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A B S T R A C T 

 

Long-term production planning in open-pit mines is a precedence-constraint knapsack problem. A spatial representation of the mining region 
(called the block-model) is the primary input of mine planning models. One should note that as the number of blocks and periods to be 
planned increases, the number of decision variables increases. This paper presents a fast yet straightforward algorithm to reduce binary 
variables in open-pit mine production planning models. The algorithm considers mining capacity, processing capacity, and pit deepening rate 
to estimate the time span within which a block is mineable. This paper applies the algorithm in 12 different cases. The number of blocks varies 
from 1000 to 240000, and the mining periods range from 6 to 30 years. According to the results, this algorithm is helpful for problem size 
reduction. 
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1. Introduction 

Production planning of open-pit mines is a type of multi-period 
precedence-constraint knapsack problem. It can be modeled using 
Mixed Integer Linear Programming (MILP) framework [1-3]. Mine 
planning aims to guide the mining operation to the highest Net Present 
Value (NPV) by developing annual extraction plans [4-5]. It must 
consider the changing and uncertain conditions of operational 
constraints and actuates the economy and the payback period. These 
constraints involve the following [6]: 

1- mill throughput (mill feed and mill capacity) 
2- the volume of material extracted per period (mining capacity) 
3- blending constraints (quality of the feed) 
4- stockpile related constraints (dynamic cut off grades) 
5- logistic constraints (slope constraint, pit bottom constraint, Pit 

Deepening Rate (PDR)) 
Since 1976, many researchers study production planning in open-pit 

mines, and they developed different models to optimize the production 
plan [7-18]. These models require a spatial representation of the mining 
area called the block model. To generate a block model for a deposit 
understudy, one should divide the deposit into fixed-sized cubic cells 
(i.e., blocks). The block size depends on both exploration and mining 
conditions including the exploration drilling pattern, geological 
condition, mining system, and the available mining equipment size. 
After determining block dimensions, a procedure assigns the geological 
characteristics of blocks using inverse distance, geostatistical methods, 
conditional simulation, or any other available technique [19]. After that, 
considering some economic and technical data such as selling price, 
operating costs, and overall recovery, one could calculate block 
economic values. In this step, the generated block model is fed into a 
production-planning model to optimize the mine output.  

Typically, a block model may contain more than millions of blocks, 
but there is a limitation on the number of blocks that optimization tools 
could handle [20]. Thus, solving a production-planning model is a 
challenging and time-consuming task. Typically, in any mining 
operation, the mine life is more than 15 years, and the number of blocks 
is more than 1 Million blocks. Hence, there will be about 15 Million 
binary decision variables that the mathematical models should handle. 
However, the open-pit mining structure makes it possible to develop 
some strategies to reduce binary decision variables. This issue is the 
motivation of the current paper. 

A decrease in the number of blocks (or increase of block size) seems 
to be the easiest way to improve the problem's tractability. As the 
number of blocks decreases (or block size increases), the geologic details 
are becoming hard to be modeled using large blocks. This fact will 
assuredly affect the preciseness and complexity of production planning 
models. 

There are many works related to size reduction in the case of open-
pit mine planning. Among them, the simplest is the bounding algorithm 
[22]. This algorithm starts with identifying all the ore blocks (i.e., the 
black cells in Figure 1). Then, considering the overall pit slope, it 
determines the preceding blocks of all the ore blocks regardless of 
economic issues (i.e., the gray cells in Figure 1). Finally, those blocks, 
which are neither an ore block nor a preceding block, are removed from 
the block model (the white cells in Figure 1a). This simple modification 
reduces the number of blocks significantly. 

The bounding algorithm removes unnecessary blocks regardless of 
economic issues. If economic issue matters, one should determine the 
Ultimate Pit Limit (UPL). UPL determination is similar to bounding, 
but the difference is that it deems economic issues. Determining a UPL 
fits into a single-period precedence-constraint knapsack problem, and it 
is equal to finding the maximal closure of the representing network [23]. 
The blocks inside the UPL will then feed into the mine planning 
optimizers. Notably, the pit limit resulting from production planning 
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models is always contained within the UPL due to discounting of block 
values [6, 24, and 25]. 

 

 
(a)              (b) 

Figure 1. Removing the unnecessary blocks using the bounding algorithm 

 
Another most widely used method is the aggregating of blocks. 

Aggregation can reduce the number of variables, constraints, or both, 
based on some criteria. In that regard, Ramazan et al. [26] presented the 
concept of Fundamental-Tree (FT). In this algorithm, an FT is a set of 
blocks such that (1) they can be mined without violating slope 
constraints; (2) the economic value of each FT is positive; (3) and each 
FT cannot be partitioned into smaller trees without violating (1) and (2). 
In this method, both the extraction and the processing decisions are 
made on the aggregate scale. This algorithm requires solving a series of 
linear models that seem to be relatively computationally expensive. 
Boland et al. [27] developed an iterative approach. In this approach, they 
use block aggregation to schedule the extraction sequence. Then, they 
disaggregate their data back into the block scale to make the processing 
decisions. In this method, the number of aggregates is adapted as the 
algorithm proceeds.  

Askari-nasab et al. [28] presented a hieratical clustering algorithm to 
aggregate blocks into some mining cuts. The mining cuts are generated 
based on some similarity indexes. The rock types, ore grade, spatial 
location, and the preceding-constraint requirements are the bases for 
defining the similarity of blocks in a cut. Jelvez et al. [29] introduced a 
heuristic method for open pit mine planning where they use block 
aggregation to schedule the extraction sequence. They separate the 
aggregated blocks into the inner and borders blocks according to 
scheduling results. Then, they disaggregate their data back into the 
initial block scale and correct the blocks located at the borders. 

Some researchers take advantage of panels and parcels to reduce 
decision variables [30-32]. In their method, each panel is the 
intersection of pushbacks and benches. Lotfian et al. [33] applied a 
genetic algorithm to solve the clustering problem. The generated cluster 
are not practical because they did not consider the pit slope restrictions. 
Thus, an iterative algorithm based on a simple mathematical model is 
applied to modify the non-practical clusters. 

Apart from aggregating blocks, some researchers have worked on 
heuristics to reduce the number of decision variables. Goodwin et al. 
[34] applied the concept of receding horizon planning to reduce 
planning periods and the number of decision variables. Topal [35] 
presents an algorithm to estimate early and late extraction times of 
blocks in the case of underground mining operations. Gaupp [36] 
developed the same idea in open-pit mining. The algorithm is time-
consuming, and it requires about 1150 seconds for a block model 
containing 10800 blocks. Chicoisne et al. [37] applied this concept in 
their models. However, they did not report how these times are 
calculated.  

The present paper introduces a fast yet simple algorithm for problem 
size reduction. This algorithm estimates the early and late extraction 
times of blocks. The period between the early and late time is referred 
to as the Mining Time-Span (MTS). The efficiency of the proposed 
algorithm is evaluated in several cases and the results are reported. 

2. Methodology  

Consider the integer linear model for long-term production planning 
given in Equation 1. This model determines the extraction time of 
blocks. Also, it determines the processing method of each block, such 
that the NPV of the operation is maximized. The notations used in the 
model are as follows: 

Decision variable: 

bmtx  is the decision variable. It is equal to 1 if the block 
b  is mined at the time t  and sent to the destination 
m ; otherwise, it is equal to 0. 

Model parameters: 
B  is the set of blocks in the block model 

bP  is the set of blocks that overlays or precedes block b  

,t t   are the time indexes 

T  is the mine life or the number of planning periods  
M  is the number of possible destinations or processing 

alternatives  

bmtc  is the discounted economic value of block b  mined at 
the time t  and sent to the destination m  

,t tMC MC  are the minimum and maximum mining rates at the 
time t , respectively 

bX  is the amount of rock in the block b  

bg  is the grade of the commodity in the block b (it is 
usually presented in percentage of the total tonnage in 
each block) 

, ,
maxmin

,
t m t mG G  are the minimum and maximum acceptable grades at the 

destination m at the time t , respectively 

,mt mtPC PC  
are the minimum and maximum processing capacities at 
the destination m at the time t , respectively 
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Equation 1a is the objective function of the model. The model aims to 

maximize the discounted economic value or NPV of the mining 
operation. Constraint 1b ensures that if the block b is to be mined, it 
could only be mined once and sent to the destination m at time t. 
Constraint 1c is known as slope or proceeding constraint. This constraint 
ensures that wall slope restrictions are obeyed. Moreover, the block b 
can only be mined if all its overlaying blocks are removed beforehand. 
Constraint 1d and 1e ensure that the total amount of rock mined at the 
time t and processed in the destination m do not exceed the prescribed 
lower and upper bounds on mining and processing capacities. 
Constraints 1f and 1g ensure that the average grade of material sent to 
each destination is within the prescribed lower and upper bounds.  

Solving the production-planning model (given in Equation 1) is a 
challenging and time-consuming task. This model contains B*T binary 
variables. Typically, T is around 15 years in a mining operation, and the 
number of blocks reaches more than 1000000 blocks. However, the 
open-pit mine structure makes it possible to reduce the number of 
binary variables. In this paper, Mining Time-Span (MTS) is introduced 
for problem size reduction.  
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The MTS of a block is equal to the difference between the earliest and 
the latest mining times. The earliest possible time of extracting a block 
is equal to the time required to remove the entire blocks that overlay the 
block. The overlay blocks (or precedence constraints) are identified 
based on a pit slope angle. On the other hand, the latest possible time of 
extracting a block is equal to the time required to remove the entire 
blocks inside the pit limit except the blocks located spatially under (i.e., 
the underlying blocks) that particular block. Thus, the primary step is to 
determine the underlying and overlay blocks for each block in a block 
model. Underlie blocks are called Downstream Blocks (DB), and the 
overlay blocks are called Preceding Blocks (PB). The cone containing 
the OB is named Preceding Cone (PC), and the cone containing the DB 
is named Downstream Cone (DC). These terms are shown in Figure 2. 

  

 

 

Preceding Cone 

(PC) 

Downstream Cone 

(DC) 

Pit slope 

 
Figure 2. Preceding and Downstream cones  

 
To generate PC and DC cones (and, PB and DB in the next level) is 

to use a cone generating pattern. Figure 3 depicts the pattern (1-5) that 
determines PB and DB. The most efficient way to create a pattern is to 
use the Minimum Search Pattern (MSP) [25, 38]. The MSP algorithm 
identifies the minimum number of blocks that generate a truncated 
cone. The MSP is related to block dimensions and the preciseness of the 
pit slope model. The MSP algorithm applies the pattern on a particular 
block to determine its preceding blocks. It tags the overlaying block 
according to the pattern. Then the algorithm uses the same pattern on 
every tagged block inside the block model. In the end, all of the tagged 
blocks represent the preceding blocks and the corresponding preceding 
cone. The same procedure is applied to determine the downstream 
blocks. As each blocks' preceding and downstream blocks are 
determined, estimating the earliest and latest mining time is possible. 
The results of the MSP algorithm will reduce the number of arcs in the 
network, hence, decrease the solution time. 

 
 

            

 

2 4 3 

1 

5 

x 

2nd level 

 1st level 

 

 

 

x 

1st level 

 -1 level 

x 

x 

 
Figure 3. Pattern 1-5 for pit slope generation and identification of preceding and 

downstream blocks and their network representation 

 

2.1. Earliest possible time to mine a block 

In order to mine a block, its overlaying blocks should be removed in 
advance. Thus, the earliest possible time to mine a block is equal to the 
time required to mine its overlaying blocks. The constraints include 
mining capacity, processing capacity, and PDR are controlling the 

earliest possible time. The PDR is the rate at which the depth of the pit 
increases. This fact restricts the mining operation from going deep 
before mining enough waste from the upper benches. These constraints 
cause some delays at the earliest time that a block could be mined. PDR 
depends on the mine condition, mine size, depth of the ore deposit, and 
the number of ore blocks on each bench. It affects the amount of waste 
removal (stripping strategy) in open-pit mines. Therefore, the earliest 
possible time to mine a block is calculated using equation 2. 

Pr
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E
PC

 
= + 
 
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E
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 
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(2b) 

3 1
D

E
PDR

 
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(2c) 

( )1 2 3, ,EPTM Max E E E=  (2d) 

In this equation, EPTM is the earliest possible time to mine a block, 

PrCOT , PrCRT  is the total tonnage of ore and rock in the preceding 

cone, respectively. The total tonnage of rock is the summation of ore 
and waste tonnage in the preceding cone. The maximum processing and 
mining capacities are represented by PC  and MC respectively. D

stands for depth of the block and PDR is the pit-deepening rate. The 
symbol     represents the floor function. It returns the largest integer 

number less than or equal to the number inside the    . 

Equation 2a calculates the earliest time to process the block at the 
mill according to the maximum available processing capacity ( 1E ). 

Equation 2b calculates the earliest time to mine the block according to 
the maximum available mining capacity ( 2E ). Equation 2c calculates 

the earliest time to mine the block according to the maximum pit-
deepening rate ( 3E ). The maximum of 1E , 2E , and 3E  indicates the 

limiting constraint on mining a block. Thus, the earliest possible time to 
mine a block ( EPTM ) is equal to the mining time considering the 
primary limiting constraint.  

2.2. Latest possible time to mine a block 

The latest possible time to mine a block is the time that a block could 
remain un-mined. In other words, a block can remain un-mined until 
the entire block other than its downstream blocks are mined. The 
constraints controlling the latest time to mine a block are mining 
capacity and processing capacity. Thus, the latest possible time to mine 
a block is calculated using equation 3. 

1 1TOT DoCO OT
L

PC

− 
= + 
 

 
(3a) 

2 1TOT DoCR RT
L

MC

− 
= + 
 

 
(3b) 

( )1 2,LPTM Min L L=  (3c) 

In equation 3, LPTM is the latest possible time to mine a block, 

TOTO  and TOTR  is the total tonnage of ore and rock inside the pit 

limit, DoCOT , DoCRT  is the total tonnage of ore and rock in the 

downstream cone, respectively. The minimum processing and mining 
capacities are represented by PC  and MC respectively.  

Equation 3a calculates the latest time to mine a block according to the 
minimum processing capacity ( 1L ). Equation 3b calculates the latest 

time to mine the block according to the minimum mining capacity 
( 2L ). The minimum of 1L  and 2L  indicates the limiting constraint on 

mining a block. Thus, the latest possible time to mine a block 
( LPTM ) is equal to the minimum of 1L  and 2L .  

As soon as LPTM and EPTM are calculated, the time-span (TS ) for 
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each block is determined using Equation 4. 

( ),TS EPTM LPTM=  (4) 

Figure 4 shows the algorithm for calculating the time span. The input 
is a block model. Each block contains information about its spatial 
location and the type and amount of material in it. At first, these data 
are sorted according to their z coordination. Based on the 
predetermined minimum search pattern, the preceding and 
downstream blocks are identified. The corresponding forward and 
reveres arcs are generated. A FIFO approach is then conducted to 
determine the preceding and downstream cones and calculate ore and 
rock tonnage in each cone. Afterward, according to Eq. 2 and 3, LPTM

and EPTM , the time span of each block is calculated. The worst-case 
complexity of this algorithm is O(nm), where n is the number of blocks, 
and m is the number of arcs in the network, which is controlled by the 
minimum search pattern.   

int main () 

{ 

 Sort input data according to its z coordination in ascending order; 

 Apply minimum search pattern to identify forward and reverse arcs; 

  

 for (i=1;i<n+1;i++){ 

  LABEL_P B[i]; 

  Add B[i] to LIST_P; 

  LABEL_D B[i]; 

  Add B[i] to LIST_D; 

 

  for (j=1;j<n+1;j++){ 

   Select block B[j] from LIST_P; 

   if (LIST_P=Ø) GOTO L10; 

   // determine the preceding blocks based on forward arcs 

   for (k=1;k<d+1;k++){ 

    if (B[k] is not labelled){ 

      LABEL_P B[k]; 

     Add B[k] to LIST_P; 

     if (B[k] is an ore block) ore_ton_P= ore_ton_P +(ton of B[k]); 

     rock_ton_P = rock _ton_P +(ton of B[k]) ; 

    } 

   } 

 

   // determine the downstream blocks based on reverse arcs 

   L10: Select block B[j] from LIST_D; 

   if (LIST_D =Ø) BREAK; 

   for (k=1;k<d+1;k++){ 

    if (B[k] is not labelled){ 

      LABEL_D B[k]; 

     Add B[k] to LIST_D; 

     if (B[k] is an ore block) ore_ton_D = ore_ton_D +(ton of B[k]); 

     rock_ton_D = rock _ton_D +(ton of B[k]);  

    } 

   } 

  } 

  Calculate TS of B[i]; 

 }  

} 

Figure 4. The time-span estimation algorithm 

3. Results  

The algorithm is tested in some sample block models available at 
MinLib [39]. Test data contains a variety of instances. Newman is the 
smallest case in the dataset. Zuck small, Zuck medium, and Zuck large 
are fictitious mines (Figure 5a, 5b, and 5e). D is a copper deposit, P4HD 
is a gold and copper mine (Figure 5c), and W23 consists of phases 2 and 
3 of a gold mine (Figure 5d). All of them are located in North America. 
Marvin is a well-known test mine that is provided with the Whittle 
optimizing software. SM2 is a fictional nickel mine located in Brazil. 
McLaughlin is a gold mine in California, and its final pit limit is named 
McLaughlin-limit (Figure 5f) in the dataset. McLaughlin is the largest 
block model in the dataset, and it contains about 2140342 blocks. 
Therefore, before the application of the time-span algorithm, the block 
model of McLaughlin is bounded using the method described in figure 
1. Thus, the number of blocks reduces to 237470. Apart from these data, 
the algorithm is tested on the block model of Gol-e-Gohar mine number 
2. Gol-e-Gohar iron ore mine is located in Kerman province in the 
southeast of Iran. 

The first step is to generate PC and DC cones using the MSP 
algorithm. As stated, the resulting MSP is related to block dimensions 
and the preciseness of the pit slope model. According to the dataset, the 
block dimensions are the same along the x, y, and z-axis, thus, the block 
is cubic. For the case of Gol-e-Gohar mine number 2, the block 

dimensions are 10×10×15 meters. The pit slope is assumed to be 45 
degrees in every direction for all the cases. The preciseness of the pit 
slope model is 1 degree. 

 
 

 
 

a b 

 

 

c d 

 
e 

  
f 

 

LEGEND 

Altitude of blocks 

 
Figure 5. 3D view of data set - (a) Zuck small, (b) Zuck medium, (c) P4HD, (d) 

W23, (e) Zuck large, and (f) McLaughlin-limit  
 

Based on the data, the MSP algorithm suggests the 1-5-9 pattern (also 
known as Knight-Move in the literature) to generate the preceding and 
downstream cones for the MinLib dataset. While, for Gol-e-Gohar mine 
number 2, the MSP contains 53 blocks in this case. Figure 6 shows the 
pattern 1-53 and the corresponding preceding and downstream cones. 
In Figure 6(a) the highlighted blocks indicate the blocks selected by the 
pattern 1-53. The number inside each block indicates the level that the 
block is located spatially relative to block x.  

The algorithm of determining the preceding and downstream cones 
and calculation of LPTM and EPTM is coded in C++. Table 1 
summarizes the number of blocks and the time spent calculating the 
LPTM and EPTM in each case. The algorithm, first, determines the 
preceding blocks and calculates the EPTM, and then it starts with the 
determination of downstream blocks and LPTM. According to the 
results (Figure 7), as the number of blocks increases, the total time spent 
determining the time-span increases. However, this is a fast algorithm, 
and it requires 1210 seconds to assess the time-span of a block model of 
a size of 112000 blocks. 

  

(a)         (b) 

Preceding Cone 

Downstream Cone 

x 

Figure 6. Pattern 1-53 and the preceding and downstream cones generated using 
the pattern 
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Table 1. Running time in different data sets 

Problem instance Block count EPTM (Sec.)* LPTM (Sec.)* 

Newman 1060 <1 <1 
Zuck-small 9400 4 4 
D 14153 11 11 
Zuck-medium 29277 39 40 
P4HD 40947 93 94 
Marvin 53271 158 158 
Gol-e-Gohar2 65797 393 390 
W23 74260 305 307 
Zuck-large 96821 475 449 
SM2 99014 538 543 
McLaughlin -limit 112687 603 608 
McLaughlin 238470 2956 2970 

* The problems are solved on an "hp EliteBook 8540p" laptop set. 
 

 
Figure 7. The relation between running time and the number of blocks 

 
Table 2 represents the number of blocks, the corresponding mine-life, 

and the number of binary variables in each instance according to the 
model given in Equation 1. After implementing the algorithm and 
calculating time-spans, it is possible to calculate the number of reduced 
binary variables. The percentage of reduction in the number of binary 
variables varies from 1% to 74%. As presented in table 2, there is no trend 
in the number of variables after removing the unnecessary variables. 
However, the number of ore blocks and their spatial location in the 
block model affect the algorithm's efficiency. According to the results, 
in vertically oriented ore deposits and deep pits (for example, SM2), the 
algorithm's efficiency on the number of reduced binary variables 
becomes significant. However, in the case of large deposits that oriented 
horizontally (for example, Gol-e-Gohar2, Zuck-large, McLaughlin, 
McLaughlin-limit, and D), the percentage of reduction for binary 
variables is lower than 7%. 

 
Table 2. Reduction in the number of binary variables 

Problem instance 
Block 
count 

Mine 
life 

Num. of 
benches 

Total number of 
binary variables 

Number of 
reduced variables 

Reduction 
percentage 

Newman 1060 6 23 6360 4240 33% 
Zuck-small 9400 20 14 188000 169362 10% 
D 14153 12 19 169836 166328 2% 
Zuck-medium 29277 15 29 439155 351020 20% 
P4HD 40947 10 64 409470 293317 28% 
Marvin 53271 20 16 1065420 1034396 3% 
Gol-e-Gohar2 65797 17 23 1118549 1036078 7% 
W23 74260 12 63 891120 678379 24% 
Zuck-large 96821 30 21 2904630 2886140 1% 
SM2 99014 30 98 2970420 758401 74% 
McLaughlin -limit 112687 15 46 1690305 1659148 2% 
McLaughlin 238470 20 49 4769400 4709075 1% 

4. Discussions 

Long-term production planning in open-pit mines is a precedence 
constraint knapsack problem. A long-term plan is a plan for the specific 
portion of a mineable reserve or whole life of the mine, or for a period 
of significant income (which one is smaller). Long-term plans are based 
on the geological block model. Typically, a geological block model 

contains more than 1 Million blocks, and the number of planning 
periods varies from 15 to 25 years. Thus, a production-planning model 
(as the model given in equation 1) contains about two million binary 
variables. Solving such a production-planning model is a challenging 
and time-consuming task. 

Moreover, predictions in the mineral industry indicate that future 
mines are giant mines that exploit low-grade material. Therefore, mining 
engineers must deal with a large number of blocks in block models. The 
deal with large block models highlights the need for new algorithms that 
increase the tractability of production-planning models. 

However, the structure of open-pit mining provides some strategies 
to reduce the number of binary variables. This paper deals with some 
issues that could reduce the complexity of the production-planning 
problem in open-pit mines. The paper's core concept introduces a fast 
and simple algorithm to estimate blocks' early and late extraction time. 
The period between the early and late time is referred to as mining time-
span or briefly time-span.  

The algorithm of estimating time-span applies the minimum search 
pattern to recognize the preceding and downstream cones. The mining 
time-span algorithm considers the constraints on mining capacity, 
processing capacity, and pit-deepening rate. These time-spans will lead 
to an efficient formulating of production planning. 

The algorithm is tested on 12 cases with various block numbers and 
spatial distribution of blocks to reveal the improvements in running 
time. The number of blocks varies from 1000 to 240000 and the 
planning periods (mine life) range from 6 to 30 years. According to the 
results (Table 1 and Figure 7), as the number of blocks increases, the 
running time increases. The running time varies from less than a second 
to about 3000 seconds in the most extensive data instance. It shows that 
the procedure is applicable in large block models with even more blocks 
than presented in this paper. The test case of Gol-e-Gohar2 is not 
included in Figure 7 because the size of blocks in this model and the 
corresponding search pattern are different from the other samples. 
However, the algorithm can handle various block models with varying 
block counts, block sizes, and variable pit slopes. 

The proposed method is a fast algorithm, and it estimates the earliest 
and the latest possible time of mining a block and its time-span in a 
reasonable amount of time. Estimating the time span is assuredly the 
preliminary step in production planning, and it reduces the number of 
binary decision variables. The algorithm's efficiency depends on the 
shape, orientation, depth of the ore deposit, the number of ore blocks 
and their spatial location in a block model, and the number of planning 
periods or mine life. In large and horizontally oriented deposits (for 
example, Zuck-large and McLaughlin-limit), the reduction of binary 
variables is less than 10%. While in the case of vertically oriented ore 
deposits (W23, Zuck-small, Zuck-medium, and P4HD, for instance), the 
reduction in the number of binary variables is significant. Furthermore, 
the algorithm could improve the solution time effectively. A reduced 
number of decision variables will remove unnecessary branching and 
bounding and reduce the solution time. 

5. Conclusions 

The paper presents a heuristic algorithm to tackle the open-pit mine 
scheduling problem by reducing the size of the binary variables in the 
formulation. The algorithm considers mining capacity, processing 
capacity, and pit deepening rate to estimate the time span within which 
a block is available for mining. This paper applies the algorithm in 12 
different cases. The number of blocks varies from 1000 to 240000, and 
the mining periods range from 6 to 30 years. According to the results, 
the algorithm's efficiency depends on the deposit orientation, depth, and 
spatial location of blocks in a block model, and the number of planning 
periods or mine life. 
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