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A B S T R A C T 

 

Ventilation network design is done in manual and computerized methods. A computerized method is based on mathematical approximate 
methods. Several algorithms were presented in mathematical approximate methods for analyzing water distribution and ventilation networks. 
Hardy Cross method is the most common model of the mathematical approximate method for analyzing ventilation networks in mine. For 
faster convergence to at the final result of Hardy Cross method were presented other models such as Wang model, conflation model, and 
Newtonian models (First, third and sixteenth). An initial review of the Hardy Cross method and its modified models is performed in this 
paper. Then first, third, and sixteenth modified models of Newtonian are presented for more accurate analysis of ventilation networks in 
mines. Finally, the second conflation model will be presented as the fastest modified model of the Hardy Cross method to achieve the final 
result. 
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1. Introduction 

Ventilation network design of mines is done in manual and 
computerized methods. The computerized method is based on 
mathematical approximate methods. If the purpose of ventilation 
network analysis is the effective investigation of one or more fans in an 
underground space network, then it is better used mathematical 
approximate methods. Several algorithms were presented in 
mathematical approximate methods for analyzing water network 
distribution [1-22] and ventilation networks [23-42]. The first 
mathematical equation was proposed by Hardy Cross for calculating of 
flow intensity error of each ring [1]. Although this method was proposed 
for analyzing water distribution networks, this equation was later used 
by Wang for analyzing ventilation networks and was corrected by him 
[23, 38]. Also, for faster convergence to the final result of the Hardy 
Cross method were presented other models such as the spatial ring 
method [33], conflation method [39], and Newtonian methods [18]. In 
mathematical approximate methods should be distributed hypothetical 
flow intensity with hypothetical directions in each branch of ventilation 
network according to node law. Then, using ventilation network fans 
and mathematical approximate methods are calculated the error 
quantity of each ring in the ventilation network and then airflow 
intensity is corrected for each branch. Correction operations of airflow 
intensity based on mathematical approximate methods must be 
repeated several times until of calculation error of each ring is become 
less or equal to calculation accuracy. Using mathematical approximate 
methods for solving large-scale networks by humans is almost 
impossible, so using the computer for solving them is essential. 
Numerous computerized software is provided for analyzing ventilation 
networks, one of the most famous them is the Ventsim software. This 
software was designed based on the Hardy Cross method [34-39]. 

2. Review of the Hardy Cross Method and its corrected 
models 

2.1. Hardy Cross Method (HCM) 

One of the most common mathematical approximate methods for 
analyzing ventilation networks in mines is the Hardy Cross method. The 
famous Hardy Cross method was presented in 1936 and it is calculated 
according to Equation (1). In this method, the error quantity of flow 
intensity is calculated in each ring [1]. 
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Q : Ring flow intensity error (m3/s) 

iQ : Flow intensity of each branch (m3/s) 

i
R

: Resistance of each branch (KMurgue) 

iP : Pressure loos of each branch (mmH2o) 
The problem-solving stages of the Hardy Cross method are as follows: 
Stage 1: 
 According to the node law, for each branch of the ventilation 

network is assumed hypothetical flow intensity. 
Stage 2:  
Identification of useful rings in the ventilation network by equation 2 

and selection hypothetical directions for them. 
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RN : Number of rings 
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BN : Number of branches 

UN : Number of underground nodes 
Stage 3:  
Calculation of Pressure loos in each branch was calculated according 

to equation 3. 

(3) 2P R Q   

Stage 4: 
Calculation of error quantity of flow intensity in each ring was 

calculated according to equation (1). If the airflow direction in a branch 
with airflow direction in its ring was the same, therefore the pressure 
loos of its branch has appeared with a positive sign in the Hardy Cross 
equation. In otherwise it has appeared with a negative sign in this 
equation. Also, the denominator sign in this equation will always appear 
with a positive sign.  

Stage 5: 
Calculation of new flow intensity of ventilation network branches, at 

this stage has investigated the effect of each ring in each branch and then 
the positive or negative sign of each ring is determined and finally, the 
flow intensity of each branch with the error quantity of its ring are 
summed with together. If the new flow intensity of a branch was 
negative therefore the flow direction of a branch for the next iteration 
must be reversed. 

 Stage 6: 
The above operations from the third stage to the fifth stage must be 

repeated several times until the calculation error of each ring becomes 
less or equal to the calculation accuracy. 

For a better understanding of the Hardy Cross method pay attention 
to figure 1. Two fans with productive pressure 80 (kg/m2) and 100 
(kg/m2) exist in this model. This hypothetical model consists of three 
surface nodes (a, c, d) and an underground node (b). At first, this 
network is simulated with Ventsim software and then its results are 
compared with the manual Hardy Cross method. The final results of the 
Ventsim software simulation for flow intensity distribution of each 
branch in the ventilation network are presented in figure 2. 

Flow intensity analysis of each branch in mathematical approximate 
methods needs intensity of hypothetical flows in ventilation network. 
This intensity of hypothetical flows along with useful rings of the 
network is presented in figure 3. According to figure 3, mathematical 
calculations of the first iteration in the Hardy Cross method are as 
follows and its results are presented in figure 4. Also, the results of other 
stages are reported in table 1. If the accuracy of calculations is assumed 
10-5, therefore iteration number of calculations in this method has 
become 24. The final results of this method are completely the same as 
the results of Ventsim software. According to stage 5, if airflow intensity 
in a branch became negative, therefore airflow direction in that branch 
before the next stage must be inversed and its quantity has become 
positive. In other words, in this method, the airflow direction in each 
branch of the ventilation network is variable for all iterations. 

 

Figure 1. Hypothetical ventilation network [38] 

   

 

Figure 2. Airflow intensity distribution with using of Ventsim software 

 

 

Figure 3. The intensity of hypothetical flows 
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Figure 4. The calculation results of the first iteration in the Hardy Cross method  

 
Table 1. The results of the Hardy Cross method  

Description Q
bc

 Q
ab

 Q
bd

 
1

Q  
2

Q  

Iteration 1 12.5 -16.884615 -4.384615 10.5 -10.38462 
Iteration 2 7.276241 9.232893 1.956652 -5.223759 2.427963 
Iteration 3 6.621770 13.057880 6.436110 -0.654471 -4.479459 
Iteration 4 4.754876 10.472348 5.717472 -1.866894 0.718639 
Iteration 5 4.882797 11.684227 6.801431 0.127920 -1.083959 
Iteration 10 4.168146 11.183225 7.015080 -0.049903 0.008763 
Iteration 15 4.155717 11.203138 7.047421 0.000424 -0.002244 
Iteration 20 4.154099 11.202076 7.047977 -0.000112 1.9E-05 
Iteration 24 4.154070 11.202115 7.048045 -0.00001 0.000002 

2.2. Wang model of Hardy Cross Method (WM) 

The correction of Wang is related to the fourth stage of the Hardy 
Cross method. In this method, the error quantity of the flow intensity in 
each ring is calculated according to equation (4). This method was 
presented by Wang in 1982 [23].    
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kib : Fundamental matrix element of ring (-1, 0, 1) 

niP : Natural ventilation pressure  

FiP : Productive pressure of the fan  
For a better understanding of Wang's model of the Hardy Cross 

method pay attention to figure 3. According to figure 3, mathematical 
calculations of the first iteration in this method are as follows and its 
results are presented in figure 5. Also, the results of other stages are 
reported in table 2. If the accuracy of calculations is assumed 10-5, 
therefore the iteration number of calculations in this method is 24. The 
final results of this method are completely the same as the results of 
Ventsim software. In this method, the airflow direction in each branch 
of the ventilation network is fixed for all iterations. 
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Figure 5. The calculation results of the first iteration of the Wang model  

 
Table 2. The results of the Wang model 

Description Q
bc

 Q
ab

 Q
bd

 
1

Q  
2

Q  

Iteration 1 12.5 -16.884615 -4.384615 10.5 -10.38462 
Iteration 2 7.276241 -9.232893 -1.956652 -5.223759 2.427963 
Iteration 3 6.621770 -13.057880 -6.436110 -0.654471 -4.479459 
Iteration 4 4.754876 -10.472348 -5.717472 -1.866894 0.718639 
Iteration 5 4.882797 -11.684227 -6.801431 0.127920 -1.083959 
Iteration 10 4.168146 -11.183225 -7.015080 -0.049903 0.008763 
Iteration 15 4.155717 -11.203138 -7.047421 0.000424 -0.002244 
Iteration 20 4.154099 -11.202076 -7.047977 -0.000112 1.9E-05 
Iteration 24 4.154070 -11.202115 -7.048045 -0.00001 0.000002 

2.3. Conflation model of Hardy Cross Method (CM) 

The most modified models of the Hardy Cross method have 
represented that their corrections were done for the fourth and fifth 
stages of the Hardy Cross method. Also, these two stages are 
independent of each other. But in the conflation model that was 
presented by Elahi in 2015, these two stages are dependent on each 
other. In other words, after calculating the first ring error quantity 
should be performed flow intensity correction of each branch of the first 
ring and then the second ring error quantity is calculated [39]. 

For a better understanding of the conflation model of the Hardy 
Cross method pay attention to figure 3. According to figure 3, 
mathematical calculations of the first iteration in this method are as 
follows and its results are presented in figure 6. Also, the results of other 
stages are reported in table 3. If the accuracy of calculations is assumed 
10-5, therefore the iteration number of calculations in this method 

becomes 14. The final results of this method are completely the same as 
the results of Ventsim software. According to stage 5, if airflow intensity 
in a branch became negative, therefore airflow direction in that branch 
before the next stage must be inversed and its quantity becomes positive. 
In other words, in this method, the airflow direction in each branch of 
the ventilation network is variable for all iterations. 
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Figure 6. The calculation results of the first iteration of the conflation  

 
Table 3. The results of the conflation model 

Description Q
bc

 Q
ab

 Q
bd

 
1

Q  
2

Q  

Iteration 1 12.5 13.330645 -0.83065 10.5 -6.830645 
Iteration 2 8.192662 14.746446 6.55378 -4.307338 -5.723139 
Iteration 3 5.113860 11.654572 6.54071 -3.078802 0.013072 
Iteration 4 4.471053 11.361613 6.89056 -0.642807 -0.349848 
Iteration 5 4.247772 11.248181 7.00041 -0.223281 -0.109849 
Iteration 10 4.154277 11.202220 7.04794 -0.000501 -0.000258 
Iteration 14 4.154069 11.202119 7.04805 -0.000004 -0.000002 

2.4. Newtonian models of Hardy Cross Method  

These methods were presented by Moosavian and Jaefarzadeh for 
water distribution networks in 2014 [18, 43-44]. 

2.4.1. First-Order Newtonian model (FONM) 
The first-order Newtonian model of the Hardy Cross method was 

presented based on various matrixes and is calculated according to 
equations 5-10 [18]. 

(5) 

 

(6) 
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(10) 
 

For a better understanding of this Newtonian model of the Hardy 
Cross method pay attention to figure 3. According to figure 3, the first 
stage of mathematical calculations of this method is as follows: 
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It is observed that the first stage results of this Newtonian method 

with the Hardy Cross method are not equal. Therefore, the correction 
of this Newtonian method is necessary for the analysis of ventilation 
networks. 

 2.4.2. Third-Order Newtonian model (TONM) 
The third-order Newtonian model of the Hardy Cross method was 

presented based on various matrixes and is calculated according to 
equations 5-8 and 11-15 [18]. 
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According to the results of section 2.4.1, the correction of this 

Newtonian method is necessary for the analysis of ventilation networks. 

2.4.3. Sixteenth-Order Newtonian model (SONM)  
The Sixteenth-order Newtonian model of the Hardy Cross method 

was presented based on various matrixes and is calculated according to 
equations 5-8 and 16-25 [18]. 
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According to the results of section 2.4.1, the correction of this 
Newtonian method is necessary for the analysis of ventilation networks. 

3. Newtonian corrected models of Hardy Cross Method  

3.1. First-Order Newtonian corrected model (FONCM)  

This new method is calculated based on equations (26 and 27). 
Therefore, for a better understanding of the first-order Newtonian 
corrected model of the Hardy Cross method pay attention to figure 3. 
According to figure 3, mathematical calculations of the first iteration in 
this method are as follows and its results are completely the same as in 
figure 5. Also, the results of other stages are completely the same as in 
table 2. If the accuracy of calculations is assumed 10-5, therefore the 
iteration number of calculations in this method becomes 24. The final 
results of this method are completely the same as the results of Ventsim 
software. In this method, the airflow direction in each branch of the 
ventilation network is fixed for all iterations. 
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3.2. Third-Order Newtonian corrected model (TONCM) 

This new method is calculated based on equations (28-32). Therefore, 
for a better understanding of the third-order Newtonian corrected 
model of the Hardy Cross method pay attention to figure 3. According 
to figure 3, mathematical calculations of the first iteration in this method 
are as follows and its results are presented in figure 7. Also, the results 
of other stages are reported in table 4. If the accuracy of calculations is 
assumed 10-5, therefore the iteration number of calculations in this 
method becomes 19. The final results of this method are completely the 
same as the results of Ventsim software. In this method, the airflow 
direction in each branch of the ventilation network is fixed for all 
iterations. 
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Figure 7. The calculation results for the first iteration of the corrected model of 
the third-order Newtonian model  

 
Table 4. The results for the corrected model of the third-order Newtonian model  

Description Q
bc

 Q
ab

 Q
bd

 
1

Q  
2

Q  

Iteration 1 -14.849390 14.846602 -0.002788 16.849390 6.002788 
Iteration 2 -3.938346 -4.381485 -8.319831 -10.911043 8.317043 
Iteration 3 1.202404 -7.191987 -5.989583 -5.140750 -2.330248 
Iteration 4 -2.321735 -1.56493 -3.886665 3.524139 -2.102918 
Iteration 5 -54.690493 99.589293 44.898801 52.368757 -48.785466 
Iteration 6 -13.477896 16.854734 3.376838 41.212597 41.521963 
Iteration 7 -2.186521 -7.882689 -10.069209 -11.291375 13.446047 
Iteration 8 2.498341 -10.391278 -7.892938 -4.684861 -2.176272 
Iteration 10 4.000436 -11.090542 -7.090106 -0.353968 -0.134917 
Iteration 15 4.153716 -11.20185 -7.048134 -0.000836 -0.000197 
Iteration 19 4.154064 -11.202116 -7.048052 -0.000006 -0.000001 

3.3. Sixteenth-Order Newtonian corrected model (SONCM) 

This new method is calculated based on equations (33-42). Therefore, 
for a better understanding of the sixteenth-order Newtonian corrected 
model of the Hardy Cross method pay attention to figure 3. According 
to figure 3, mathematical calculations of the first iteration in this method 
are as follows and its results are presented in figure 8. Also, the results 
of other stages are reported in table 5. If the accuracy of calculations is 
assumed 10-5, therefore the iteration number of calculations in this 
method becomes 8. The final results of this method are completely the 
same as the results of Ventsim software. In this method, the airflow 
direction in each branch of the ventilation network is fixed for all 
iterations. 
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Figure 8. The calculation results for the first iteration of the corrected model of 
the sixteenth-order Newtonian model 

 
Table 5. The results for the corrected model of the sixteenth-order Newtonian 

model  

4. Second conflation model of Hardy Cross Method (SCM) 

According to the presented results, the iteration number of 
mathematical calculations for the sixteenth-order Newtonian modified 
model and conflation model is 8 and 14, respectively. But sixteenth-
order Newtonian modified model of the Hardy Cross method has 
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reached the final result by solving 10 mathematical equations. Increasing 
of equation number is caused to add volume and time of calculations in 
each stage. From the point of view of users, this function can cause 
public acceptance lack. But in conflation model is solved with a simple 
mathematical equation. Thus, this method from the point of view users 
will have more acceptance. 

Description Q
bc

 Q
ab

 Q
bd

 
1

Q  
2

Q  

Iteration 1 4.394307 -9.247455 -4.853149 2.939392 -6.231291 
Iteration 2 4.311913 -11.012665 -6.700753 0.109723 -0.002345 
Iteration 3 4.196317 -11.167392 -6.971075 0.015022 0.003001 
Iteration 4 4.164607 -11.194732 -7.030126 0.002507 0.001211 
Iteration 5 4.15664 -11.200457 -7.043817 0.000466 0.000362 
Iteration 6 4.154689 -11.201734 -7.047045 0.000094 0.000097 
Iteration 7 4.154217 -11.202028 -7.047812 0.000020 0.000025 
Iteration 8 4.154103 -11.202097 -7.047994 0.000004 0.000006 

  Accordingly, a new method is presented based on the conflation 
model. The name of this new method is the second conflation model of 
the Hardy Cross method. The flowchart of this method is presented in 
figure 9. The problem-solving stages of this method are as follows: 

Stage 1: 
 According to node law, for each branch of the ventilation network is 

assumed hypothetical flow intensity. 
Stage 2:  
Identify useful rings in the ventilation network under equation 2 and 

select hypothetical directions for them. 
Stage 3:  
Identify common and uncommon branches in between useful rings 
Stage 4: 
Production of an additional independent ring for uncommon 

branches in ventilation network, error quantity calculation of flow 
intensity of independent ring based on equations (43 or 44 or 45), and 
new flow intensity calculation of uncommon branches based on 
equations (46 or 47).  
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Stage 5: 
Error quantity calculation of flow intensity of first useful ring based 

on equation (43 or 44 or 45), Investigation of this ring influence in 
ventilation network and new flow intensity calculation of ventilation 
network branches based on equations (46 or 47). Also, error quantity 
calculation of flow intensity of other useful rings and new flow intensity 
calculation of ventilation network branches. 

Stage 6: 
The above operations from the fourth stage to the fifth stage must be 

repeated several times until of calculation error of each ring is become 
less or equal to the calculation accuracy. 

 
Figure 9. The flowchart of the second conflation model of the Hardy Cross 

method 

For a better understanding of the second conflation model of the 
Hardy Cross method pay attention to figure 3. In figure 3 exist useful 
two rings. Accordingly, Branch (ab) is a common branch, and branches 
(bc, bd) are uncommon. According to figure 3, mathematical 
calculations of the first iteration in this model based on equation (43) 
are as follows and its results are presented in figure 10. Also, results of 
other stages are reported in table 6. If the accuracy of calculations is 
assumed 10-5, therefore the iteration number of calculations in this 
method becomes 8. The final results of this method are completely the 
same as the results of Ventsim software. In this method, the airflow 
direction in each branch of the ventilation network is variable or fixed 
for all iterations. 

 

Figure 10.a. independent ring location in ventilation network 

 

 

Figure 10.b. The calculation results for the first iteration of the independent ring 
in the second conflation model  
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Figure 10.c. location of useful rings in ventilation network 
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Figure 10.d. The calculation results for the first iteration of the first useful ring in 
the second conflation model  
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Figure 10.e. The calculation results for the first iteration of the second useful ring 
in the second conflation model 

 
Table 6. The results of the second conflation model 

Description Q
bc

 Q
ab

 Q
bd

 
1

Q  
2

Q  
3

Q  

Iteration 1 9.763952 14.508653 -4.744701 -3.923077 11.687029 -6.821624 
Iteration 2 3.739162 11.068324 7.329162 -3.694906 -2.329884 1.110445 
Iteration 3 4.189508 11.219410 7.029902 0.341388 0.108959 -0.042127 
Iteration 4 4.149715 11.200007 7.050292 -0.025753 -0.014040 0.005363 
Iteration 5 4.154601 11.202378 7.047777 0.003169 0.001716 -0.000655 
Iteration 6 4.154001 11.202087 7.048085 -0.000389 -0.000211 0.000080 
Iteration 7 4.154075 11.202122 7.048047 0.000048 0.000026 -0.000010 
Iteration 8 4.154066 11.202118 7.048052 -0.000006 -0.000003 0.000001 

 

5. Other examples 

5.1. Example 2   

This example is based on figure 3. The accuracy of calculations in this 
example is assumed 10-15. The final results of the Ventsim software 
simulation are the same as in figure 2. Accordingly, the results of Hardy 
Cross methods are reported in table 7. According to table 7, the second 
conflation model of the Hardy Cross method is considered the fastest 
method.  

Table 7. The results of Hardy Cross methods for example 2  

Description Iteration 
Hardy Cross method (HCM) 62 
Wang model (WM) 62 
Conflation model (CM) 32 

Second conflation model (SCM) 19 
First-order Newtonian corrected model (FONCM) 62 
Third-order Newtonian corrected model (TONCM) 38 
Sixteenth-order Newtonian corrected model (SONCM) 24 

5.2. Example 3   

This example is based on figure 11. This underground space has been 
formed from four shafts, four drifts, and three cross-cuts. Each branch 
resistance of this ventilation network is according to table 8. Two fans 
with productive pressure 80 (kg/m2) and 100 (kg/m2) exist in this model. 
The final results of the Ventsim software simulation are presented in 
figure 12. The intensity of hypothetical flows and network rings is 
presented in figure 13 and table 9. The mathematical calculation results 
of the first iteration of Hardy Cross methods are presented in table 10. 
If the accuracy of calculations is assumed 10-13, therefore the iteration 
number of calculations in Hardy Cross methods will become according 
to table 11. The final results of these methods are completely the same 
as the results of Ventsim software. According to table 11, the second 
conflation model of the Hardy Cross method is considered the fastest 
method.  

 

Figure 11. The second hypothetical ventilation network [39] 

 
Table 8. Mine work resistance of second ventilation network [39] 

Description Resictance (kgs2/m8) 

ab 0.10 
bc 0.12 
cd 0.20 
Ce 0.15 
be 0.18 
Ef 0.12 
cg 0.17 
ge 0.22 
hg 0.12 
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Figure 12. Airflow intensity distribution with using of Ventsim software for 
second ventilation network [39]  

 

Figure 13. The intensity of the hypothetical flows for the second ventilation 
network [39]  

 
Table 9. The rings of the second ventilation network 

Num Ring Description 
1 independent d-c-g-h 
2 useful a-b-c-d 
3 useful b-e-c-b 
4 useful a-b-e-f 
5 useful e-c-g-e 
6 Useful h-g-e-f 

 
Table 10. The first stage results of the Hardy Cross methods for example 3  

Description HC WM=FONCM CM SCM TONCM SONCM 
Qab 31.170026 31.170026 28.136062 28.337808 21.088475 26.776255 
Qbc 17.428868 17.428868 14.806241 15.044877 8.688756 13.744271 
Qcd 9.109195 9.109195 9.109195 8.751842 1.895921 5.989498 
Qce 7.621066 7.621066 5.411307 5.330873 5.811775 6.766722 
Qbe 13.741159 13.741159 13.329821 13.292932 12.399719 13.031984 
Qef 27.006143 27.006143 24.196749 24.243104 22.432556 13.031984 
Qcg 0.698606 0.698606 0.285739 0.962161 0.981061 0.988051 
Qge 5.643919 5.643919 5.455621 5.619298 4.221062 4.858248 
Qhg 4.945313 4.945313 5.169882 4.657137 3.240001 3.870197 
δQ1 0 0 0 -0.751656 0 0 
δQ2 7.109195 7.109195 7.109195 7.503498 0.104079 -0.060671 
δQ3 -1.319672 -1.319672 1.302955 1.458621 -0.207165 -0.015786 
δQ4 -4.060831 -4.060831 -1.026867 -0.834311 1.192554 0.014355 
δQ5 2.301394 2.301394 2.714261 2.789495 -2.018939 0.069004 
δQ6 -0.054687 -0.054687 0.169882 0.408793 1.759999 0.125216 

 

Table 11. The results of the Hardy Cross methods for example 3  

Description Iteration 

Hardy Cross method (HCM) 534 
Wang model (WM) 534 
Conflation model (CM) 277 
Second conflation model (SCM) 18 
First-order Newtonian corrected model (FONCM) 534 
Third-order Newtonian corrected model (TONCM) 302 
Sixteenth-order Newtonian corrected model (SONCM) 258 

5.3. Example 4   

This example is a case study of the Bozorg mine of eastern Alborz 
Coal Company. One of the ventilation networks of Bozorg mine is based 
in figure 14. The main opening of this mine is an adit in branch 2-1, 
ventilation channel is in branch 20-19 and the name of the main fan is 
VOD21. This fan is an axial fan and its catalog is according to figure 15. 
VOD21 can produce air pressure between 60 (kg/m2) to 400 (kg/m2). 
Based on figure 14, the minimum intensity of network flow is equal to 
19.53 m3/s, the total resistance 0.601673 KMurge, and the minimum 
pressure loss 230 kg/m2. Based on figure 15, the nearest angle of the fan 

blade is 15o with productive pressure of 280 water millimeters. This 
intensity of hypothetical flows along with network rings is presented in 
figure 16 and table 12. Also, the average resistance of each branch in this 
ventilation network is equal to 0.1 (kgs2/m8). Therefore, the productive 
flow intensity of VOD21 in the ventilation channel is become according 
to table 13. Accordingly, the performance point of the ventilation 
network is (21.57, 280). This performance point exists in the catalog of 
VOD21. Also, the accuracy of calculations is assumed 10-12. According to 
table 13, the second conflation model of the Hardy Cross method is 
considered the fastest method.  

 
Figure 15. The catalog of VOD21 [45] 

 

 
Figure 14. The minimum intensity of flows in the Bozorg mine ventilation 

network [40] 
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Figure 16. The intensity of hypothetical flows in example 4 

 

Table 12. The rings of the third ventilation network 

Num Ring Description 
1 independent 1-20-13-14-2-1 
2 useful 64-60-43-40-48-64 
3 useful 48-49-51-64-48 
4 useful 35-38-36-35 
5 useful 7-5-3-7 
6 useful 101-21-31-101 
7 useful 56-59-60-64-51-52-55-56 
8 useful 32-85-43-40-39-38-35-32 
9 useful 52-73-22-59-56-55-52 
10 useful 39-100-101-31-22-73-52-51-49-48-40-39 
11 useful 11-13-14-21-101-100-39-38-35-32-11 
12 useful 89-55-52-51-64-60-43-85-89 
13 useful 11-32-85-89-91-100-101-31-21-14-3-2-3-5-7-11 
14 useful 20-13-11-7-3-2-1-20 
15 useful 89-91-100-39-40-48-49-51-52-55-89 

 
  Table 13. The results of the Hardy Cross methods for example 4  

Description Flow intensity Iteration Time (s) 

Hardy Cross method (HCM) 21.572460 110 0.00 
Wang model (WM) 21.572460 110 0.00 

Conflation model (CM) 21.572460 60 0.00 
Second conflation model (SCM) 21.572460 44 0.00 
First-order Newtonian corrected 

model (FONCM) 
21.572460 110 0.031 

Third-order Newtonian corrected 
model (TONCM) 

21.572460 73 0.032 

Sixteenth-order Newtonian 
corrected model (SONCM) 21.572460 50 0.047 

         

5.4. Example 5   

This example is quite similar to example 4. But with this difference, 
this ventilation network has been used for three fans. Fans exist in 
branches 20-13, 39-38, and 59-60 respectively, the productive pressure of 
each fan is equal to 100 (kg/m2). If the accuracy of calculations is 
assumed 10-12, therefore productive flow intensity in the ventilation 
channel is according to table 14 and the second conflation model of the 
Hardy Cross method is considered as the fastest method. 

  Table 14. The results of Hardy Cross methods for example 5  

Description Flow intensity Iteration Time (s) 

Hardy Cross method (HCM) divergent ∞ ∞ 
Wang model (WM) divergent ∞ ∞ 

Conflation model (CM) 12.234138 227 0.016 
Second conflation model 

(SCM) 12.234138 58 0.00 

First-order Newtonian 
corrected model (FONCM) divergent ∞ ∞ 

Third-order Newtonian 
corrected model (TONCM) 12.262434 248 0.109 

Sixteenth-order Newtonian 
corrected model (SONCM) 

12.234138 270 0.25 

6. Results and discussions 

The ventilation network design is generally done using the 
computerized method according to section 1. The computerized method 
is designed based on mathematical approximate methods such as the 
Hardy Cross method and its corrected models.  

In Section 2, the Hardy Cross method was presented for analyzing of 
water distribution networks but this method was later used for analyzing 
of ventilation networks. The Hardy Cross method calculates flow 
intensity error of each ring of ventilation network based on equation 1 
and then flow intensity correction of each branch of ventilation network 
is done using equation 46 and the flowchart of this method has been 
presented in figure 17. Also, the principles of modified models of the 
Hardy Cross method such as Wang model, conflation model, first, third 
and sixteenth- order Newtonian models investigated. In normal 
conditions, the Hardy Cross method, Wang model, and conflation 
model are congruous with the principles of ventilation design. But 
Newtonian models of the Hardy Cross method are not perfectly 
congruous with the principles of ventilation design because those were 
designed for analyzing water networks. In these networks, the overall 
flow intensity is constant that this model is one of the mine conditions.  

 
Figure 17. The flowchart of the Hardy Cross method 

In Section 3 is observed that corrections must be done on first, third, 
and sixteenth-order Newtonian models because these models do not 
support all conditions of the mine. Therefore, this paper produced 
corrected models of Newtonian models for analyzing all ventilation 
networks. 

In Section 4, a new method is presented for faster convergence of the 
Hardy Cross method to the final result. The name of this method is the 
second conflation model of the Hardy Cross method. This new method 
is full congruous with the principles of ventilation design. 
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In Section 5 is observed that various examples are presented to 
compare the Hardy Cross methods to better understand their 
performance. The results of this section indicate that the second 
conflation model of the Hardy Cross method has the best performance 
in terms of time and iteration number of calculations. Also, the ratio of 
calculation iteration number of Hardy Cross methods to second 
conflation model is reported in Table 15. According to table 15, the 
second conflation model is selected as the fastest method. 
  Table 15. The ratio of calculation iteration number of Hardy Cross methods to 

SCM   

Description 
Example 

1 
Example 

2 
Example 

3 
Example 

4 
Example 

5 
HCM 3.00 3.26 29.67 2.50 ∞ 
WM 3.00 3.26 29.67 2.50 ∞ 
CM 1.75 1.68 15.39 1.36 3.91 

SCM 1.00 1.00 1.00 1.00 1.00 
FONCM 3.00 3.26 29.67 2.50 ∞ 
TONCM 2.38 2.00 16.78 1.66 4.28 
SONCM 1.00 1.26 14.33 1.14 4.66 

7. Conclusion 

In the Hardy Cross method, Airflow direction in each branch of the 
ventilation network is variable for all iterations. The final results of the 
fifth example show that the Hardy Cross method is become divergent. 
Therefore, the correction of this method is necessary for the analysis of 
ventilation networks. 

Wang's model was presented for using of easy of Hardy Cross method 
and the possibility of a better use of this model in the analysis of 
ventilation networks based on equation 4. Airflow direction in each 
branch of the ventilation network is fixed for all iterations in this 
method. The final results of the fifth example show that Wang’s model 
is divergent. Therefore, the correction of this method is necessary for 
the analysis of ventilation networks. 

The conflation model was designed based on simultaneous solving of 
the fourth and fifth stages of the Hardy Cross method. In other words, 
these two stages are interdependent and not independent. The findings 
results of this report indicate that this modified model is always 
convergent. According to the results of this paper, this method can 
reduce the iteration number and time performs of calculations in the 
Hardy Cross method. According to table 13, this method can reduce the 
iteration number of calculations in the Hardy Cross method to 45%. 
Therefore, the conflation model is a reliable model for reducing of 
iteration number of mathematical calculations in the Hardy Cross 
method.  

The first-order Newtonian model was presented for analyzing water 
distribution networks but this method can be used for analyzing 
ventilation networks. For using this method in the analysis of ventilation 
networks is necessary to this method is corrected. The corrections of this 
method were done in section 3.1. The final results of the fifth example 
show that the first-order Newtonian corrected model has become 
divergent. Therefore, the correction of this method is necessary for the 
analysis of ventilation networks. 

The third-order Newtonian model was presented for analyzing water 
distribution networks. For using this method in the analysis of 
ventilation networks are necessary to be corrected. The corrections of 
this method were done in section 3.2. The final results of this paper show 
that the third-order Newtonian corrected model can become 
convergent. This method is able to reduce the iteration number of 
calculations in the Hardy Cross method. According to table 13, this 
method can reduce the iteration number of calculations in the Hardy 
Cross method to 35% but the time of calculations has increased.  

The Sixteenth-order Newtonian model was presented for analyzing 
water distribution networks. For using this method in the analysis of 
ventilation networks, it is necessary to be corrected. The corrections of 
this method were done in section 3.3. The final results of this paper show 
that the sixteenth-order Newtonian model can become convergent. This 
method is able to reduce the iteration number of calculations in the 
Hardy Cross method. According to table 13, this method can reduce the 

iteration number of calculations in the Hardy Cross method to 55% but 
the time of calculations has increased. Also, the Maximum time of 
mathematical calculations is related to the sixteenth-order Newtonian 
corrected model. 

The second conflation model of the Hardy Cross method has been 
designed based on three principles. The first principle is based on the 
conflation model. The second principle is based on the identification of 
common and uncommon branches. The third principle is based on the 
identification of independent and useful rings. These principles have 
been reported in section 4. According to the results of this paper, this 
method is able to reduce the iteration number and time performs of 
calculations in the Hardy Cross method. Also, the fastest method based 
on the iteration number and time performs of mathematical calculations 
is the second conflation model of the Hardy Cross method. 
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