment sizes of blasted rocks.  BI also represents 
the influence of five rock mass parameters on rock fragment sizes 
including rock mass description (RMD), joint plane spacing (JPS), joint 
plane orientation (JPO), specific gravity influence (SGI), and uniaxial 
compressive strength (UCS).  The powder factor (q) is an important 
parameter affecting the rock fragment size. 

In multivariable linear regression, estimation of the parameters of a 
linear model is complete by an objective function and variables values. 
In linear regression, the model is a linear relation in terms of model 
parameters. Thus, if we have n observations of the independent variable 
p next to X and want to establish a linear relationship with the response 
variable Y, we can use the following linear regression model. 

 

𝑌𝑖 = 𝛽01 + 𝛽1𝑋𝑖1 + ⋯ + 𝛽𝑝𝑋𝑖𝑝 + ε 𝑖           𝑖 = 1,2, . . . , 𝑛                                       (1) 
 

Since the independent variable X has a p dimension, its values in each 
dimension are replaced with an independent variable. It is clear that the 
index also indicates the observation number and ε is considered the 
error of the regression model [45]. 

2.2. Gene Expression Programming 

Gene expression programming (GEP) developed by Ferreira in 1999 
as a genetic programming technique (GP), is able to generate nonlinear 
prediction models [46]. This method has been used for solving a 
multitude of complex engineering problems [47-53]. GEP is based on 
linear chromosomes with fixed lengths and the structure is composed of 
trees of different shapes and sizes [54]. 

The main procedure of the GEP algorithm is shown in Figure 1. As 
can be seen, after preparing appropriate datasets, 75% of these data are 
randomly selected for training process. Then, the initial population 
process is produced composed of random chromosomes including 
gen/gens of equal size (known as initial individuals). These 
chromosomes are coded as tree expressions (ETS) and the fitness of 
individuals is assessed. Individuals are then selected according to their 
merits based on the considered evaluation function to be rebuilt with 
modifications and improvements, leaving children with new 
characteristics. The termination criterion of this cycle is based on the 
determined generation’s number for achieving the best solution [55-57].

‡ Support vector machines 
§ Nonlinear multiple regression 
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It should be noted that reproduction involves the activity of genetic 
operators with the capability of producing genetic diversity. 
Reproduction involves duplication and genetic modification. 
Duplication is an operation that keeps several suitable individuals of the 
present generation for the next generation. Also through the activity of 
other operators, genetic changes within the population are performed. 
The chromosomes are randomly selected for modification by operators; 
thus, in GEP, one chromosome at a time may be modified or not 
modified at all by one or more genetic operators [58, 59]. It is notable 
to say that, the information of chromosomes is encoded by the Karva 
language which is expressed as trees and linear chromosome 
components include terminals (A, B, C, ...) and functions (+, -, ...).  

In the GEP algorithm, constant values are also the main component 
in the production of chromosomes and are part of the final set. The 
length of chromosomes and genes in the GEP algorithm is constant and 
only changes can be observed during the open reading frame (ORF). 
This causes incompatibility at the GEP endpoint with the gene 
endpoint, due to the presence of non-coding regions at the end of the 
gene. These non-coding regions in GEP allow operators to work without 
restrictions, which creates genetic diversity and is one way of achieving 
evolution [5]. 

Genes are made up of two parts, the head (h) and the tail (t), each of 
which has different functions. The head section is used to encode the 
functions, and the tail section is the location for the terminals to ensure 
the formation of a valid structure (Eq 2). Also, the number of variables 
that the function needs to work is called the number of arguments to 
the function. For example, the log (x) function has one argument, and 
the if (x, y) function has two arguments [5,45]. To draw the expression 
tree, there are rules, which are followed by a hypothetical example 
(Figure 2) to understand these rules: 

 

𝑡 = ℎ(𝑛 − 1) + 1                                                                                                    (2) 
 

1. Read the root of the expression tree at the top of the tree. 
2. The number of output nodes is determined depending on the root. 
3. After the root, the existing functions are given and their output 
nodes are determined. 
4. The number of nodes in the next row is equal to the sum of the 
current row arguments. 
 

 

Figure 1. Schematic flowchart of GEP [5,41]. 

5. Nodes from left to right are filled in the same way as the members 
of the gene in each row. 
6. This process continues until there is finally only one terminal [5,45]. 

3. Data sets 

Rock mass properties, powder factor, and blast pattern parameters are 
usually varied from one mine to another. Parameters of blast pattern 
such as spacing (S), burden (B), stemming (St), charge length (Le), and 
bench height (K) have a good correlation with ϕh as they increase with 
increasing ϕh for results of 53 datasets in studied zones of four open-pit 
mines in Iran including Sungun copper mine, Golgohar iron mine, 
Soufian, and Rashakan limestone mines (Figure 3). Therefore, blasthole 
diameter can represent the impacts of the other blasthole parameters on 
rock fragmentation. 

Lilly [60,61] developed the blastability index (BI) as a combination of 
uniaxial compressive strength (UCS), rock mass description (RMD), 
specific gravity influence (SGI), joint plane spacing (JPS), and joint 
plane orientation (JPO) affecting rock fragmentation by blasting as 
follows: 

 

𝐵𝐼 =  0.5 (0.05𝑈𝐶𝑆 + 𝑅𝑀𝐷 +  𝑆𝐺𝐼 +  𝐽𝑃𝑆 + 𝐽𝑃𝑂  )                                           (3) 
 

JPS has an important effect on the fragment size, nevertheless, it’s 
rating for a wide range of JPS between 0.1 and 1 m in the evaluation of 
the BI has a constant value equal to 20, while the most joints spacing is 
formed in this range, so for highlighting the role of this parameter it is 
proposed to be adjusted as 20, 30, and 40 for the ranges of 0.1 – 0.2, 0.2–
0.5, and 0.5–1.0 m respectively [21]. Therefore, the adjusted values of 
blastability index were applied (Table 1) and these adjusted BI, blasthole  

diameter (ϕh), and powder factor (q) were considered as the critical 
effective parameters on the fragment size of blasted rocks in this study. 
To have a comprehensive dataset for analysis of the blast-induced rock 
fragmentation, studies were performed in the four mentioned mines as 
case studies. 
Other parts of the datasets are the size of fragmented rocks caused by 
blasting X20, X50, and X80. These values were measured by the digital 
image analysis method for the studied zones. In order to determine the 
distribution of fragmented rock sizes, digital image processing is done 
by Split Desktop software (version 3.1).[62]. After choosing an image of 
fragmented rocks in order to define the boundaries of the fragments in 
the selected image, the methods of automatic or manual can be applied. 
According to previous studies difference between the Split Desktop 
results by manual delineation and sieve analysis is less than 3.59% [63, 
64]. The process of digital image analysis for a sample of the prepared 
images in the Rashakan limestone 8-3 zone has been presented in Figure 
4. The fragment sizes X20, X50 and X80 are obtained for each blasting 
pattern in the studied mines. The input and output parameters, their 
respective symbols as well as minimum, maximum, and standard 
deviation values are given in Table 2. The frequency histograms of 
considered inputs are illustrated in Figure 5. 

4. Prediction X20, X50, and X80 by statistical models using 
MLR procedure 

Statistical analysis using the MLR procedure is linear. A better 
correlation between output and input data may be nonlinear 
multivariable or mixed linear and nonlinear multivariable. First, the 
interrelation between inputs and outputs were analyzed by Table curve 
v.5.0 software which has the ability to find better input variables with 
linear and nonlinear forms and gives the opportunity for better 
prediction by statistical analysis using MLR procedure. After finding 
relations between each output data X20, X50, and X80 with input data, 
each relation was used as an independent variable in MLR analysis. 
Indeed multivariable nonlinear regression is performed by MLR 
procedure. SPSS v.25 software based on MLR analysis using the 
backward method was applied to find the best mathematical relations 
between each of X20, X50, and X80 and a combination of BI, ϕh, and q 
variables. In this method, all independent variables are put in the 
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Figure 2. (a) Information of chromosomes by Karva language, (b) expression tree, (c) attained relation. 
 

 
model at the savariable. Based on previous studies, the performance of 
each model is evaluated based on RMSE, MAE, R2, and Variance 
Accounted for (VAF) [65, 66]. 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑋𝑖− 𝑃𝑟 𝑒𝑑𝑖𝑐𝑡𝑒𝑑− 𝑋𝑖 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑)2 𝑁

 𝑖= 1

𝑁
                                                                      (4) 

 

𝑀𝐴𝐸 =
∑ | 𝑋𝑖− 𝑃𝑟 𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑋𝑖 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑| 𝑁

 𝑖=1

𝑁
                                                       (5) 

 

The parameters of R2 and VAF are also calculated as follows: 
 

𝑅2 = 1 −
∑ (𝑋𝑖 − 𝑃𝑟 𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝑋𝑖 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑)2 𝑁

 𝑖=1

∑ (𝑋𝑀𝑒𝑎𝑛 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝑋𝑖 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑)2 𝑁
 𝑖=1

                                                       (6) 

 

 

𝑉𝐴𝐹 = (1 −
𝑉𝐴𝑅( 𝑋𝑃𝑟 𝑒𝑑𝑖𝑐𝑡𝑒𝑑− 𝑋𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑)

𝑉𝐴𝑅 (𝑋 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑)
)                                     (7) 

 

The VAF is considered to verify the correctness of an equation or 
model so that the value of 1 or 100% displays the best performance. 
Table 3 displays the best-achieved performance indicators of MLR for 
predicting rock fragmentation and associated relations between X20, X50, 
and X80, and a combination of BI, ϕh, and q were obtained (Eqs. 8, 9, and 
10). 
 

𝑋20 = 31.968 − (1.515𝐿𝑛(𝜑ℎ
2) −

606.28

𝜑ℎ
+ 0.105𝜑ℎ − 4.4667𝑞2𝐿𝑛(𝑞) +

1.363

𝑞
+

0.005𝐵𝐼1.5 −
301.383

𝐵𝐼
                                                            (8) 

 

𝑋50 = −186.03674 + 31.733𝐿𝑛(𝜑ℎ) + 711.64
𝐿𝑛(𝜑ℎ)

𝜑ℎ
+ 4.4657(𝐿𝑛(𝑞))2 −

9.164𝑞2𝐿𝑛(𝑞) + 0.317𝐵𝐼                                                                            (9) 
 

𝑋80 = −81.1977 + 30.355(𝐿𝑛(𝜑ℎ))2 − 29.764(𝐿𝑛(𝑞))2 +
0.4998

𝐿𝑛(𝑞)
− 0.0052𝐵𝐼2 −

3238.392𝐵𝐼1.5 + 0.8467𝐵𝐼                                                                                    (10) 
 

5. Prediction X20, X50, and X80 using GEP algorithm 

To predict rock fragmentation by GEP algorithm, GeneXproTools 5.0 
a powerful software package with an evolutionary computation was 
applied.  Modeling with GEP includes five steps as follows: 

First step: choosing a fitness function, four statistical indicators 
(RMSE, MSE, MAE, and RRSE) were applied as fitness functions (Eqs. 
4, 5, 11, and 12).  The evaluations indicated that the RMSE function 
provides the best results for predicting the X20, X50, and X80 values. 

 

MSE =
1

𝑁
∑𝑁

𝑖=1 (𝑋𝑖 −𝑃𝑟 𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑋𝑖−𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑)2                            (11) 
 
 

( )

( )

2N

i 1

2N

i 1

Xi Xi
RRSE  

Xi

pr mes

mes mesXi

=

=

−
=

−



               

Second step: assigning a set of terminals (blasthole diameter, powder 
factor, and blastability index from the terminals) and functions for 
generating the chromosomes according to the inputs and outputs 
parameters. The mathematical operators used as function in this study 
include + , - , * , / , x , x^2 , x^3 , x^(1/3) , 1/x , exp(x) , log(x) and sqrt. 

Third step: determine the structure of chromosomes (including the 
number of chromosomes, genes, and the head size).  

Fourth step: choosing the linking function. The multiplication 
function (+) was applied. 

Fifth step: generating a set of genetic operators and rates. Based on 
the suggestions of the previous studies [5,41] and also trial and error the 
rate values were obtained.  

Table 4 displays the parameters applied in the GEP model. Finally, 
the results of performance indicators according to considered fitness 
functions have been demonstrated in Table 5. 
 

 

Figure 3. Relation between burden (B), spacing (S), stemming length (St), charge 
length (Le), and bench height (K) with ϕh in blasting pattern of considered case 
studies. 
 

Table 1. The rating of joint plane spacing in the calculation of the adjusted 
blastability index 

Parameter Description Range (m) Rate 

Joint plane spacing (JPS) 

Very close <0.1 10 

Close 0.1 – 0.2 20 

Intermediate 0.2 – 0.5 30 

Wide 0.5 – 1 40 

Very wide >1 50 (12) 
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Figure 4. Digital image analysis process: a) Selection of an appropriate image of 
fermented rocks b) Fragments delineation with Split Desktop software c) 
determine the size distribution. 
 

Table 2. Input and output parameters for performing GEP algorithm and MLR 
procedure.  

Type Parameter Symbol Unit Min Max Std. Deviation 

In
pu

t 

Blasthole diameter 𝜙ℎ mm 102.00 254.0 54.114 

Powder factor q kg/m3 0.38 1.723 0.339 

Blastability index BI - 32.58 84.250 12.496 

O
ut

pu
t X20 X20 cm 4.00 14.300 2.508 

X50 X50 
cm 10.40 32.100 5.242 

X80 X80 cm 16.80 64.200 12.080 

    

 

 
Figure 5. Frequency histograms of input parameters: a) Blasthole diameter, b) 
Powder factor, c) Blasability index (BI). 

 

The best predicting models based on R2, RMSE, MAE, and VAF are presented in 
Table 5. The model with high values for R2 and VAF, and low values for RMSE 
and MAE confirms the high performance. Therefore, the best models for 
predicting X20, X50, and X80 are models with fitness functions of RMSE, MSE, and 
RMSE respectively according to obtained results. The training process was 
performed with 40 randomly selected data and 13 remaining data were used for 
testing the models. The values of statistical indicators for the prediction of X20, X50, 
and X80 with obtained GEP models are shown in Figure 6. 

 

Table 3. The values of performance indicators for predicting X20, X50, and X80 by MLR. 

 
Train indicators   Test indicators 

Size R2 RMSE MAE VAF   R2 RMSE MAE VAF 

X20 0.821 0.987 0.793 0.820  0.811 1.378 1.033 0.829 

X50 0.791 2.138 1.638 0.791  0.874 2.505 2.105 0.882 

X80 0.905 3.668 2.905 0.905   0.832 5.400 3.893 0.802 
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Table 4. Parameters of GEP model for prediction of X20, X50, and X80. 

GEP Parameter 

Value 

Number of models 

X20 X50 X80 

Fitness function RMSE RMSE RMSE 

Number of Genes 19 19 18 

Head size 9 9 8  

Mutation rate 0.001 0.001 0.001 

Number of Chromosome 35 35  35 

Number of genes 4  4  3 

Gene recombination rate 0.003 0.003 0.003 

Gene transportation rate 0.003 0.003 0.003 

Number of generation 6000 6000 6000 

 

 

 

 

Figure 6. Amount of statistical indicators for predicting a) X20, b) X50, and c) X80 
with GEP models. 

Figure 7 shows the expression trees (ETs) of the obtained GEP 
models for prediction X20, X50, and X80 which are expressed based on 
input parameters and constant coefficients. Finally the Eqs. 12-14 are 
extracted from these expression trees and are proposed as the 
superlative predictors of the GEP model for the evaluation of rock 
fragmentation in this study. 

 

𝑋20 = (√(𝐵𝐼)2 − (𝐸𝑥𝑝(𝑞))
23

) + (√(𝐸𝑥𝑝(𝜙ℎ)) − (𝐵𝐼2 + √𝑞3 )
3

) +

(𝐵𝐼) +   (
𝑞

(𝐸𝑥𝑝((𝑞×𝐵𝐼)+0.77))−𝜙ℎ

)                                                                      (12) 

 

𝑋50 = (𝐵𝐼) + (𝐸𝑥𝑝(−1.57)) + (((𝜙ℎ + (𝐵𝐼 − 0.45)) − 𝐵𝐼3) × 𝜙ℎ) +

(√−3.29
3

×  (𝑞 −
1

(𝜙ℎ×(−8.06))−5.35
))                                                           (13) 

 

𝑋80 = ((𝜙ℎ
2 − ((𝜙ℎ × 𝑞) × 𝜙ℎ

3))
2

) + ((2𝑞 − 𝜙ℎ
3) × ((𝜙ℎ − 0.73) −

𝐵𝐼2)) + (𝐵𝐼)                                                                                               (14) 

 
The statistical indicators (R2, RMSE, VAF, and MAE) of the train and 

test results of optimized MLR and GEP models for prediction X20, X50, 
and X80 are shown in Figure 8.  

The predicted X20, X50, and X80 as a function of considered parameters 
( 𝜙ℎ , q and adjusted BI) using MLR and GEP models have been 
compared with the measured values of X20, X50, and X80 of 13 groups of 
test results in Figures. 9, 10, and 11 respectively.  

According to the attained results in Figures. 9, 10, and 11, better 
correlations and performance of the achieved GEP models than MLR 
procedure models are concluded. 

6. Sensitivity Analysis 

sensitivity analysis was performed to identify the relative impact of 
each parameter on output in the mode using the cosine domain method 
[67]. All data pairs were utilized to construct a data array X as follows 
[67]: 

 

                                                    (15) 
 

Each of the elements, xi, in the data array X is a vector of lengths of 
m, that is: 

 

                                                                   (16)                                      
 

The strength of the relation between the dataset, xi, and xj, is 
presented as follows: 

                                                                                                                 
 

Figure 12 shows the strengths of the relations (rij values) between the 
model inputs and outputs. The results showed that, For the X20 and 
X80, the values of 𝜙h and BI have the greatest effect on the result, 
respectively. While for the X50, BI has the greatest effect on the output. 
Sensitivity analysis also showed that in all three outputs, q had the least 
effect. 

7. Conclusions 

A comprehensive study on rock fragmentation by blasting was 
performed for different zones in four open-pit mines. Blast pattern 
parameters including burden, spacing, stemming, charge length and 
bench height showed good correlations with ϕh. Thus, unlike the 
previous studies, these parallel parameters were ignored and rock 
fragmentation was investigated as a function of more effective and 
critical parameters of powder factor, blasthole diameter, and adjusted 
blastability index in the present study.

-0.4

0.1

0.6

1.1

1.6

RMSE MSE MAE RRSE RMSE MSE MAE RRSE

Train Test

Pr
ed

ic
te

d 
va

lu
es

Models

(a)R2 RMSE MAE VAF

0.0

0.5

1.0

1.5

2.0

2.5

3.0

RMSE MSE MAE RRSE RMSE MSE MAE RRSE

Train Test

Pr
ed

ic
te

d 
va

lu
es

Models

(b)R2 RMSE MAE VAF

0

2

4

6

8

RMSE MSE MAE RRSE RMSE MSE MAE RRSE

Train Test

Pr
ed

ic
te

d 
va

lu
es

Models

(c)R2 RMSE MAE VAF

1 2 3 i nX {x ,x ,x ,..., x ,..., x }=

1 2 3 imX {x 1,x 2,x 3,..., x }=

m

ik jk

k 1
ij

m m
2 2

ik ik

k 1 k 1

x x

r

x x

=

= =

=


 
(17) 



 H. Moomivand et al., / Int. J. Min. & Geo-Eng. (IJMGE), 56-4 (2022) 401-411 407 

 

Table 5. Performance of the GEP models with considered fitness functions 

Methods 
    Train         Test   

R2 RMSE MAE VAF   R2 RMSE MAE VAF 
X

20
 

RMSE 0.837 0.942 0.776 0.837   0.862 1.295 0.962 0.848 

MSE 0.808 1.023 0.801 0.807   0.835 1.447 1.024 0.827 

MAE 0.819 1.012 0.768 0.814   0.808 1.553 1.167 0.807 

RRSE 0.819 1.012 0.768 0.814   0.808 1.553 1.167 0.807 

X
50

 

RMSE 0.825 1.964 1.491 0.824   0.881 2.490 2.283 0.869 

MSE 0.846 1.905 1.469 0.834   0.929 2.488 2.182 0.910 

MAE 0.831 1.962 1.444 0.829   0.886 2.329 1.896 0.886 

RRSE 0.833 1.927 1.369 0.830   0.874 2.946 2.320 0.864 

X
80

 

RMSE 0.888 4.231 3.348 0.886   0.904 5.644 4.346 0.889 

MSE 0.867 4.448 3.411 0.861   0.842 5.837 4.737 0.820 

MAE 0.871 4.406 3.177 0.868   0.850 7.687 6.368 0.785 

RRSE 0.853 5.341 3.949 0.799   0.885 5.370 4.213 0.840 

 
 
 

(a) 

 

 
(b) 

 
 

 
(c) 

 

Figure 7. Expression trees of the GEP models for prediction a) X20, b) X50, and c) 
X80. 

 

 
 

 

Figure 8. Comparison between performance indicators for MLR and GEP models. 

 

 

 

Figure 9. Comparison between predicted and measured X20 using MLR and GEP 
models. 
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Figure 10. Comparison between predicted and predicted X50 using MLR and GEP 
models 

 

 

Figure 11. Comparison between predicted and measured X80S using MLR and GEP 
models 

The input and output data had a wide variation for different zones 
and new comprehensive models were developed to predict each 
fragment size including X20, X50, and X80 as a function of adjusted BI, ϕh, 
and q by GEP algorithm and MLR procedure using 53 datasets in several 
zones of Sungun open-pit copper mine, Rashakan limestone mine, 
Soufian limestone mine and Golgohar open-pit iron mine in Iran. A 
comparison of the considered statistical parameters (R2, RMSE, MAE, 
and VAF) revealed the high ability of achieved GEP models to predict 
the size of fragmented rocks in blasting operations and provided the 
superiority of GEP over MLR models in this field. Finally, the sensitivity 
analysis showed that the values of input parameters 𝜙h and BI have more 
impact than the parameter of q on all three outputs. 
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