
 

 

* Corresponding author. Tel: +98 56 3102 6473, E-mail address:  behnamfard@birjand.ac.ir (A. Behnamfard). 
Journal Homepage: ijmge.ut.ac.ir 

 
 

IJMGE 56-4 (2022) 315-322 DOI:  10.22059/IJMGE.2022.337056.594948 

 Application of adaptive neuro-fuzzy inference system for prediction of 
dissolved oxygen concentration in the gold cyanide leaching process 

Ali Behnamfard a, *, Mohammad Rivaz a 

a Faculty of Engineering, University of Birjand, Birjand, South Khorasan, Iran. 

 
 

A B S T R A C T 

 

An adaptive neuro-fuzzy inference system (ANFIS) model has been developed for the prediction of the dissolved oxygen concentration 
(DOC) as a function of the solution temperature (0-40oC), salinity based on conductivity (0-59000 µS/cm), and atmospheric pressure (600-
795 mmHg). The data set was randomly divided into two parts, training and testing sets. 80% of the data points (80% = 11556 datasets) were 
utilized for training the model and the remainder data points (20% =2889 datasets) were utilized for its testing. Several indices of performance 
such as root mean squared error (RMSE), mean absolute percentage error (MAPE), and coefficient of correlation (R) were used for checking 
the accuracy of data modeling. ANFIS models for the prediction of DOC were constructed with various types of membership functions (MFs). 
The model with the generalized bell MF had the best performance among all of the given models. The results indicate that ANFIS is a powerful 
tool for the accurate prediction of DOC in gold cyanidation tanks. 
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1. Introduction 

Cyanidation is the dominant process for the extraction of gold from 
its ores due to the low cost and process simplicity compared to the other 
metallurgical methods [1]. This process includes the dissolution of gold 
from ores in dilute cyanide solutions in the presence of lime and oxygen 
[1-3]. One mole of gold requires half a mole of oxygen and two moles of 
cyanide for dissolution [1, 4]. The gold leaching rate greatly reduces 
when DOC drops below 4mg/L and increases considerably when the 
DOC is greater than 10mg/L [4]. DOC achievable in most gold cyanide 
leaching operations range from about 4mg/L to more than 15 mg/L 
based on atmospheric pressure, solution temperature, and salinity [1, 5]. 
Therefore, the prediction of DOC in the cyanidation tanks is essential 
in designing and controlling a cyanidation process. 

Fuzzy logic is a powerful, yet straightforward, problem-solving 
technique that defines and generates responses based on ambiguous, 
qualitative, incomplete, and imprecise information, and fuzzy systems 
have fascinated the growing attention and interest in decision making 
studies, pattern recognition, quality control, and data analysis [6, 7]. A 
specific approach in neuro-fuzzy development is the adaptive neuro-
fuzzy inference system (ANFIS), which has shown significant results in 
modeling non-linear functions. Many researchers reported the 
applicability of ANFIS in prediction purposes. Tutmez used ANFIS for 
the modeling of the electrical conductivity of groundwater [8]. 
Behnamfard and Alaei predicted the coal proximate analysis factors and 
coal calorific value by ANFIS [9]. Behnamfard and Veglio studied the 
applicability of ANFIS for the prediction of xanthate decomposition 
percentage as a function of pH, temperature, and time [10]. Jalalifar et 
al. applied ANFIS for the prediction of a rock engineering classification 
system [11].  

The dissolution rate of gold in alkaline cyanide solutions under 
atmospheric conditions, and at practical cyanide levels, is directly 

proportional to DOC. The oxygen improves gold dissolution kinetics, 
reducing residence time and increasing plant throughput. Furthermore, 
the cyanide addition reduces 25% by using oxygen rather than air in the 
process. The effects of DOC on gold dissolution and cyanide 
consumption also depend on the characteristics of the ore under 
consideration. In the case of refractory gold ores, some sulfide minerals, 
in particular pyrite, react with the cyanide causing additional reagent 
consumption. Therefore, the prediction of DOC in the cyanidation pulp 
can be effective in the design and control of the gold cyanidation 
process. In this research, ANFIS as a powerful tool in fuzzy modeling 
and prediction purposes has been used for the prediction of DOC which 
has not received any attention up to now. 

2. Methodology 

2.1. Adaptive neuro-fuzzy inference system (ANFIS) 

ANFIS is a kind of artificial neural network that is based on the Takagi 
Sugeno fuzzy inference system that was first introduced by Jang in 1993 
[12].  Since it gathered both fuzzy logic and neural network principles, 
it has the potential to get the benefits of both in a single framework. Its 
inference system corresponds to a set of fuzzy If–then rules that have 
the learning capability to approximate nonlinear systems [12-14]. 

To describe the ANFIS system, it is simply surmised that the 
inference system has two inputs x and y, and one output f. A first-order 
Sugeno fuzzy model has rules as the following: 

 

Rule 1. If x is A1 and y is B1, then f1 = p1x +q1y + r1. 
Rule 2. If x is A2 and y is B2, then f2 = p2x +q2y+ r2. 
 

where p1, p2, q1, q2, r1, and r2 are linear parameters in the consequent 
part, and A1, A2, B1, and B2 are nonlinear parameters. 

Figure 1 illustrates the corresponding equivalent ANFIS architecture 
for two input first-order Sugeno fuzzy models with two rules. The entire 
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system architecture consists of five layers, namely the fuzzy layer, 
product layer, normalized layer, de-fuzzy layer, and total output layer 
[15-22]. The node functions in the same layer are of the same function 
family as described in the following: 

Layer 1: This layer is called the fuzzy layer. The adjustable nodes in 
this layer are represented by square nodes and marked by A1, A2, B1, and 
B2 with x and y outputs. A1, A2, B1, and B2 are the linguistic labels (small, 
large, etc.) used in the fuzzy theory for dividing the MFs. The node 
functions in this layer that determines the membership relation between 
the input and output functions can be given by: 

 

𝑂1,𝑖 = 𝜇𝐴𝑖(𝑥), 𝑖 = 1, 2       ,        𝑂1,𝑗 = 𝜇𝐵𝑗(𝑦), 𝑗 = 1, 2                                          (1) Eq. (1) 

where O1,i and O1,j denote the output functions, and µAi and µBj denote 
the appropriate MFs, which could be triangular, trapezoidal, Gaussian 
functions, or other shapes.  

Layer 2: this is the product layer and every node is a fixed node 
marked by a circle node and labeled by Prod. The outputs w1 and w2 are 
the weight functions of the next layer. The output of this layer, O2,i, is 
the product of all the incomings signals and given by: 

 

𝑂2,𝑖 = 𝑤𝑖 = 𝜇 𝐴𝑖(𝑥) 𝜇𝐵𝑖 (𝑦), 𝑖 = 1, 2                                                               (2) 
 

The output signal of each node, wi, represents the firing strength of a 
rule.  

Layer 3: this is the normalized layer and every node in this layer is a 
fixed node, marked by a circle node and labeled by Norm. The nodes 
normalize the firing strength by estimating the ratio of firing strength 
for this node to the sum of all the firing strengths, i.e. 

 

𝑂3,𝑖 = 𝑤𝑖 =
𝑤𝑖

𝑤1+ 𝑤2
, 𝑖 = 1, 2                                                                                      (3) 

 

Layer 4: this is the de-fuzzy layer having adaptive nodes and marked by square 
nodes. Every node i in this layer is an adaptive node with a node function: 
 

 

𝑂4,𝑖 = 𝑤𝑖𝑓𝑖 = 𝑤𝑖  (𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖), 𝑖 = 1, 2                                                             (4) 

where 𝑤𝑖 is the normalized firing strength output from layer 3 and pi, 
qi and ri are the parameters set of this node. These parameters are linear 
and referred to as consequent parameters of this node. 

Layer 5: The single node in this layer is a fixed node marked by circle 
node and labeled sum, which computes the overall output as the 
summation of all incoming signals: 

 

𝑂5,𝑖 = ∑ 𝑤𝑖
 2 
 𝑖 =1 𝑓𝑖 =

∑ 𝑤𝑖𝑓𝑖
 2
 𝑖 = 1

𝑤1+ 𝑤2
                                                                                    (5) 

 

The number of fuzzy sets is determined by the number of nodes in the first 
layer. On the other hand, the number of layer 4 dimensions indicates the number 
of fuzzy rules employed in the architecture that shows the complexity and 
flexibility of the ANFIS architecture. Fuzzy rules can be considered as the 
equivalent of the neurons when compared to the neural networks. 

An ANFIS network can be trained based on supervised learning to reach from 
a specific input to the particular target output. In the forward pass of the hybrid 
algorithm of the ANFIS, the node outputs go forward until the fourth layer and 
consequent linear parameters, (pi, qi, ri), are found by the least-squares method 
using training data. The error signals propagate backward in the backward pass 
and the premise nonlinear parameters, (ai, bi, ci) are updated by gradient descent. 
It has been proven that this hybrid algorithm is highly efficient in training the 
ANFIS [15-22]. 

2.2. Development of ANFIS models 

As can be seen in Figure 2, the ANFIS model based on a grid 
partitioning algorithm with three inputs (i.e., solution temperature, 
salinity based on conductivity, and atmospheric pressure) and one 
output (i.e., DOC) was designed to predict DOC. Data used in this paper 
for ANFIS modeling were obtained from the report of the United States 
Geological Survey (USGS) about techniques of water-resources 
investigations [5]. This report presents DOC as a function of solution 
temperature, atmospheric pressure, and solution conductivity. The 
description of the input and output parameters in the ANFIS model is 
reported in Table 1. 

 

 
 

Figure 1. An ANFIS network structure for a simple FIS. 

 
 

 

Table 1. Description of the input and output parameters in ANFIS.  

Parameter Description Symbol Range Mean Variance 

Input 

atmospheric pressure pressure 600-795 mmHg 699.2503 66.3232 

Salinity based solution conductivity conductivity 0-59000µS/cm 26471.37 18690.32 

solution temperature temperature 0-40OC 17.79713 10.58042 

Output Dissolved oxygen concentration DOC 4.36698-15.3 8.240149 2.073009 

 
The data set was randomly divided into two parts, training and testing 

sets. 80% of the data points (80%=11556 datasets) were utilized for 
training the model and the remainder data points (20% =2889 datasets) 
were utilized for its testing. The domain of each antecedent variable is 
partitioned into equidistant and identically shaped MFs in the grid 
partitioning method. The total number of fuzzy rules (Stotal) increase 

exponentially with the input dimension, i.e., Stotal = Mn where n is the 
input dimension, and M is the number of partitioned fuzzy subsets for 
each input variable. It is clear that for this type of partition the number 
of fuzzy rules will increase exponentially with the number of input 
dimensions, so the number of rules will be huge when the number of 
input dimensions is large and a lot of computations are needed. 
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Figure 2. System ANFIS: 3 inputs (pressure, conductivity, and temperature), 1 
output (DOC). 

2.3. Definition of MFs 

In this research, the ANFIS models have been constructed by using 
four different MFs including triangular, trapezoidal, Gaussian, and 
generalized bell MFs. The MFs are defined as follows: 

A triangular MF is specified by three parameters {a, b, c} as follows 
[23]: 

 

 𝜇𝐴(𝑥) =

{
 
 
 

 
 
 

  

0, 𝑥 ≤ 𝑎.

𝑥−𝑎

𝑏−𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

.
𝑐−𝑥

𝑐−𝑏
, 𝑏 ≤ 𝑥 ≤ 𝑐

0, 𝑐 ≤ 𝑥.

                                                                                 (6) 

 

The parameters {a, b, c} (with a < b < c) determine the x coordinates of the three 
corners of the underlying triangular MF. Figure 3a shows a triangular MF defined 
by a triangle (x; 20, 60, 80). 

A trapezoidal MF is specified by four parameters {a, b, c, d} as follows [23]: 
 

𝜇𝐴(𝑥) =

{
 
 
 
 

 
 
 
 

  

0, 𝑥 ≤ 𝑎.

𝑥−𝑎

𝑏−𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

.
1, 𝑏 ≤ 𝑥 ≤ 𝑐

𝑑−𝑥

𝑑−𝑐
, 𝑐 ≤ 𝑥 ≤ 𝑑.

0, 𝑑 ≤ 𝑥.

                                                                                        (7) 

The parameters {a, b, c, d} (with a < b <= c < d) determine the x 
coordinates of the four corners of the underlying trapezoidal MF. Figure 
3b shows a trapezoidal MF defined by trapezoid (x; 10, 20, 60, 95). 

A Gaussian MF is specified by two parameters as follows [23]: 
 

𝜇𝐴(𝑥) = 𝑒𝑥𝑝( −
(𝑥−𝑐)2

2𝜎2
)                                                                                                (8) 

 

A Gaussian MF is determined completely by c and σ; c represents the 
MFs center and σ determines the MFs width. Figure 3c plots a Gaussian 
MF defined by Gaussian (x; 50, 20). 

A generalized bell MF is specified by three parameters {a, b, c} as 
follows [23]: 

 

𝜇𝐴(𝑥) =
1

1+(
𝑥−𝑐

𝑎
)
2𝑏                                                                                                 (9) 

 

where the parameter b is usually positive. Figure 3d shows a 
generalized bell MF defined by a bell (x; 20, 40, 50). 

 
2.4. Validation of the ANFIS models 

The applicability of ANFIS models to predict DOC was validated by 
the following criteria: 

Root mean squared error (RMSE) [24]: 
 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝐴𝑡 − 𝐹𝑡)

2𝑁
𝑡=1                                                                                 (10) 

 

where At and Ft are actual and predicted values, respectively, and N is 
the number of training or testing samples. 

Mean absolute percentage error (MAPE) [24]: 
 

 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝐴𝑡−𝐹𝑡

𝐴𝑡
|𝑁

𝑡=1 × 100                                                                               (11) 
 

Correlation coefficient (R) [24]: 
 

𝑅 =
∑ (𝐴𝑡−𝐴)(𝐹𝑡−𝐹)
𝑁
𝑡=1

√∑ (𝐴𝑡−𝐴)2.∑ (𝐹𝑡−𝐹)2
𝑛
𝑡=1

𝑛
𝑡=1

                                                                                    (12) 

 

 

Where 𝐴 = 1

𝑁
∑ 𝐴𝑡
𝑁
𝑡=1 and 𝐹 = 1

𝑁
∑ 𝐹𝑡
𝑁
𝑡=1  are the average values of At 

and Ft over the training or testing dataset. The smaller RMSE and MAPE 
and larger R mean better performance. 

 

 
 

Figure 3. Illustration of four types of parameterized MFs: (a) triangle (x; 20, 60, 80); (b) trapezoid (x; 10, 20, 60, 95); (c) Gaussian (x; 50, 20) and (d) bell (x; 20, 40, 50)[23]. 

ANFS 

(Sugeno) 
f(u) 
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3. Results and Discussion 

In this research, a hybrid grid partitioning ANFIS by four different 
MFs including triangular, trapezoidal, Gaussian, and generalized bell 
MFs was applied in order to predict DOC as a function of atmospheric 
pressure, solution temperature, and solution conductivity. Figure 4 
shows the model structure of the ANFIS that is to be built for DOC 
prediction in this study. Also, the characterizations of ANFIS models are 
shown in Table 2. 

Figure 5 shows the effect of solution temperature and atmospheric 
pressure on DOC. It can be seen that DOC decreases with increasing 
solution temperature. For example, DOCs at a solution temperature of 
0 and 40OC, the atmospheric pressure of 760 mmHg, and conductivity 
of 0µS/cm are 14.62 and 6.41 mg/L, respectively. Figure 5 also shows that 
DOC increases with increasing atmospheric pressure. For example, 
DOCs at atmospheric pressure of 600 and 795 mmHg, solution 
temperature of 25OC, and conductivity of 0µS/cm are 6.47 and 8.66 mg/L, 
respectively. 

 

 
Figure 4. Model structure of the ANFIS for DOC prediction. 

 

 
Figure 5. The effect of solution temperature and atmospheric pressure on DOC at 
solution conductivity of 0µS/cm. 
 

Figure 6 shows the effect of solution temperature and conductivity on 
DOC at atmospheric pressure of 760 mmHg. It can be seen that DOC 
decreases with increasing solution conductivity at various solution 
temperatures. This figure also indicates that the effect of solution 
conductivity on DOC is more significant at lower solution temperatures. 
The ANFIS models by using various MFs are compared based on their 
performance in training data sets and testing data sets. All three indices 
including RMSE, MAPE, and correlation coefficients (R), processed 
with a different types of MFs, are listed in Table 3 for comparison 
purposes. It appears that the ANFIS models by various MFs are accurate 
and consistent, where all of the RMSE and MAPE values have near-zero 
values, and all of the correlation coefficients (R) are very close to unity. 
Nonetheless, the best prediction of DOC was obtained when using 
Generalized bell MF. The shape of the membership function can be 
influenced the computational complexity and accuracy of the designed 
ANFIS-based model [25-27]. Nevertheless, the shape of the 
membership function has more influence on the computational 
complexity and at a high number of the epoch, there is no significant 
difference between various membership functions [25-27]. As can be 
seen in Table 2, there is a difference between the number of epochs for 
obtaining the best results by using various membership functions. On 
the other hand, the applicability of ANFIS for the data used in this 
research is good regardless of the type of membership function. In some 
cases, data variation is high and it affects the ANFIS performance. 

 

Table 2. Different parameter types and their values used for training ANFIS models. 

ANFIS parameter type Membership Function Type 

Gaussian Triangular trapezoidal Generalized bell 

Number of MFs 

Output MF 

Number of nods 

Number of linear parameters 

Number of nonlinear parameters 

Total number of parameters 

Number of training data pairs 

Number of testing data pairs 

Number of fuzzy rules 

Number of epoch 

3 3 3 

Linear 

78 

108 

18 

126 

11556 

2889 

27 

1500 

3 3 3 

Linear 

78 

108 

27 

135 

11556 

2889 

27 

200 

3 3 3 

Linear 

78 

108 

36 

144 

11556 

2889 

27 

1500 

3 3 3 

Linear 

78 

108 

27 

135 

11556 

2889 

27 

350 
 

 
Figure 7 shows the applicability of the ANFIS model by Generalized 

bell MF to predict DOC at various solution temperatures, atmospheric 
pressures, and solution conductivities. As can be seen, the ANFIS model 
maintains its excellent prediction accuracy throughout the range of 
DOC, hence showing consistency and a high degree of generalization 
capability. 

Figure 8 shows the initial (before training) and final (after training) 

MFs of the three input parameters using the Gaussian MF. This analysis 
was performed since the number of changes in the final MFs of inputs 
indicates the impact of inputs on the detection of output. Based on the 
analysis of MFs, it can be seen that temperature has the most important 
effect on the final MF. It may be due to the effect of temperature, 
pressure, and conductivity on DOC. The temperature has a more 
significant effect on the DOC rather than pressure and conductivity.
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Table 3. Performances of ANFIS models by different MFs in the prediction of DOC. 
Membership 

function 

Training dataset Testing dataset 

RMSE MAPE (%) R RMSE MAPE (%) R 

Gaussian 1.58991E-05 0.039396 0.999998 1.56204E-05 0.039495 0.999998 
Triangular 9.28579E-05 0.080979 0.999989 9.50142E-05 0.079677 0.999989 
Trapezoidal 3.04254E-05 0.0532 0.999996 3.28121E-05 0.054862 0.999996 
Generalized bell 1.6578E-05 0.040237 0.999998 1.49734E-05 0.038882 0.999998 

 

 
Figure 6. The effect of solution temperature and conductivity on DOC at 
atmospheric pressure of 760 mmHg. 

 
 

Figure 7. Predicted DOCs with ANFIS at various solution temperatures (0-40OC), 
atmospheric pressures (600-795 mmHg) and solution conductivities (0-
59000µS/cm) vs. real DOCs. 

 

 
Initial gaussmf for input pressure                      Final gaussmf for input pressure 

 
Initial gaussmf for input conductivity                      Final gaussmf for input conductivity 

 
Initial gaussmf for input temperature                     Final gaussmf for input temperature 

Figure 8. The Gaussian MFs before and after training.
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Figure 9 shows the initial and final MFs of the three input parameters 
using the generalized bell MF. The examination of initial and final MFs 
indicates that there is a considerable change in the final MFs of one 
input parameter namely temperature. Analysis of these figures indicates 
that the temperature as an input parameter has a considerable effect on 
the final MF. It may be due to the effect of temperature, pressure, and 
conductivity on DOC. The temperature has a more significant effect on 
the DOC rather than pressure and conductivity 

Figure 10 shows the final rules of the fuzzy inference system by using 
generalized bell MFs. The fourth column of this figure shows the 
location (firing magnitude) of the rules at the end of the training. For 
each of the inputs, three bell-shaped MFs were selected. These three 
MFs were designed to cluster the input space of each variable into three 

overlapping segments—low, medium, and high. The trained if-then rules 
can be used for prediction. In other words, if we change the values of the 
three inputs, then we immediately get the new output value of the 
ANFIS. 

Once the system is trained, one can examine the input/output 
relationships, in an illustrative manner. Figure 11 illustrates the response 
of the system when two variables are changed, and the third variable is 
fixed at its mean value. Figure 11a indicates that the temperature has a 
more important effect on DOC than pressure. Figure 11b shows that the 
DOC increases in a constant manner by increasing pressure and 
decreasing conductivity. Figure 11c shows that temperature has a higher 
predictive power on DOC, as compared to the conductivity.

 

 
Initial gbellmf for input pressure             Final gbellmf for input pressure 

 
Initial gbellmf for input conductivity            Final gbellmf for input conductivity 

 
Figure 9. The Generalized bell MFs before and after training. 

 

 

4. Conclusion 

We presented a new application of the ANFIS for the prediction of 
DOC as a function of solution temperature, salinity based on 
conductivity, and pressure. The ANFIS models are very powerful to 
build a complex and nonlinear relationship between inputs and outputs 
by learning among a set of given data. Since the ANFIS models have 
high accuracy and require no complicated mathematical functions, they 
can be very useful for the development of fast models. 

Four different ANFIS models were developed, each one of them 
based on a different type of membership function: a Gaussian, a  

generalized bell, a trapezoidal, and a triangular membership function. 
The investigation revealed that ANFIS modeling accuracy is not 
considerably affected by the type of membership function employed. 
The ANFIS model with generalized bell membership function was 
qualified as the most accurate among the examined cases. 

The values of RMSE, MAPE, and R values for training and testing 
data sets by using generalized bell membership function were 1.66×10-5, 
0.04, 1 and 1.5×10-5, 0.039, and 1, respectively. The temperature has the 
most important effect on the final membership function among the 
other variables. Finally, the user can accurately and conveniently obtain 
the DOC by GUI. 
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Figure 10. If–then rules after training. 

 

 

 

 
Figure 11. (a) DOC vs. (temperature and pressure); (b) DOC vs. (conductivity and 
pressure); (c) DOC vs. (temperature and conductivity). 
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