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A B S T R A C T 

 

One of the significant tasks in undercut slopes is determining the maximum stable undercut span. According to the arching effect theory, 
undercut excavations cause the weight of the slope to be transmitted to the adjacent stable regions of the slope, which will increase the stability 
of the slope. In this research, determining the maximum width of undercut slopes was examined through numerical modeling in the FLAC3D 
software. For this purpose, a series of undercut slope numerical models, with various slope angles, horizontal acceleration coefficients, and 
counterweight balance widths was conducted, and the results were validated using the corresponding experimental test results. The effect of 
each parameter on the maximum stable undercut span was investigated with an artificial neural network, where a multi-layer perceptron 
(MLP) model was performed. The results showed good accuracy of the proposed MLP model in the prediction of the maximum stable 
undercut span. In addition, a sensitivity analysis demonstrated that the dip angle and horizontal acceleration coefficient were the most and 
least effective input variables on the maximum stable undercut span, respectively. 
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1. Introduction

The arching effect is a significant phenomenon in geo-materials, in 
which loads tend to transfer from a yielding portion of the media to 
adjacent stationary portions, leading to the redistribution of stress [1]. 
Janssen [2] investigated the development of arching in granular silos in 
1895. He illustrated that the applied horizontal pressure to a silo wall 
would increase nonlinearly with increasing the depth and developed the 
theory of arching. In 1943, the formation of arches in geo-materials was 
investigated by Terzaghi [3] through a series of physical models. Later, 
this phenomenon was investigated in various geotechnical engineering 
problems, such as retaining walls, underground spaces, slopes, and so 
on. In 1986, Bosscher and Gray [4] examined the arching effect in slopes 
by carrying out some experimental tests.  

The word undercut slopes refers to such a slope in whose front 
portion the excavation process is performed. Determining the maximum 
stable undercut span is an important issue. This span depends on various 
parameters, such as strength parameters of soil and the geometry of the 
slope [5]. Pipatpongsa et al. [6], based on the arching effect, suggested a 
procedure for the mining processes in the Mae-Moh open-pit mine, as a 
technique in increasing the stability of undercut slopes without 
reinforcement. Following this technique, Khosravi et al. [7] studied the 
arching effect in undercut slopes by conducting a series of physical 
modelings. They carried out experimental undercut slope tests under 1g 
and centrifugal conditions. The results of their study indicated that a 
fraction of yielded soil weight would be transferred to the adjacent 
stable portions through the undercut process [8, 9]. They proposed that, 
for stabilizing undercut slopes, the counterweight balance method can 

be used as a new technique [10,11]. Recently, Khosravi et al. [12] 
performed a series of undercut slope centrifugal modelings and 
demonstrated that the arching phenomenon could occur even at higher 
stress levels. Ouch et al. [13] conducted numerical modeling on a soil 
block on a plane with low friction in two types of with and without side 
supports. They examined the influence of slope width and thickness as 
well as the number and position of shear pins on slope stability using 
experimental and numerical models [14-18]. 

In this research, the influence of slope angle, horizontal acceleration 
coefficient, and counterweight balance width was studied through a 
series of numerical modelings under pseudo-static loading. In the 
stability analysis under pseudo-static conditions, dynamic loads are 
replaced with static forces with components in both horizontal and 
vertical directions. Since the vertical component has a negligible impact 
on the stability of slopes, it was not considered in such an analysis [19]. 
In addition, the artificial neural network (ANN) was used in the 
interpretation of numerical simulations, and the results were discussed.  

2. Implication of an artificial neural network

An artificial neural network (ANN) consists of many data processing 
units named neurons. The network is skillful for simulating the 
performance of the human brain structure based on the trial and error 
method using neurons [20]. In an ANN model, the neurons are 
connected to each other. Generally, a neural network model is usually 
composed of at least three layers: an input layer, hidden layers, and an 
output layer. The schematic view of a typical neural network is 
presented in Fig. 1 [21]. 
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Fig. 1- Schematic view of a typical neural network [21]. 

In an ANN model, the major calculation process is performed in the 
hidden layers. Neurons in every layer are linked to neurons in the 
adjacent layer with a coefficient called weight (w). The transform 
function is used to transform the weighted summation of the input 
signal near a neuron and for calculating the output response of neurons. 
Two useful non-linear sigmoid transform functions are TANSIG and 
LOGSIG, which are commonly used in the neural network [22]. 
According to Fig. 1, the output of the input layer is used as an input 
signal for the hidden layers. The optimal number of neurons and hidden 
layers and also the amount of goal error are calculated based on the rule 
of trial and error [23]. In the first step, the artificial neural network is 
trained by a portion of the input data. Then, the network is verified by 
the portion of the input data. In the training procedure, the input signal 
is entered, and the output value is determined. Consequently, the error 
between the actual and predicted values can be calculated. According to 
this error, the weight is adjusted by starting from the output layer to the 
input layer. This technique is known as the algorithm of back-
propagation and is useful for executing the prediction model [21]. The 
multi-layer perceptron (MLP) was proposed by Rumelhart [24]. 
Usually, in this model, the input layer normalizes the input values. This 
type of data preparation and normalization improves network 
performance. This method of data normalization has been utilized by 
many researchers [25-28]. 

3. A review of physical modeling

In this study, a numerical investigation was established to complete 
the results of the pre-conducted physical modeling study [10]. The 
geometry of the physical model is illustrated in Fig. 2.  

Fig. 2- Geometry of the physical model [10]. 

The material properties of experimental tests are listed in Table 1. The 
values of cohesion measured by physical models range from 0.36 kPa to 
0.8 kPa for the used modeling material. The reason was that the cohesion 
was the most varied parameter due to uncertainties of the suction effect 
in the moist sand of the experimental model. Leelasukseree et al. [29] 
obtained an appropriate cohesion value of 0.8 kPa by comparing the 
numerical model results with those of the corresponding physical 
model.  

4. Numerical modeling

FLAC3D, which is based on the Lagrangian formulation and is 
appropriate for large deformation analysis, was used for numerical 
modeling in this study [30]. A schematic view of the numerical model is 

presented in Fig 3. The geometry of the numerical models kept exactly 
similar to that of physical models shown in Fig. 2.  

Table 1- Material properties of physical modeling [10,29]. 

Density 1395 kg/m3 

Specific density 2.65 
Elastic modulus 4 Mpa 
Poisson’s ratio 0.25 

Maximum void ratio 1.132 
Minimum void ratio 0.711 

Water content 10 % 
Normal interface stiffness 1 GPa/m 
Shear interface stiffness 1 GPa/m 
Internal friction angle 41.5 ̊ 

Interface friction angle 18.5 ̊ 
Cohesion 0.8 kPa 
Adhesion 0.1 kPa 

Fig 3- A schematic view of the numerical model. 

The model was made of cubic elements with a size of 2 cm. The model 
consisted of two portions: the base portion with the sizes of W=100 cm 
and LT=40 cm and the slope portion with the sizes of W=100 cm and 
LS=60 cm. The thickness of the model was H=6 cm in both base and 
slope portions. In Fig 3, Cw denotes a counterweight balance width. The 
soil was considered as a Mohr-Coulomb material, and the constitutive 
criteria for base and side supports were linear elastic. The properties of 
the soil, measured in physical models (Table 1), were also used in 
numerical models. For each slope angle, the front central portion was 
excavated in the subsequent steps with a width of 4 cm. In each step of 
excavation, the width of the cut section was symmetrically increased 
toward the left and right sides of the model.  After each step, the 
numerical model was performed, and the unbalanced force was 
calculated. When the force approached zero, the numerical model 
reached a stable condition, followed by the subsequent step of 
excavation. If the unbalanced force did not approach zero, the slope was 
considered unstable, and the maximum width of undercut (Bf) was 
recorded. The numerically computed values for the width of the 
undercut span for different slope angles (α equal to 40º to 75º) in the 
static and pseudo-static conditions, with horizontal acceleration 
coefficients of Kh = 0, 0.1, 0.2, and 0.3, and counterweight widths of Cw = 
0, 10, 20, and 30 cm, are presented in Table 2. Note that, considering the 
total width of 1 m for the model, in slope dip angles (α) of 40 and 45 
degrees, the maximum stable undercut span in the absence of 
counterweight balance (Cw=0) was bigger than 40 cm. Hence, the 
counterweight balance with a width of 30 cm was not applicable.  

In Table 3, the numerical results under static conditions (Kh = 0) were 
compared with the results of physical models [10]. The good agreement 
between the results of numerical and physical models validated the 
simulation conducted in this study.  

The influences of slope dip angle (α), counterweight width (Cw), the 
horizontal acceleration coefficient (Kh), and the normalized free span 
(WFS/W) on the maximum normalized stable undercut span (BMS/WFS) 

W=1.00 m

WFS=0.60 m

0.20 m 

0.20 m

0.20 m 

Counterweights

H= 0.06 m

Potentiometers
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are shown in Table 4 and Fig 4. The free span is defined as the span 
between two counterweights (WFS=W-2Cw), as indicated in Fig 3.  

 
Table 2- The results of the numerical model in terms of the maximum stable 

undercut span (BMS: cm). 

Angle of 
slope 

(α: degree) 

Width of 
counterweight 

 (Cw: cm) 

Kh 

0 0.1 0.2 0.3 

40 
0 52 36 0.2 24 
10 56 36 28 24 
20 60 36 28 28 

45 
0 40 32 32 24 
10 40 32 28 24 
20 44 32 28 24 

50 

0 32 28 28 24 
10 32 28 24 24 
20 36 28 24 24 
30 40 32 24 24 

55 

0 28 24 28 20 
10 28 24 24 20 
20 32 24 24 20 
30 36 28 24 24 

60 

0 24 24 24 20 
10 24 24 20 20 
20 24 24 20 20 
30 28 28 20 24 

65 

0 24 20 24 20 
10 24 20 20 20 
20 24 20 20 20 
30 24 24 20 20 

70 

0 20 20 20 16 
10 20 20 20 16 
20 20 20 20 16 
30 20 20 20 20 

75 

0 20 20 20 4 
10 20 20 16 4 
20 20 20 16 4 
30 20 20 16 4 

 

Table 3- Comparison of the numerical and physical results under the static 
condition (Kh=0). 

Angle of slope 
(α: degree) 

Width of 
counterweight 

(Cw: cm) 

Maximum stable undercut span 
 (BMS: cm) 

Physical models [10] Numerical models 

40 0 50 52 

50 
0 35 32 

20 40 36 
30 45 40 

60 0 25 24 
70 0 20 20 

 

Table 4- Maximum normalized stable undercut span (BMS/WFS). 

Angle of 
slope 

(α: degree) 

Horizontal 
acceleration 

)hKcoefficient ( 

)/WFSWNormalized free span ( 
1 

(Cw=0 cm) 
0.8 

(Cw=10 cm) 
0.6 

(Cw=20 cm) 
0.4 

(Cw=30 cm) 

40 

0 0.52 0.7 1 --- 
0.1 0.36 0.45 0.6 --- 
0.2 0.28 0.35 0.533 --- 
0.3 0.24 0.3 0.467 --- 

45 

0 0.4 0.5 0.733 --- 
0.1 0.32 0.4 0.533 --- 
0.2 0.28 0.35 0.467 --- 
0.3 0.24 0.3 0.4 --- 

50 

0 0.32 0.4 0.6 1 
0.1 0.28 0.35 0.467 0.8 
0.2 0.24 0.3 0.4 0.7 
0.3 0.24 0.3 0.4 0.6 

55 

0 0.28 0.35 0.533 0.9 
0.1 0.24 0.3 0.4 0.7 
0.2 0.24 0.3 0.4 0.6 
0.3 0.2 0.25 0.333 0.6 

60 

0 0.24 0.3 0.4 0.7 
0.1 0.24 0.3 0.4 0.7 
0.2 0.2 0.25 0.333 0.6 
0.3 0.2 0.25 0.333 0.6 

65 

0 0.24 0.3 0.4 0.6 
0.1 0.2 0.25 0.333 0.6 
0.2 0.2 0.25 0.333 0.5 
0.3 0.2 0.25 0.333 0.5 

70 

0 0.2 0.25 0.333 0.5 
0.1 0.2 0.25 0.333 0.5 
0.2 0.2 0.25 0.333 0.5 
0.3 0.16 0.2 0.267 0.5 

75 

0 0.2 0.25 0.333 0.5 
0.1 0.2 0.25 0.333 0.5 
0.2 0.16 0.2 0.267 0.5 
0.3 0.04 0.05 0.067 0.1 

 

According to Fig 4, regardless of the slope angle, increasing the width 
of the counterweight, and therefore decreasing the free span made the 
slope more stable, leading to a wider undercut span. These results are in 
agreement with the results of physical models [10], confirming the 
application of counterweight balance as a useful method in stabilizing 
the undercut slopes. However, it is noticeable that the influence of 
counterweight balance is ignorable at slope angles of greater than 60 
degrees. 

 

 

 

 
Fig 4- Numerical results revealing maximum undercut span versus free span. 

 
The contour of failure modes in the numerical model with α=50°, 

Kh=0, and Cw=0 cm, is shown in Fig. 5. As this figure shows, the shear 
cracks initiate from the corners of the undercut area, while other regions 
are under the tensile stress. The symbols p and n in the legend of this 
figure represent the model state in the previous and the current steps, 
respectively. 
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Fig. 5- The contour of the failure mode in the model test with α=50º, Kh=0 and 

Cw=0 cm. 

5. Application of ANN 

5.1. Data normalization 

The raw data obtained from the numerical model should be 
normalized to increase the processing and convergence rate of the ANN 
during the training process and to minimize the prediction error [22]. 
By normalizing the data, their value will be in the range of 0 to 1. The 
relation of normalization based on unity is presented in Equation 1 [31].  

 (1)
  

min

max min

Norm

A A
A

A A





  

Where: 
A is any raw data 
Amin is the minimum value of data 
Amax is the maximum value of data 
ANorm is the normalized data 

5.2. Designing the optimum architecture of the MLP model 

The data attained from the numerical simulation (Table 4) were used 
to prepare the MLP model for prediction purposes. In this research, all 
of the data were separated into three parts: training data (70 percent of 
total data), testing data (15 percent of total data), and validation data (15 
percent of total data). The optimized architecture of the MLP model, 
such as the number of hidden layers and the number of neurons in the 
hidden layer, can be computed based on the trial and error rule [28]. 
The optimum number of neurons is determined based on the root mean 
squared error (RMSE) value. For this purpose, different varieties of 
neurons are embedded in the hidden layers of the model, and their 
corresponding RMSE value is calculated according to equation 2. 
Network performance for a different number of neurons in the hidden 
layer is shown in Fig. 6. According to this figure, the minimum value of 
RMSE is achieved by eight neurons. 

(2)
   

2

1

1 N

i i

i

RMSE A A
N 

    

Where: 
RMSE: Root Mean Squared Error 

iA : ith predicted value of the target 

iA : ith measured value of the target 

 N: number of datasets 

Therefore, eight neurons should be arranged in one or two hidden 
layers. In theory, only one hidden layer is sufficient for networks with a 
back-propagation algorithm. According to Flood and Kartam [25], the 
MLP model with a minimum of 2 hidden layers offer more flexibility to 
model complex problems. In this way, a different arrangement of eight 
neurons is considered in two hidden layers. The training function of 
trainlm Levenberg-Marquardt was considered in this study. Moreover, 
the value of the learning rate was selected as the default value in the 
MATLAB software. The results of RMSE values based on two transform 
functions of TANSIG (tangential non-linear sigmoid) and LOGSIG 

(logarithmic non-linear sigmoid) are illustrated in Table 5. According to 
the Table, the 3-[6-2]-1 neuron arrangement had the highest efficiency 
due to its minimum RSME value. The optimized architecture of the 
MLP model is presented in Fig. 7. 

 

 
Fig. 6- Network performance for a different number of neurons in the hidden 

layer. 

 
Table 5- The optimum arrangement of neurons in two hidden layers. 

No. Network 
Arrangement 

RMSE Error 
Transfer Function: 

TANSIG 
Transfer Function: 

LOGSIG 
1 3-[8]-1 0.0282 0.0279 
2 3-[1-7]-1 0.0511 0.0387 
3 3-[2-6]-1 0.0265 0.0323 
4 3-[3-5]-1 0.0274 0.0415 
5 3-[4-4]-1 0.0342 0.0413 
6 3-[5-3]-1 0.0433 0.0259 
7 3-[6-2]-1 0.0256 0.0193 
8 3-[7-1]-1 0.0393 0.0666 

 

 
Fig. 7- The optimized architecture of the MLP Model.  

5.3. Evaluating the performance of the model  

The performance of the MLP model should be evaluated in predicting 
the capability of output. Hence, four performance indices of correlation 
coefficient (R2), the variance accounted for (VAF), coefficient of 
efficiency (CE), and root mean squared error (RMSE) are employed and 
computed using the testing dataset. These datasets are chosen randomly 
from the database and are not contained within the training phase. R2, 
VAF, and CE values are calculated using Equations 3 to 5. 

  

   

2

2 1

2 2

1 1

N

i avg i avg

i

N N

i avg i avg

i i

A A A A

R

A A A A



 

 



 



 

  (3) 

 
 

100 1
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i
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 

 

2

1

1

1

N

i i

i

N

i avg

i

A A

CE

A A







 







  (5) 

In which: 

iA : ith predicted value  

iA : ith measured value  

avgA : The average of measured values  

avgA : The average of predicted values  

Var: variance  
N: number of datasets 
The lower the RMSE, the higher the efficiency of the network [26]. 

In an ideal state, the value of RMSE and CE are zero and one, 
respectively. The VAF parameter defines the degree of difference 
between the variances of predicted and measured data. The VAF value 
was almost 100%, which demonstrated low variability. The indices 
mentioned above are presented in Table 6.  

 
Table 6- Performance indices of the MLP model. 

RMSE R2 (%) VAF (%) CE 
0.0263 99.99 99.90 98.03 

 
The graphs of correlation coefficients for training, test, validation, and 

the whole set of data are illustrated in Fig. 8. According to this figure, 
the maximum values of R for training, validation, test, and the whole set 
of data are obtained 0.993, 0.995, 0.986, and 0.992, respectively, which 
indicates high conformity between predicted and measured values. Also, 
the rate of changes in the error level during the iterations is shown in 
Fig. 9. As seen, by using the magnifying MSE curve when training the 
model, the best validation performance obtained at epoch 18, and the 
value of MSE was 0.0011, showing the excellent performance of the 
model. 

 

 
Fig. 8- Correlation coefficient of the output parameter. 

5.4. Sensitivity analysis 

Sensitivity analysis is a procedure by which the effect of each input 
variable on the output parameter is described. One of the sensitivity 
analysis methods is Cosine Amplitude Method (CAM) [27]. Data array 

(X) is defined as:  
(6)

   1 2 3 4, , , ,..., nX X X X X X   

In data array X, every component xi is a vector with k dimension: 
(7)

   1 2 3 4, , , ,...,i i i i i ikX x x x x x   

 

 
Fig. 9- The best validation performance of the model during the training. 

Therefore, all data can be considered, such as a point in the k 
dimensional space, where every point has k coordinates for a full 
delineation. Therefore, the strength relation (rij) between the data pairs 
of xi, and xj is given in Equation 8: 

(8)
  

1

2 2

1 1

k

im jm

m

i j
k k

im jm

m m

x x

r

x x



 


  
  
  



 

  

By applying Equation 8, strength value relation (rij) between the input 
parameters (Dip, WFS/W and Kh) and output parameter is shown in Fig. 
10. As indicated in this figure, the most efficient parameter on the output 
is the dip angle, while Kh has the minimum effect on the output.  

 
Fig. 10- Strength value relation (rij) between input and output parameters. 

6. Conclusion 

In this research, the maximum undercut span was modeled using the 
finite difference software (FLAC 3D) under pseudo-static conditions. 
The results of numerical modelings showed that the influence of 
counterweight balance in mild slopes was more than the steep slopes so 
that in slopes steeper than 60 degrees, the counterweight balance had 
no significant influence on increasing the stability under both static and 
pseudo-static conditions. For steep slopes, the maximum width of 
undercut does not differ under both static and pseudo-static conditions. 
Additionally, under static conditions, as the angle of the slope increased, 
the maximum width of undercut decreased. Moreover, by increasing the 
horizontal acceleration coefficient, the maximum width of undercut 
decreased at a low rate. The results of numerical modeling were 
evaluated by an artificial neural network. It was seen that in the 3-[6-2]-
1 architecture of neurons, the values of RMSE were 0.0256 and 0.0193 
for TANSIG and LOGSIG transfer functions, respectively. The 
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performance of the proposed MLP model was assessed using the R2, 
RMSE, VAF, and CE indices. The results demonstrated that the 
proposed MLP model had high conformity with the real measured data. 
Finally, the sensitivity analysis was conducted for evaluating the 
influence of each input variable on the output parameter. It was 
concluded that the slope dip angle and the horizontal acceleration 
coefficient (Kh) had maximum and minimum effects on the maximum 
stable span of the undercut, respectively. 
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