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A B S T R A C T 

 

This research aims to construct 3D geophysical models of electrical resistivity and induced polarization by interpolating 2D inverted physical 
models through the geostatistical approach. The applicability of the method was examined for the Ghalandar porphyry-skarn copper deposit 
in the Agh-Daragh region, northwest of Iran. The 3D geophysical properties and block models of Cu grades were prepared by implementing 
the kriging interpolation method, whereby the recovered electrical models were closely linked to the Cu-sulfide mineralization. In order to 
evaluate the efficiency of the applied technique, the variogram models were validated using a cross-validation analysis of the kriging operation, 
proving the accuracy of data interpolation for each model. For the sake of meaningful correlation between geophysical models and Cu grades, 
the mineralization zones were extracted and subsequently propagated in the 3D space according to the generated physical properties. 
Meanwhile, the evaluation matrix was utilized to assess the performance of acquired results, where it confirmed that simultaneous 
consideration of physical models could much better determine the location of the copper mineralization. Also, the Swath plot was used as a 
second validation way to compare the anomalous zones. 
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1. Introduction 

Sulfide ore deposits are the main source of copper in the world, to 
which various geophysical surveys are applied to provide valuable 
information on the exploration of such sulfide-related targets [1]. 
Among the geophysical tools used in targeting these sources, the 
electrical properties of constituent materials with sharp contrasts are the 
most popular ones [2]. Constructing a 3D model of the blind target is 
the most important goal in geophysical explorations, while the model 
recovered from geophysical data inversion gives insights into the 
approximate geometry of the target. Electrical Resistivity Tomography 
(ERT), through a time-domain direct current survey, generates valuable 
information in close association with rock types and alterations [3]. 
Electrical resistivity (Rs) and induced polarization (IP) properties are 
usually derived from the ERT survey, which can delineate the location 
of sulfide-related copper mineralization. The integration of IP and Rs 
models has been successfully applied to detecting such sources [4]. The 
exploration of sulfides via Rs and IP methods is highly efficient due to 
electrical contrasts, and hence, the deposits with sulfides and oxides are 
generally identified by low resistivity and high chargeability values [5-
10]. Laboratory measurements have shown that most of the sulfides 
represent IP effects that are larger than silicates and iron oxides [2]. 
However, IP responses are influenced by complex physical conditions 
[11-12]. 

Minerals and rocks associated with hydrothermal alterations in 

sulfide-bearing ore mineralization systems are recognized by distinct 
anomalous electrical properties. Also, geophysical methods, which are 
capable of localizing and modeling such electrical properties, are 
mainstays in the mineral exploration targeting of sulfide-related copper 
deposits. Indeed, electrical properties reflect the type and intensity of 
hydrothermal alterations related to these sources. The hydrothermal 
products that generate significant geophysical signatures are including 
pyrite, chalcopyrite, chalcocite, biotite, and sericite [13-14].  

The dispersed nature of copper mineralization in sulfide-related 
systems is particularly suitable for IP surveys [15], initially developed 
for the exploration of porphyry copper deposits [16]. As a complex 
phenomenon, the IP anomalies reflect the ability of a rock to act as an 
electrical capacitor, where such characteristic is manifested in sulfide-
bearing targets. Generally, the strongest IP anomalies are in association 
with quartz-sericite-pyrite alterations, mostly occurring in the sulfide-
bearing systems [13-14]. The potassic alteration zone in the core is 
depleted of sulfide contents. The surrounding sericitic/phyllic alteration 
zone, however, has a higher sulfide content (e.g., pyrite), which itself is 
surrounded by the distal propylitic alteration zone with lower amounts 
of pyrite.  In other words, the sericitic/phyllic alteration zone possesses 
the strongest IP anomalies in such mineralization systems [14]. 

Geostatistics, as a robust methodology in geospatial data 
interpolation, can add restrictions on spatial correlation, data 
conditioning, and incorporation of different scales [17]. The integration 
of geostatistics with geophysics has been widely used to tackling 
problems that arise from geophysical data modeling [4, 17-21]. Ramazi 
and Jalali (2014) investigated the application of geophysical inversion 
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and geostatistical simulation to constructing electrical models on the 
basis of interpolating 3D physical properties from the 2D inverted ERT 
data. They used the IP and Rs models for qualitative and quantitative 
evaluations of a copper deposit, on which the Sequential Gaussian 
Simulation (SGS) was utilized to map the spatial distribution of physical 
models. Their results helped them optimize the location of exploratory 
boreholes [21]. Asghari et al. (2016) studied multivariate geostatistics 
based on a model of geo-electrical properties for copper grade 
estimation. They aimed to reduce the variance of estimation and related 
uncertainty. This method can be useful when a sporadic pattern of 
boreholes exists. In this study, the sulfide factor was incorporated as a 
secondary correlated variable to estimate Cu grade distribution. The 
results showed that the use of a secondary variable causes better results 
in comparison with ordinary kriging [22]. 

This work is focused on the Ghalandar sulfide-bearing copper deposit 
in the Eastern Azerbaijan province. The ultimate motive of research was 
to localize and extract Cu-bearing zones through a geophysical survey 
of the ERT, where those promising zones would be suggested for drilling 
to acquire information about the geometry of blind targets. The 
geostatistical tools were employed to the 2D inverted ERT data in order 
to construct the 3D models of electrical resistivity and induced 
polarization. Those recovered models were in close association with the 
Cu-bearing zones when simultaneous consideration of both of the 
models was taken into account. The validity of the implemented method 
was also confirmed by an evaluation matrix between Cu mineralized 
zones and those from geophysical models. The swath plots were also 
carried out to investigate the trends of three variables (i.e., IP, Rs, Cu) in 
the direction of three main axes. 

   The remaining sections of this work are prepared as follows. The 
second section discusses the geological setting of the Ghalandar deposit 
in the Agh-Daragh area, NW of Iran. Geophysical data modeling is 
explained in the third section, where the ERT data have been inverted 
along 2D sections. Then, in section four, the geostatistical approach is 
utilized to construct 3D physical models of electrical resistivity and 
induce polarization. At the end of this section, the validity of the applied 
methodology is discussed in detail. Finally, the last section summarizes 
the main outcomes of this research in constructing a 3D geometry of the 
copper mineralization.  

2. Geological Setting of the Ghalandar Porphyry-Skarn 
Deposit 

The Northward Neo-Tethys subduction started in the Mesozoic, 
which led to the generation of the Iranian plateau [23-24]. Igneous 
activities in this subduction zone created a thick belt of mostly Cenozoic 
volcanic and plutonic units that is known as the Urmia-Dokhtar 
Magmatic Arc (UDMA), which is shown in Fig. 1. This belt has 
generated a distinct, linear intrusive-extrusive complex, located between 
and parallel to the Sanandaj-Sirjan Metamorphic Zone (SSZ) and the 
central Iran microcontinent [25]. The Agh-Daragh mineral prospect, 
which is the case study in this work, is located within the UDMA zone 
(Fig. 2). The UDMA (also known as the Sahand-Bazman or Tabriz-
Bazman zone) is the main host of many Iranian porphyry and 
epithermal Cu, Au, and Mo mineralization deposits [26-27]. This zone 
is about 50 to 100 km thick and mostly consists of an Andean-type 
magmatic arc adjoining the Central Iranian Micro-Continent (CIMC). 
In the structural geologic division map of Iran, the UDMA is 
characterized by the Cenozoic magmatic rocks of the Eocene-
Quaternary age and their associated volcanoclastic rocks. Magmatic 
intrusions are mostly dominated by subvolcanic porphyritic granitoid 
units of granite, granodiorite, diorite, and tonalite [28-29]. Fig. 1 
illustrates the structural geologic map of Iran, on which the UDMA 
elongates from the NW to SE of the country. The Agh-Daragh area is 
located in the northwestern portion of the belt.   

The simplified geological setting of the area is presented in Figs. 2 and 
3a. In the western portions of the area and in the north of the 
granodiorite masses, there is a sequence of green tuffs and volcanic ashes 
related to the Cretaceous period. In the NE of the Gavdel village, there 

is a sedimentary unit, whose general color is dark gray and is generally 
composed of shale and limestone units. The main plutonic suite in the 
region, which is related to the Shiverdagh plutonic mass, is a porphyry 
granodiorite unit with pink feldspar phenocrysts [32]. 

 
Fig. 1. Structural geologic map of Iran, on which the location of the study area is 
presented in the NW portion, over the UDMA zone (modified after Richards et 

al. 2006) [30]. 

 
Fig. 2. Field photo of different lithological units in the Agh-Daragh prospect 

zone, on which the location of the Ghalandar Cu mineralization (comprising the 
Ayran Goli and Gowdal mineralization systems) has been portrayed 

(Asgharzadeh Asl et al. 2017) [31]. 

   The Ghalandar deposit (comprising the Ayran Goli and Gowdal 
skarn deposits) is located about 23 km north of Ahar, Eastern Azerbaijan 
province, NW Iran. Previous studies have stated the presence of Cu-Fe 
mineralization potentials in this area, in which the main mineral 
deposits are of porphyry and skarn systems. The porphyry systems 
dominate the SE regions, while the skarn systems are located in the 
western regions [33-34]. Fig. 3a shows the geologic map of the Agh-
Daragh prospect zone and Fig. 3b presents the detailed geological setting 
of the Ghalandar Cu-Fe porphyry-skarn deposit. 

3. Geophysical Electrical Survey 

Considering the nature of Cu mineralization in the Ghalandar region, 
the ERT survey was carried out to delineate sulfide-related minerals. 
Scintrex IPR 12 equipment was used for data acquisition. Seven 2D ERT 
profiles with S-N directions were designed to acquire the information 
about the electrical resistivity and induced polarization properties of 
subsurface materials. An electrode spacing of 30 m with a line spacing 
of 100 m was conducted in the survey. The pole-dipole array was 
implemented based on the ERT configuration to inject the DC current 
into deeper locations. The layout of the ERT survey is indicated in Fig. 
3b, showing that sixteen boreholes were drilled based on geophysical 
data modeling used to construct the geometry of sulfide-bearing Cu 
mineralization. The overall length of the drilling was about 2760 m. Fig. 
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4 presents a 3D visualization of all drilling with respect to the 
topographic surface, along with Cu grades.    

 
Fig. 3. Geologic map of the Agh-Daragh prospect zone (scale 1:25,000) (a), and 
the detailed geological setting of the Ghalandar Cu-Fe porphyry-skarn deposit 

(b).  

 

Fig. 4. Location of boreholes with respect to the topographic surface in the study 
area.  Cu grades are shown along each borehole as well. 

   The 2D inversion of the ERT data was carried out by utilizing the 
Res2dinv software developed by Loke, and the inverted sections for the 
electrical resistivity and induced polarization are visualized in Fig. 5. The 
size of geo-electric pseudo-section meshes was produced on the basis of 
the distribution of the data points as a rough guide. The height of the 
bottom row of the meshes is set to be equal to the equivalent height of 
investigating the data points with the maximum electrode spacing.  

Inversion methods aim to determine the value of blocks that will 
produce an apparent resistivity pseudo-section that agrees with true 
measurements. The height of the first layer of the meshes for the pole-
dipole array was set at 0.6 times that of the electrode spacing. The height 
of each subsequent layer was gradually increased by 10% [35].  The 
length of the blocks was equal to the electrode spacing in this study. The 

inverted models were such that the predicted data had the lowest misfit 
with original observations. Profile 4 was chosen as the representative of 
all ERT profiles to show the close consistency of drilled borehole 
neighboring the inverted section shown in Fig 6. The electrical models 
in profile 4 were estimated to the nearest borehole through the nearest 
neighborhood method to be able to compare them with Cu grades. 
Subsequently, the cross-correlation plots between Cu-Rs and Cu-IP 
were prepared, as displayed in Fig. 7. Pearson’s linear correlation 
coefficients between Cu and the electric variables were obtained to be 
equal to -0.76 and +0.81 for Rs and IP models, respectively. It should be 
mentioned that the higher values of Cu grades corresponded to lower 
and higher values of resistivity and induced polarization, respectively. 

 

 
Fig. 5. 3D visualization of all 2D inverted profiles of electrical resistivity (a), and 

chargeability (b). 

  Since Cu enrichment was correlated with anomalous electrical 
models, constructing the 3D models of physical properties could 
provide insights into the geometry of the Cu mineralization in the 
Ghalandar region. Therefore, the following section discusses how 
geostatistical-based approach can facilitate the 3D recovering of 
electrical models from interpolating 2D inverted results shown in Fig. 5. 
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Fig. 6. A cross-section view of the 2D inverted models of the electrical resistivity 
(a), and the induced polarization (b) along profile 4, on which Cu grades along 

the drilled borehole next to the ERT survey are overlain on the sections. 

 
Fig. 7. Scatter plots of Cu grades along the borehole near the ERT survey versus 

the electrical resistivity (a) and chargeability (b) for profile 4. 

4.  Geostatistical Models 

This section discusses the procedure of constructing 3D models of 
two electrical properties along with the block model of Cu grades 
derived from exploratory boreholes. All boreholes in this study were 
drilled vertically. According to the distance between the boreholes, the 
block model dimensions were 20×20×10 m3wa to generate the three 
aforementioned models. The statistical descriptions of the variables (i.e. 
Rs, IP, and Cu grade) derived from their composited models are 
summarized in Table 1. The histogram and box-plot of these variables 
are shown in Fig. 8, indicating a skewed distribution of each variable.  

Since a spatial structure is important for implementing any 
geostatistical method, a variogram model is required to be determined 
in multiple directions. This tool can provide the main parameters for 
kriging estimations. Therefore, the accuracy of calculated variogram 
parameters has a substantial effect on the interpolated variable [36]. The 
directional variogram models for three variables were searched, and the 
highest spatial continuity for electrical resistivity, induced polarization, 
and Cu grade are shown in Fig. 9. Table 2 lists the main parameters of 
each videography, assuming a spherical model fitted to each variable. 

Table 1. Aa summary of statistical properties of the variables: Rs, IP, and Cu 
grade. 

 Number Mean Variance Maximum 

Rs 606 755.98 2.17E+06 16676.1 

IP 606 37.52 1310.46 172.85 

Cu Sulfide 378 0.75 0.39 3.5 

 Upper quartile Median Lower quartile Minimum 

Rs 706.77 351.14 153.88 4.05 

IP 49.12 26.66 12.23 0.04 

Cu Sulfide 1 0.5 0.5 0 

 
Fig. 8. The histogram and box-plot for the electrical resistivity (1st row), 

chargeability (2nd row), and Cu Sulfide content (3rd row). 

   In order to evaluate the accuracy of searched variogram models, a 
cross-validation method was taken into account to re-estimate the left-
out data. Indeed, this validation method examines that the left-out data, 
and therefore, the desired statistical parameters must be reproduced by 
the estimated model. The comparison between the estimated and actual 
values shows the accuracy of the interpolation technique [37]. Here, a 
2D cross-section of electrical properties and one borehole were left to 
be re-estimated by the aforementioned variogram model using the 
kriging method. The scatter plots of estimated versus original ones were 
presented in Fig. 10.  Pearson’s linear correlation coefficients between 
actual and estimated values were obtained equal to 0.86, 0.92, and 0.77 
for electrical resistivity, chargeability, and Cu grade, respectively. These 
values state that the variogram parameters provide sufficient accuracy 
for 3D modeling.
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Fig. 9. Experimental directional semi-variogram models, and the number of pairs for (a) the electrical resistivity, (b) induced polarization, and (c) Cu grade.  

 
Table 2. Variogram model parameters obtained for the three variables. 

 Azimuth Dip Range Sill Nugget Model 

IP 0 0 225 1300 20 spherical 

Rs 180 20 117 2100000 148706 spherical 

Cu Sulfide 60 60 90 0.3 0 spherical 

 

 
 

Fig. 10. Scatter plots of actual and estimated values for electrical resistivity (a), 
chargeability (b), and Cu sulfide content (c). 
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  After determining the required inputs for implementing kriging, the 
3D models of Cu grade, IP, and Rs were interpolated as well. The 
anomalous zones for each variable in the 3D model are visualized in Fig. 
11. Also, the threshold values are determined by a multi-fractal analysis 
to plot the models. Discussing the procedure of implementing a fractal-
based method is beyond the aims of this study. 

 
Fig. 11. 3D models of induced polarization (a), resistivity (b), and Cu Sulfide 

content (c) in the study area. Threshold values were assumed equal to 50-112 ms, 
less than 200 Ohm.m, and higher than 1.1 %, respectively. 

   It should be noted that the 3D model of Cu mineralization acquired 
from the electrical properties has a distinct E-W strike. Such a 
meaningful correlation can localize the probable anomalous zones of 
mineralization for further exploratory drilling to determine its mineral 
prospectivity in the area of interest. 

   An evaluation matrix was used to validate the results. The 
evaluation matrix presents the overall accuracy by an amount derived 
from the ratio of the total correct results over the total number of data. 
By dividing the trace of the matrix by the total number of data laying at 
an interval of 0-1, the results of 3D modeling were compared to each 
other. For instance, the number of anomalous IP blocks in the copper 
mineralization zone was 4447, and the number of anomalous IP out of 
the copper mineralization zone was 2414. Simultaneously, the number 
of non-anomalous IP blocks in the copper mineralization zone was 
11720, and the number of non-anomalous blocks out of the copper 
mineralization was 15165. It yielded an accuracy of 0.58 extracted from 
the evaluation matrix shown in Table 3. This index was also calculated 
between Rs and Cu models in Table 4, showing an accuracy of 0.54. 

Table 3. Evaluation matrix of IP and Cu grade estimations to test the 
performance of the 3D models. 

Cu mineralization 
Zone 

Anomalous IP 
block 

Non-anomalous IP 
block 

Inside 4447 11720 

Outside 2414 15165 

 In order to optimize the results and reduce the error, the IP and Rs 
anomalous zones were extracted simultaneously (Fig. 12), where both 
electrical models approve the probable location of Cu mineralization. In 
this case, the overall accuracy of the evaluation matrix increased to 0.6. 
The results show that the integration of IP and Rs has a better result for 
imaging Cu mineralization in comparison with their individual models. 
The integrated evaluation matrix is shown in Table 5. 

Table 4.  Evaluation matrix of Rs and Cu estimations to test the performance of 
the 3D models. 

Cu mineralization 
Zone 

Anomalous Rs 
block 

Non-anomalous Rs 
block 

Inside 3414 12749 

Outside 2724 14850 

  

 
Fig. 12. The 3D model of Cu grade made from the integration of IP and Rs 

anomalous zones. 

Table 5. Evaluation matrix of integrated IP-Rs and Cu grade estimations to 
evaluate the performance of 3D models. 

Cu mineralization 
Zone 

Anomalous Rs 
and IP block 

Non-anomalous Rs 
and IPblock 

Inside 870 9175 

Outside 229 12670 

   Another comparison approach is the swath plot, which is a 
graphical representation of a variable distribution from a series of slices 
assumed in three main directions of the block model [38]. For this 
purpose, the block model was divided into several slices in three main 
directions (NS, EW, and down-hole directions) and the average of block 
estimates (Cu, Rs, and IP) falling inside each slice was calculated. 
Finally, the average values were plotted against the corresponding 
direction (Fig. 13). It should be mentioned that the borehole and 
geophysical variables were normalized between -1 and 1 in order to 
compare the results better. 

All plots were derived from block models shown in Fig. 12, which 
means all swath plots are related to the anomalous zone. As a general 
trend, the values of IP and Cu have a reverse trend in comparison with 
the Rs value, and they all fluctuate along the X-axis. IP and Cu values 
show a decreasing trend along the Y-axis, while Rs values show an 
increasing trend along the Y-axis. The trends along the Z-axis are almost 
the same as the Y-axis. 

5. Conclusion 

The performance of 3D electrical models was discussed for the Agh-
Daragh porphyry-skarn copper deposit located in the Eastern 
Azerbaijan province of Iran. A geostatistical-based approach was utilized 
to interpolate the 3D geophysical models of electrical resistivity and 
induced polarization derived from the 2D inversion. The results of the 
kriging technique conducted on physical properties were in close 
association with the Cu model constructed from 16 boreholes in the 
Ghalandar prospect zone. Such correlation was confirmed by calculating 
the evaluation matrix between geophysical models and the Cu 
mineralization. The interesting result was obtained when the integrated 
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geophysical model had a higher correlation with the mineralized zones. 
The swath plots were carried out as the second validation method 
showing a high correlation between the anomalous zones.   

 

Fig. 13. Normalized Swath plots of Cu, IP, and Rs values in the direction E-W (a), 
N-S (b), and vertical (c).  
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