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A B S T R A C T 

 

This study serves the purpose of generating a geochemical Fe-bearing potential map. Stream sediment geochemical survey was employed by 
collecting 843 samples for analyzing 19 elements and oxides. Taking preprocessing of data (e.g. outlier correction and data normalization) into 
consideration, a Concentration–Number (C-N) fractal model was used to separate different geochemical populations of Fe2O3, TiO2, V, and 
the main multi-element factor in close spatial association with the Fe targeting. A prediction-area(P-A) plot was drawn for each variable to 
determine the weight of each geochemical indicator. Results indicate that the main geochemical factor with an ore prediction rate of 73%, has 
occupied 27% of the Esfordi area as favorable zones for further mining prospectivity. The Esfordias a favorable Fe-bearing zone is of special 
interest in the NE of the Bafq mining district that hosts important “Kiruna-type” Magnetite-Apatite deposits. In addition, a synthesized 
indicators map was prepared by implementing a data-driven multi-class index overlay in a similar fashion to the previous version of the 
method, upon which geochemical potential zones were mostly in the NE part of the Esfordi, intimately linked with intense fault density map. 
The significance of this study lies in localizing the most geochemical favorable zones through simultaneous consideration of the C-N and P-
A plots accompanied by the incorporation of known active mines and prospects to determine indicator weight. Of note is that the Mineral 
Potential Mapping(MPM) has higher efficiency over each geochemical indicator with an ore prediction rate of 78% and area occupation of 
22%. 
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1. Introduction 

Iron targets in Iran formed during several metallogenic phases in 
Neoproterozoic-early Cambrian, late Cambrian-Early Ordovician, late 
Paleozoic, Mesozoic, and Cenozoic. Note that the largest occurrences 
were deposited during the Neoproterozoic-early Cambrian (mainly 
Kiruna-type deposits) and Cenozoic (skarn) [1-8]. The iron oxide-
apatite deposits are often hosted by lower Cambrian hydrothermally 
altered and alkali-metasomatized volcano-sedimentary rocks known as 
the Saghandformation, formed during a major late Precambrian rifting 
event[4; 7-12]The international iron ore market has recently attracted 
much attention due to strong demand from the steel industries. Mining 
capacities are extended worldwide, and the Central Iranian Bafq iron 
ore district is an active area of mining prospectivity. Many iron 
occurrences exist in the central Iranian structural zone, especially in the 
Bafq district. The Esfordi prospect zone locates in this region by 
encompassing several iron mines, e.g. Chadormalu, Choghart, Seh-
Chahoon, Mishdowan, and Zaghia [13-14]. The genesis of the 
magnetite-apatite deposits of the Bafq district is yet controversial among 
geoscientists, similar to their world counterparts. It’s worth pointing out 
that several different tentative genetical models from carbonatitic to 
iron ore magma (intrusion or volcanic) and metasomatic replacement 
were proposed [2; 4; 9; 15-16]. 

A geochemical anomaly separation is a useful tool for geochemical 
exploration. The anomalous threshold, which is the most useful criteria 
for cross-examination of information with numerical data from different 

sources, commonly used in geochemistry studies [17-19]. Predictive 
modeling of mineral prospectivity using Geographic Information 
System (GIS) is a valid and progressively more accepted tool for 
delineating reproducible mineral exploration targets. Anomalous 
geochemical zones could be defined at values greater than a given 
threshold. Various statistical methods have attracted the attention of 
scholars based on a certain assumption about the underlying statistical 
distribution of the geochemical variables to determine anomaly 
threshold values for separating geochemical populations in association 
with sought ore target [20-22]. Recognition and separation of 
anomalous zones from background area integral parts of any 
geochemical exploration investigations [23-24].While traditional 
methods based on classical statistics are suffering from lots of 
limitations and pitfalls. There is clear information in the data that is not 
being captured by running conventional approaches. A possible scenario 
to strive is utilizing the fractal methods [25] 

Various versions of fractal/multifractal modeling, established by 
Mandelbrot (1983) [25], have been proposed in geochemical data 
analysis. There have been several studies dedicated to the use of these 
versions that are Number-Size (N-S) by Mandelbrot (1983), 
Concentration-Area (C-A) by Cheng et al. (1994) [26], Concentration-
Distance (C-D) by Li et al. (2003) [24] Concentration-Volume (C-V) by 
Afzal et al. (2011) [27] and Concentration-Number (C-N) by 
Hassanpour and Afzal (2013) [28]. One of the main characteristics of 
the fractal models over the statistical methods is the consideration of the 
spatial status of data samples [26, 29-31], reflecting the geological, 
geochemical, and mineralogical sequences of a region [23-24]. Based on 
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the fractal analysis [32-33], geochemical indicators can be inferred for 
mineral potential/prospectivity mapping (MPM). 

   In MPM, the locations of known deposits can be used to evaluate 
the performance of the prepared prospectivity models. This is obtained 
by overlaying mineral deposit locations on a categorized exploration 
targeting model [34-36]. MPM is a multi-criteria decision-making task 
(MCDM) that aims to outline and prioritize prospective areas for 
guiding undiscovered mineral deposits of the type sought [35].  
Bonham-Carter et al. (1989) [37], applied the weights of classes of 
spatial values divided by their corresponding occupied area (the area 
occupied by each class of evidential values) to estimate the probability 
of discovering mineral deposits in several classes mostly determined by 
fractal analysis. Yousefi and Carranza (2015, 2016) [35; 38] developed 
the prediction-area (P-A) plot, through which the percentage of known 
deposits anticipated by prospectivity classes (prediction rate) and the 
occupied areas of the corresponding prospectivity classes are 
contributed to determining the relative importance of different 
prospectivity models. By drawing the P-A plot, both the ore prediction 
rate and the occupied area of exploration targets contribute to the 
evaluation of prospectivity models [35; 39-44]. Thus, if two different 
prospectivity models delineated exploration targets with different 
occupied areas, but with the same prospectivity score, the performance 
of the prospectivity model with the smaller target areas is higher than 
that of the model with larger target areas [44]. 

   Each of these evidence maps should be generated by using logistic 
functions before drawing the P-A plots and fractal curve [35]. Spatial 
evidence values in each map are transformed using a logistic function 
because it can be used for the proper transformation of unbounded 
values into a range of [0,1] [45]. Therefore, using a logistic function 
avoids the disadvantage of data-driven approaches to MPM in terms of 
exploration bias and stochastic error in delineating target areas that are 
generally portrayed near and around the known mineral occurrences 
[46]. 

The focus of this study is on the identification of geochemical 
anomalies in the Esfordi 1:100,000 geochemical data sheet using stream 
sediment samples. Through multi-variable analysis of geochemical data 
(clustering and principal component analysis “PCA”) after 
preprocessing of all input elements, several indicators are prepared to 
be projected by a logistic function into an interval depicting Fe 
favorability. Simultaneous consideration of the C-N fractal curve and 
the P-A plot provide insights about the data-driven weight of each 
indicator map in association with Fe occurrences. Finally, a multi-class 
index overlay MPM is generated for further guiding of Fe targeting.  

2. Geological setting of Esfordi district 

Gansser(1981) has stated that Iran and the surrounding areas consist 
of a mosaic of continental blocks separated from each other by complex 
fold-and-thrust belts within the Alpine-Himalayan orogenic system 
[47]. The oldest basement is located in the Central Iran terrane and is 
composed of a Precambrian basement with a Paleozoic to Mesozoic [2]. 
The Bafq district of Central Iranian Microcontinent (CIM) is part of a 
Gondwana fragment that is situated between the Alpine Zagros and 
Alborz belts[48]. From east to west, this district is divided into three 
major crustal domains; the Lut, Tabas, and Yazd blocks [49]. The Tabas 
and Yazd blocks are composed of variably deformed and fault-bounded 
supracrustal rocks [50] and are separated by the nearly 600 km-long, 80 
km-wide, arcuate, and structurally complex Kashmar–Kerman Tectonic 
Zone (KKTZ). The KKTZ provides remarkable exposures of the 
Ediacaran and mainly lower Paleozoic CIM successions. The Bafq 
district in the central section of the KKTZ hosts various iron oxide ores 
(1.8 Gt; NISCO 1980) that are distributed within 34 iron ore anomalies 
from Robat-Posht-Badam in the north to Bafq in the south. In the 
following, iron oxide ores in the Bafq district that are related to the 
Prototethyan Ocean, are discussed [48]. The Posht-e-Badam Block in 
the microcontinent of Central-East Iran is known as Iran’s main 
metallogenic province, hosting many ores, especially iron oxide-apatite 
(IOA), Fe-Mn exhalative, and Zn-Pb sedimentary exhalative types [49]. 

The iron oxides of the Bafq district as the Kiruna-type deposits (Fig. 1) 
have the same age of formation as related volcanic and plutonic host 
rocks[4; 7; 50; 51]. The hydrothermal mineralization of Magnetite-
Apatite occurs mainly as massive orebodies and metasomatic 
replacements with locally elevated contents of rare earth elements and 
peripheral uranium mineralization. Recently deposits of the Kiruna type 
are commonly referred to as IOA [52] or P-rich iron oxide deposits [53]. 
Other hosts of the P-rich iron ore in the Sechahun region are limestone 
and dolomite, in addition to volcanic rocks. In the eastern highlands of 
the Sechahun area, alternating layers of dolomite, hematite, and jaspilite 
exist. The mining district of Bafq lies in the center of the volcano-
plutonic arc of Kashmar-Kerman, between Kuhbanan and Kuhe-
Daviran, the main fault systems of Central Iran. This magmatic arch 
hosts important deposits of magnetite-apatite Kiruna type and extends 
from Robat-Posht-Badam in the north to Bafq in the south as a narrow 
rift zone [54]. A huge complicated of volcanogenic-sedimentary, 
metamorphic, and magmatic rocks participated inside the geological 
structure of the Sechahun location. Based totally on geological mapping 
and subject research, there are three complexes of Precambrian-Early 
Cambrian, Cambrian-Tertiary, and Quaternary rocks in the vicinity. The 
Precambrian formations arise chiefly in the south of the Sechahun, 
northeast of the Bafq. They constitute foundation protuberances 
composed of rhyolite, crystalline schist, gneiss, effusive green rocks, and 
marble. Iron and Fe-Mn deposits in the Kashmar-Kerman volcano-
plutonic arc within the Bafq district evolved for the duration of 
successive phases. The primary section is related to the Rizu and Dezu 
formations (Narigan Fe-Mn deposit and layered part of Mishdovan 
deposit, which also have a minor Mn, REE, and U mineralization), and 
the second phase is associated with basic and ultrabasic intrusions, 
consist of the Chador-Malu, Choghart, Se-Chahun, ChahGaz, 
Mishdovan, Gasestan, North Anomaly and LakkehSiah deposits 
(Kiruna-type iron deposits) [4; 8; 11; 51]. 

Maximum of the Iranian iron ore reserves are located in the Bafq 
district in the center of Iran which were significantly explored in the 
course of the 1960s and 70s in an Iranian-Russian cooperation 
undertaking whilst 34 aeromagnetic anomalies have been delineated, of 
which four deposits are presently mined. Individual deposits range up 
to several hundred million tons of iron ore with variable amounts of 
apatite. The iron ore deposits of the Bafq district are associated with 
volcano-sedimentary rocks and high-degree intrusions and have a 
sulfide-poor mineral assemblage of low-Ti magnetite (±hematite) with 
varying however feature amounts of fluorapatite and actinolite. This 
assemblage is far just like the ore deposits of the Kiruna district in 
northern Sweden, whence such ores are named as “Kiruna-type” [13]. 
The Bafqmetallogenic province hosts world-class and high-grade 
Kiruna-type iron oxide-apatite-REE ore deposits (>2000Mt, Fe 45-65 
wt%) [56], within the Ediacaran, to lower Cambrian formations [2; 4; 7; 
11;54]. In addition to the mineralization of iron oxide-apatite, several 
non-Fe ore bodies contain Pb-Zn, P, REE, Mn, and U. The tectono-
magmatic evolution and related mineralization (e.g., iron oxide-apatite-
REE) in the Bafq district continue to be not fully understood [7]. 
According to [51; 54], this mineralization is related to intra-continental 
rifting and is associated with magmatic events that occurred within 
Gondwanaland. In contrast, Ramezani and Tucker (2003) [50], 
proposed that the evolution of the Bafq district was related to arc 
magmatism along the Prototethyan margin of Gondwana. This 
interpretation is based on the trace-element characteristics of the 
intrusive and volcanic rocks and the juxtaposition of the fragmented 
remains of the continental margin and cover sequences [58]. 

The Esfordi 1:100,000 sheet is situated in the Bafq-Posht-e-
Badamzone. The oldest deposits in this area are a series of quartz 
sandstones and it is a silty shale with lenses made of 20 to 30 cm thick 
thin crystalline black limestone and several layers of black silk between 
them. The sediments belonging to the Upper Precambrian-Lower 
Cambrian with a few sandstone are located on older sediments with 
angular heterogeneity and consist of two lower and upper parts. The 
lower part includes dolomite, limestone, shale and sandstone, acid lavas, 
acidic expectations, calcareous shale, shale, and sandstone. The upper 
part is often included carbonate. These sediments are comprised of 
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dolomite to calcareous dolomite, dolomite limestone, and thick layer 
limestone. The presence of an angular discontinuity under the 
Cambrian-Precambrian precipitates indicates that the event Pre-
Cambrian mountaineering is one of the oldest reported movements in 
this region. These movements can be compared to the asynchronous 
phase. Carboniferous sediments are formed by epeirogeny. The presence 
of intermediate to upper premium deposits is a sign of progress the sea 
is back in the late Paleozoic [4; 54]. The Esfordi apatite-magnetite 
deposit is located 35 km northeast of the Bafq. Esfordi was initially 
investigated in the early 1970s for its iron ore potential but due to the 
presence of high-grade apatite mineralization, it has been studied for its 
phosphate potential by the Geological Survey of Iran since 1981. After 
detailed exploration (drilling of more than 70 exploration boreholes) 
during 10 years (1982-1992), plant construction started in 1993, and 
mining activity began in 1999 with the production of a phosphate 
concentrate for use in the fertilizer industries and phosphoric acid. 

Geological descriptions of 22 iron ore occurrences within the Esfordi 
district have been tabulated in Table 1 and plotted over the subset 
geological map shown in Fig. 1 

Table 1. The geological description of all Fe occurrences in the Esfordi district 
[51]. 

No Name Host rock/age 

1 Anomaly No. X Sandstone and shale/Paleozoic 
2 Anomaly No.II B Metamorphic and metasomatic rocks/Precambrian 
3 Anomaly No.II C Metamorphic and metasomatic rocks/Precambrian 
4 Anomaly No. IV Metamorphic and metasomatic rocks/Precambrian 
5 Anomaly No. V B Sandstone and shale/Paleozoic 
6 Anomaly No. V C Sandstone and shale/Paleozoic 
7 Anomaly No.VIII Granite, volcanic, and sandstone/Upper Precambrian 
8 Anomaly No. XI Sandstone and shale/Paleozoic 
9 Anomaly XIIA Volcano–sedimentary rocks/Precambrian–Cambrian 
10 Anomaly No.XIII A Porphyry granite/Upper Precambrian 
11 Cheshmehfiruz Acidic to intermediate volcanic and dolomite/Upper 

Precambrian 
12 Choghart Alkali granite, volcanic, sandstone, and schist/Upper 

Precambrian 
13 East of Bafq Alkali granite, acidic volcanic, dolomite, and 

limestone/Upper Precambrian 
14 Esfordi Alkali granite, acidic volcanic, dolomite, and 

limestone/Upper Precambrian 
15 Lakkehsiah Alkali granite, acidic volcanic, dolomite, and 

limestone/Upper Precambrian 
16 Mishdovan Alkali granite, volcanic, and sandstone/Upper 

Precambrian 
17 Mobarakeh Metamorphic rocks/Precambrian 
18 Nargun Alkali granite, acidic volcanic, dolomite, and 

limestone/Upper Precambrian 
19 Narigan Volcanics and sandstone/Upper Precambrian 
20 North of Sechangi 1 Sandstone and shale/Paleozoic 
21 North of Sechangi 2 Sandstone and shale/Paleozoic 
22 Sechahun Diorite, volcanosedimentary/Upper Precambrian– 

3. Methodology 

3.1. Geochemical data analysis 

As it was mentioned before; in this study, 843 stream sediment 
samples were collected to be analyzed by an ICP-MS instrument for 19 
elements and oxides. Preprocessing of elements concentration was 
performed for outlier data correction through the DORFEL method 
[59-60].To detection of outlier data, the mean and standard deviation of 
data are calculated without considering the largest amount of data. Then 
the largest amount of values is considered as outlier data if it satisfies 
the following equation: 

XA ≥X̅+S*g                                                                                                                 (1) 
In this equation, g is the threshold of outlier values, XA, X̅ and S are 

the largest amount of values, average and standard deviation, 
respectively. Based on the results of this method, 10.8% for Fe2O3, 1.88% 
for TiO2, and 699 ppm for V have substituted instead of outlier values. 

Then, the normal or abnormal concentration distribution of 
these elements was evaluated, and some elements were normalized by a 
logarithmic operation, and the Cox-Box method was used to normalize 
other elements [58-60]. It helps to better find out the spatial correlation 

of elements in association with the sought Fe-bearing target when 
implementing single or multi-variable geochemical data analysis. Taking 
the geological and Google Earth Maps into account, the stream 
sediments of the Esfordi sheet were plotted in Fig. 2 by overlaying the 
locations of all geochemical samples. Univariate statistical analysis 
results indicate that Fe2O3, TiO2, and V mean values are 5.54%, 0.795%, 
and 84.83 ppm, respectively. The statistical summaries of these elements 
have been presented in Table 2. Histogram and box plots of the element 
concentration were portrayed in Fig. 3 to attain general insights about 
the characteristics of each variable in the Esfordi district. The range of 
values and frequency of each variable can be deduced from histogram 
plots. By looking at the Cox-Box plots, different quartiles and outlier 
data can be identified. 

 
Fig. 1. Distribution of iron deposits in Iran [55] and an enlarged geology view of 

the Esfordi district. 

 
Fig. 2. Stream sediment geochemical samples over the Esfordi district. 
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Table 2. The statistical characteristics of geochemical concentrations. 

Number Minimum Maximum Mean 
Standard 
Deviation 

Fe2O3 (%) 843 2.70 10.80 5.54 1.23 

TiO2(%) 843 0.01 1.88 0.795 0.167 

V (ppm) 843 7.00 699 84.83 2.312 

Main Factor 843 0.1 5.05 2.11 1.40 

One of the methods that has been widely used in studying the 
geochemical model of elements is the multivariate statistical methods 
that can also help to classify and rank the anomaly in the geochemical 
data.[61]. One of the multivariate statistical methods is the correlation 
coefficient between the elements, which can identify the main variables 
associated with mineralization. The clustering method was used to 
investigate the correlation among the elements. The result of cluster 
analysis using ward's method [62-63] for 19 geochemical variables have 
been presented in a dendrogram plot in Fig. 4. According to this 
diagram, iron has the most correlation with TiO2 andP2O5 than with V, 
B, and Cr. The correlation between the elements was determined using 
Pearson's method and listed in Table 3. According to this table, the 
highest correlation is between TiO2 and Fe2O3 equal to 0.690. 

Factor Analysis is also a dimension reduction tool in statistical 
analysis [58; 64-65], which has attracted the attention of scholars to find 

out the main factor(s) from several geochemical variables. The 
multivariate statistical analysis, specifically factors analysis, is an 
appropriate technique for behavioral characteristics and reduce the 
number of geochemical variables. Factor analysis has been widely used 
for the interpretation of stream sediment geochemical data [25; 66-68]. 
The ultimate goal of the factor analysis is to explain the variations in a 
multivariate data set by a few factors as possible and to detect hidden 
multivariate data structures. Factor analysis is suitable for the analysis of 
the variability inherent in a geochemical data set with many analyzed 
input elements. Consequently, factor analysis is often applied as a 
powerful tool for exploratory data analysis [25; 58]. 

For reduction of variables, factor analysis was performed for the 
stream sediments geochemical data, where Table 4 has listed the main 
six factors. The main variables of each factor are determined based on 
the values obtained in each of the factors that are (1) Fe2O3, TiO2, and 
V, (2) SiO2, CaO and B, (3) Ni and Cu, (4) MgO, (5) Li and (6) Sr. The 
first factor with high loading of the Fe2O3, TiO2, and V is used as a 
geochemical indicator and footprint in association with Fe-bearing 
regions. It is worth pointing out that the V element has the strongest 
correlation with the Iron-oxide distribution. The grade of iron in the 
minerals of this area is directly proportional to the grade of V and TiO2, 
and inversely proportional to the amount of phosphorus element.

 

 

 
Fig.3Statistical charts of histogram plot and box-plot for three geochemical elements of Fe2O3 (1st row), TiO2(2nd row), and V (3rd row). 
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Fig.4 The result of cluster analysis for 19 geochemical elements in the Esfordi district.  

 

Table 3. The Pearson correlation coefficients of important variables. 

Fe2O3 1 
TiO2 0.690 1 
MnO 0.408 0.329 1 

V 0.393 0.113 0.454 1 
Cr 0.380 0.247 0.037 0.052 1 
Ba 0.410 0.370 0.532 0.284 0.080 1 

SiO2 0.318 0.272 0.164 0.290 -0.240 0.286 1 
Al2o3 0.301 0.197 0.156 0.174 -0.019 0.236 0.461 1 
P2O5 0.442 0.281 0.344 0.290 -0.075 0.345 0.160 0.269 1 

B 0.350 0.250 0.234 0.206 0.080 0.450 0.455 0.477 0.308 1 
Ni 0.283 0.292 0.039 -0.200 0.374 0.111 0.061 0.269 0.223 0.252 1 
Co 0.493 0.305 0.187 0.052 0.280 0.198 0.116 0.269 0.231 0.198 0.404 1 

 Fe2O3 TiO2 MnO V Cr Ba SiO2 Al2o3 P2O5 B Ni Co 

3.2. Concentration-number (C-N) fractal discretization of evidential 
maps  

Fractal methods can illustrate the relationship between the 
geological, geochemical, and mineralogical information [18; 21; 33; 69]. 
Among several versions of fractal methods, the concentration-number 
(C-N) model can be adopted to explain how geochemical population is 
distributed without data pre-analysis [59; 70-71]. This model shows that 
there is a spatial relationship between the input attribute and the sample 
numbers. The C-N model can be defined by the following equation:  

 
N(≥ ρ) = Fρ–D (2) 
 
Where ρ is the element concentration and N(≥ρ) is the overall 

number of samples having concentrations equal to or higher than ρ, also 
“F” is a constant, and “D” is a benchmark power for fractal dimensions 
of concentration distribution. In addition, a curve of N(≥ ρ) versus ρ in 
a log-log plot indicates the linear parts with different slopes “–D”, 
corresponding to different concentration ranges [69-70; 72]. 

Based on the C-N log-log plot, there are four geochemical populations 
for Fe2O3 shown in Fig. 5a, where the anomalous zone has a threshold 
value of 9.23%, marked in red (Fig. 5b). The result of the classification 
of TiO2 is four geochemical populations depicted in Fig. 6a. According 
to this plot, a threshold of 1.24% separates the anomalous zone marked 
in red (Fig.6b). Six geochemical populations for V were observed in Fig. 
7a, and a threshold value of 399 ppm is extracted as the border of 
favorable zones probably in association with Fe targeting (red regions 
in Fig. 7b). Based on reclassified fractal maps, High intensive anomalies 
of Fe2O3, TiO2, and V commence from 10.80%, 1.88%, and 699 ppm, 
respectively. However, the C-N log-log plot of the main factor was 
plotted showing five populations (Fig. 8a) with an anomalous threshold 
of 4.49, marked with brown color in Fig. 8b. 

 
 

Table 4. The factor analysis of 19 geochemical variables and the main six 
components. 

 C1 C2 C3 C4 C5 C6 

Fe2O3 0.754 0.170 0.224 0.173 -0.348 0.014 

TiO2 0.613 0.082 0.376 -0.088 -0.490 -0.026 

MnO 0.535 -0.060 0.590 0.100 0.319 -0.193 

Zn 0.337 0.622 -0.041 -0.076 0.232 -0.380 

Cu 0.406 0.165 -0.582 0.247 0.182 0.323 

V 0.535 -0.315 0.291 0.438 0.362 0.202 

Sr -0.029 0.567 0.034 0.198 0.113 -0.622 

Al2o3 0.650 -0.089 -0.456 0.048 0.077 -0.092 

P2O5 0.558 -0.016 0.189 -0.128 0.404 0.184 

CaO -0.554 0.651 0.054 0.119 0.113 0.258 

MgO 0.134 0.365 0.305 -0.695 0.267 0.105 

SiO2 0.562 -0.433 -0.239 -0.147 -0.231 -0.303 

Cr 0.123 0.688 0.136 0.466 -0.296 0.142 

Ni 0.423 0.580 -0.095 -0.389 -0.109 0.225 

Co 0.491 0.439 -0.096 0.032 -0.067 0.244 

Ba 0.590 -0.163 0.377 0.139 0.051 0.035 

B 0.696 -0.228 -0.213 -0.140 0.103 0.110 

Li 0.301 0.170 0.224 0.173 -0.348 0.014 

Be 0.570 0.082 0.376 -0.088 -0.490 -0.026 

The reclassified fractal-based Fe2O3 map was divided into four classes 
while the lowest class lies at an interval of 2.7-4.68 % and the highest one 
at 9.23-10.8 % (Fig 5b). Areas of different classes from the lowest class to 
the highest one are marked with green, blue, yellow, and red 
respectively. Regions with a high probability of mineralization are 
shown in red color. These areas are often seen in the west, the north, and 
the center of the Esfordi district. TiO2 reclassified fractal map shown in 
Fig. 6b, indicates four different classes, where the lowest class is at an 
interval of 0.02-0.64% and the highest one at 1.24-1.88 %. High 
mineralization probability is shown in red color. These zones are 
frequently seen in the west and the north of the area. The reclassified 
fractal V map shown in Fig. 7b has six classes. The lowest class includes 
the values of 0-55 ppm (in green color) and the highest class is at 399-
699 ppm (in brown color). The anomalies in this map are shown in red 
and pink colors. These anomalous zones are found in the NW, the west, 
and pretty in the SW of the study area. Finally, the fractal reclassified 
map of the main factor has five classes. The lowest class was marked as 
green and the highest class was marked as brown (Fig. 8b). 
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Fig.5 Geochemical distribution map of Fe2O3, (a) C-N log-log plot, (b) reclassified fractal-based evidential map, and (c) P-A plot. 

 

 

 
Fig.6 Geochemical distribution map of TiO2, (a) C-N log-log plot, (b) reclassified fractal-based evidential map, and (c) P-A plot. 
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Fig.7Geochemical distribution map of V,(a) C-N log-log plot, (b) reclassified fractal-based evidential map, and (c) P-A plot. 

 

 
Fig.8 Geochemical distribution map of the main factor,(a) C-N log-log plot, (b) reclassified fractal-based evidential map, and (c) P-A plot. 

3.3. Prediction-area (P-A) plot 

The X value versus the intersection point can be used as a threshold 
in the P–A plot of an evidence layer to create a binary evidence map for 
use in Boolean logic MPM [34]. A majority of mineral deposits are 
connected to the range from X to the maximum evidential values [32]. 
In MPM, weights assigned to spatial evidence must reflect realistic 
spatial associations between spatial evidence and mineral deposits 
sought. Therefore, the locations of known Fe occurrences can be used 
to assist the reliability of assigned weights to spatial evidence 
representing their spatial associations with mineralization in the Esfordi 

district (Table 1). In a P-A plot of an evidence map, there are two curves, 
the curve of prediction rate of known mineral occurrences 
corresponding to the classes of the weighted evidential map and the 
curve of a percentage of occupied areas corresponding to the classes of 
the weighted evidential map. Usually, a fractal model is used to separate 
different populations/classes within an indicator/evidence map. In the 
P-A plot of a given evidence layer, if the intersection point shows a 
higher Y value in the left axis (i.e., higher prediction rate) in comparison 
with the P-A plot of other evidence layers, it means the former has a 
lower Y value in the right axis (i.e. smaller occupied area). Because the 
sum of ore prediction rate and the occupied area at the intersect point 
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is equal to100. Thus, if the two curves intersect at a higher place of the 
P-A plot of an evidence layer (in comparison with other evidence 
layers), it represents a smaller area containing a large number of mineral 
deposits. It means that a higher probability of mineral deposit 
occurrence exists for this class within the evidence map [32]. 

The P-A plot of Fe2O3 variables shown in Fig. 5c predicts 25% of the 
study area as a favorable zone and 75% of the known Fe occurrences. 
The P-A plot of TiO2 shown in Fig. 6c predicts 37% of the study area 
with an ore prediction rate of 63%. For V element, Fig. 7c has predicted 
36% of the study area with an ore prediction rate of 64%. Note that the 
occupied area and ore prediction rates are 27% and 73%, respectively 
(Fig.8c), for the main geochemical factor.  The extracted parameters at 
intersection points of the P-A plots for geochemical evidence are listed 
in Table 5. 

Table 5. The extracted parameters at the intersection point of P-A plots for 
evidential maps. 

Evidential 
Map 

Prediction 
Rate (%) 

Occupied 
Area (%) 

Normalized 
Density Weight 

Fe2O3 75 25 3 1.099 
TiO2 63 37 1.703 0.532 

V 64 36 1.780 0.577 
Main Factor 73 27 2.704 0.994 

MPM 78 22 3.545 1.265 

3.4. Geochemical Fe prospectivity map 

In this paper, the values in evidence maps are transformed using a 
logistic function in the range of [ 0,1]. Whereas the weights of individual 
evidence maps are assigned by the use of the P–A plot in a data-driven 
way [32]. Four geochemical maps of Fe2O3, TiO2, V, and main factor 
were prepared based on the fractal-number method. Geochemical Fe 
prospectivity map through the integration of all evidential layers is 
shown in Fig 9b. The integrated map has six classes(Fig. 9a) that the 
lowest class includes the values of 0-0.121 (in green color) and the 
highest class is at 0.48-1 (in brown color). Based on the intersection 
point in Fig 9c, the geochemical Fe prospectivity map has occupied 22% 
of the study area as favorable zones by which 78% of the known Fe 
occurrences are delineated. The synthesized evidence map has more 
weight than other geochemical layers (Table 5), showing its superiority 
over each evidence. The weights were calculated through a natural 
logarithm of the ratio of ore prediction rate to the occupied area at an 
intersection point. This means that the intersection point in the P-A plot 
of the MPM has more value(78% >75, 73, 64, and 63%) than any 
indicators of the multi-class index overlay maps. On other hand, the final 
Fe prospectivity modeling has the highest ore prediction rate of mineral 
occurrences. 

 
Fig.9 Multi-class index overlay geochemical prospectivity map through the integration of all evidential layers, (a) C-N log-log plot, (b) reclassified fractal-based 

evidential map, and (c) P-A plot.

4. Conclusion 

Highly mineralized zones in the fractal models have a strong and 
significant relationship with favorable regions on the synthesized 
evidence map shown in Fig. 9b. The main anomalous regions of the 
Fe2O3, TiO2, V, and main factor were located in the northern, central, 
and western parts of the area. The geological map shows that favorable 
areas are more common in rhyolite to rhyodacite, rhyolitic to 
rhyodacitic tuffs, colored marl, and low-level piedmont fan units. 
However, a high intensive anomaly of V was indicated in the NW part 
of the area, associated with moderate intensity of Fe2O3 and TiO2 

(Fig.7b). Correspondence between rock types and elemental 
distribution from the C-N method shows that rhyolite to rhyodacite 
rocks have a relationship with Fe anomalies, especially in the western 
and central parts of the area. 

According to the results of the prospectivity layers and integrated 
map, some areas can be introduced as new anomalies in the region. 
Especially some anomalies in the NE part of the region 

  Another point that should be mentioned is that the synthesized 
evidence map with the multi-class index overlay map could depict 

favorable zones with higher efficiency in comparison to each evidence. 
Thus, this criterion can be cast in a geospatial database as a powerful 
footprint in Fe-bearing exploration and needs to incorporate geological 
and geophysical criteria to amplify the final synthesized evidence map 
with higher ore prediction rate and lower occupied area as favorable 
regions. 
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