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A B S T R A C T 

 

In open-pit mining, different designs are created, such as optimal ultimate pit limit and production planning. In order to determine the 
ultimate pit limit, two approaches are generally used based on geological and economic block models. In this paper, according to the long-
term trend of metals price and mining costs, some suggestions were made to design the ultimate pit limit using the geological block model. 
In addition, a grade-based objective function was presented for determining the ultimate pit limit. Then, in order to solve the problem, a 
heuristic algorithm was developed to simultaneously determine the ultimate pit limit and the sequence of block mining. For a 2D geological 
block model, the final pit was generated using the proposed algorithm. Furthermore, to validate the generated pit limit, the results of a 3D 
geological block model were compared with those of the Lerchs-Grossman algorithm. The comparison showed that the two pits corresponded 
to each other with an accuracy value of 97.7 percent. 
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1. Introduction 

Open-pit mines are the world’s largest mineral producers. There are 
different open-pit mine designs, whose most important tasks are the 
ultimate pit design, and long-, medium-, and short-term production 
planning. The ultimate pit outline specifies the areas in which ore bodies 
could be mined economically. Some parameters are directly related to 
the final pit size, including the mine lifetime and the tonnage of minable 
waste and ore blocks. The cost, revenue, and the total cash flow of 
mining operations throughout the mine lifetime are estimated based on 
these parameters. 

After the mineral exploration stage, a block model is made for the 
mineral deposit. The grades of blocks are calculated using different 
estimation methods, such as inverse distance, inverse squared distance, 
or Kriging, among others. After creating the grade (geological) block 
model, an economic block model is prepared based on the assumed 
economic parameters. 

Two general approaches, i.e., geological and economic block models, 
are used for ultimate open-pit design and production planning. In most 
cases, the optimum ultimate pit is designed with maximizing the overall 
profit of the final pit outline. Several algorithms have been developed 
for this purpose, including floating cone [1], floating cone II [2], 
Korobov [3], 2D dynamic programming of Roman [4], Lerchs-
Grossman [5] (LG), and network flow [6, 7]. These algorithms use the 
economic block model based on monetary block valuation. Among these 
methods, the LG algorithm, which is the most widely used method, 
determines the optimum pit outline mathematically based on graph 
theory. Then, production scheduling is planned to extract the blocks 
within the ultimate pit using a method such as parametric analysis [5].  

In the design process, it is assumed that the economic parameters are 
constant throughout the mine life. Therefore, the ultimate pit remains 
optimum only if the economic conditions stay unchanged. If economic 
conditions change in the future, the optimal pit will no longer be valid. 

Some methods use the geological block model as a non-monetary 
valuation for open-pit design. These methods include parameterization 
[8] and Wang & Sevim’s [9, 10, 11] algorithms developed for 
simultaneous determination of ultimate pit and production planning. 
Similarly, Gershon [12] presented an algorithm only for production 
planning. One of the most important reasons for developing such 
methods is the instability of economic parameters over time.  

Totally, there are two major categories of open-pit design algorithms 
based on their block model inputs. The first one includes monetary-
based algorithms such as LG, Floating Cone, Korobov, network flow, 
and Parametric Analysis. The second category of algorithms uses the 
geological block model to determine the ultimate pit limit and 
production scheduling. These algorithms are grade-based methods and 
include Parameterization, Wang & Sevim’s, and Gershon’s algorithms. 
In fact, these algorithms use blocks grades as inputs.  

In open-pit design, economic parameters and block grades are two 
sources of uncertainty. In this regard, many research studies have been 
conducted on the price, cost, and grade uncertainty in open-pit mining 
[13-25]. Some techniques, such as the real option [26-29], have been 
used to consider the economic uncertainty. These grade-based 
algorithms were developed to reduce the effect of economic uncertainty 
on open-pit mine design. The main advantage of grade-based methods, 
which use blocks grades as their non-monetary values, is reducing the 
main uncertainty resources into one. However, they do not take into 
account the operating costs of blocks in their valuations. The reason is 
that the value of waste blocks is defined as zero in this approach, but 
these blocks actually possess negative values. Thus, this valuation 
perspective cannot provide the net value of blocks; subsequently, the 
ultimate pit limit cannot be determined by it. Accordingly, this non-
monetary technique should be improved to be more practical in open-
pit mining. Since this grade-based valuation technique eliminates the 
economic parameters, the complex problem of including price, cost, and 
grade uncertainties all at once will be changed to a grade uncertainty 
problem.  

In this paper, first, the long-term pattern of changes in metal price 
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and mining costs were investigated, and then, an equivalent non-
monetary value and a time-independent system were presented for 
blocks valuation. Afterward, a heuristic algorithm was developed which 
generates the ultimate pit limit and the sequence of block mining, 
simultaneously. 

2. Long-term pattern of price and cost variations 

Based on the data collected by Dehghan & Ataiepour [30] and 

Dehghani et al. [31], the pattern of changes in metal price and mining 
costs is similar for long-term open-pit and underground mining for 
some mineral deposits, such as copper deposits. Furthermore, according 
to data provided by Wellmer et al. [32], this similar pattern can be 
confirmed in gold and silver mines as well. The graph of these changes 
is shown in Figs 1 and 2 for open-pit and underground copper mines, 
respectively. Also, for each of these charts, the best fit lines have been 
plotted. The dramatic slope of these lines represents the high 
uncertainty and the upward trend of these economic parameters over 
time. 

 
(a) 

 
(b) 

Fig. 1. Long-term variations of copper price and mining costs in (a) open-pit mines (modified from [31]) (b) underground mines (modified from [30]). 

Generally, the mathematical relationship between metal price and 
mining costs can be expressed as equation (1). 

(1)      ton tonC t P t t    

Where t is time, Cton(t) is the total cost of mining and processing the 
ore per ton at time t, Pton(t) is the price of metal per ton at time t, and 
α(t) is the conversion factor of cost and price at time t. 

Figs 2 and 3, respectively show the best fit lines for the cost-to-price 
ratio for copper open-pit mines from 1991 to 2012 and the cost-to-price 

ratio for copper underground mines from 2001 to 2010. As seen, the 
slope of the average line is almost zero. This horizontal slope, unlike 
long-term slopes of price and cost variations, reflects the lower 
uncertainty of the cost-to-price ratio in long-term periods. Therefore, 
according to the similar pattern of price and cost variations, it can be 
assumed that the conversion coefficient of price and cost (α (t)) for 
long-term goals is independent of time and is constant (α). According to 
this model, long-term price and cost variations can be expressed as 
equation (2). 

 
Fig. 2. Long-term variation of mining cost-to-price ratio in copper open-pit mines. 

 
Fig. 3. Long-term variation of mining cost-to-price ratio in copper underground mines. 
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   C t P t    (2) 

Equation (2) provides a long-term perspective on the variation of 
operating cost and metal price. The operating cost and metal price 
cannot be predicted in the long-term, but coefficient α can be used to 
forecast the cost-to-price ratio for long-term purposes.  

3. Non-monetary gross values of blocks 

As stated above, two types of monetary and non-monetary valuation 
are used to define the values of ore blocks. In the first approach, the 
monetary gross values of the ore blocks are calculated using equation 
(3) to create an economic block model. Then, by finding the mining and 
processing costs from the gross values, the monetary net values of the 
ore blocks are determined. 

(3) 

total

b b ton b min p

R

roV g P T R R       

where Vb is the gross value of a block in currency unit (CU), gb is the 
ore block grade in percent, Pton is the metal price in CU per ton, Tb is the 
tonnage of the block, Rmin, Rpro, and Rtotal are respectively the mining 
operations, processing and total recovery in percent. If the contained 
metal (CM) of each block is used as a non-monetary value, the gross 
value of ore blocks is calculated from equation (4). In this equation, the 
recovery rate of mining and mineral processing operations is considered 
ideally at the best status, i.e., 100%, because the aim is performing a long-
term analysis and the total recovery may be improved in the future. 

(4) 
b b bV g T    

If it is assumed that the densities of all blocks are equal, especially in 
low-grade ore bodies, the grades of ore blocks can be used as the 
equivalent concept of ore blocks CM by eliminating the weights of the 
blocks (Tb). Therefore, in equation (5), the grades of ore blocks are 
expressed as the equivalent concept of their gross values. 

(5) %b bV g   

The most important advantage of the definition of ore blocks' value 
is the elimination of uncertainty from economic parameters (price and 
costs). Therefore, the only remaining source of uncertainty risk is the 
grade of blocks.  

On the other hand, by increasing the precision of grade estimations 
through simultaneous exploration along with the mining operations 
throughout the mine lifetime, the accuracy of estimation of blocks grade 
may improve as well. 

So far, in the grade-based algorithms of ultimate pit design, like Wang 
& Sevim’s or Gershon’s algorithms, there has been no idea of defining 
and considering the cost of mining the blocks. In these methods, waste 
and ore-bearing blocks with values below the cutoff-grade are assigned 
a zero value. But in fact, these blocks impose mining costs on the whole 
mining operations and have to be considered in the non-monetary 
concept. 

4. Non-monetary mining costs  

Mining operation costs are paid from the revenue of raw-ore or metal. 
Thus, some parts of the CM can be used to equalize the costs. In this 
way, a part of the CM of blocks should be determined from the total CM 
to pay the mining costs. Accordingly, equation (6) can be used to 
determine the equivalent metal tonnage of mining and processing costs 
for each block. In this regard, the costs are assumed to be independent 
of block grades. 

(6)  
total
ton

min pro

ton ton b cost ton b

C

C C T g P T       

where, min

tonC and o

ton

prC  are mining and processing costs per ton in 

CU, respectively; total

tonC  is the total costs of mining and processing per 

ton in CU and costg  is equivalent grade of the total cost in percent. By 

rearranging the equation (6) and assuming the equality of blocks 
weights, the equivalent concept of the total costs for each block is 
obtained through equation (7). 

(7) cos %total

t ton tong C P   

As stated before, the long-term patterns of cost and price variations 
can be assumed equal. Consequently, according to equation (2), the 
operating cost-to-price ratio can be assumed constant in long-term 
periods. Therefore, in the case of using the aforementioned equivalent 
definition for mining costs, it is possible to disregard uncertainty in 
equation (7) and to assume this ratio as deterministic. This equation is, 
in fact, the definition of the cutoff grade. Hence, in other words, the non-
monetary definition and the equivalent concept of mining costs can be 
defined as the cutoff-grade. It should be mentioned that the used 
assumptions were to model the unpredictable changes in economic 
parameters in a simplified form. 

5. Non-monetary net values of blocks 

According to the non-monetary definition for gross values of ore 
blocks and mining costs of all blocks, the non-monetary net values 
(NNVs) of ore blocks can be calculated by equation (8). 

(8) , %
b

ore ore

b net cutoffV g g    

where ,

ore

b netV , 
b

oreg  and cutoffg  are the equivalent non-monetary net 

value of ore blocks, the grade of ore block, and the cutoff grade in 
percent. Also, in this system of value definition, the cost of waste or ore 
blocks under cutoff grades are calculated from equation (9). 

(9) %waste

b cutoffV g    

where waste

bV  is the equivalent non-monetary mining cost for waste 

blocks. 

6. Ultimate pit limit determination 

The optimum ultimate pit is an outline of the deposit in a way that its 
blocks are economically mineable. Accordingly, engineers maximize the 
total profit of the ultimate pit. The objective function of ultimate pit 
determination is equation (10) subject to the constraints (11) and (12). 

(10) 
( , , )

ijk ijk

i j k OB

Max V x


   

Subject to: 

ijk i j kx x     ( , , ) , ( , , ) ijki j k OB i j k UB      (11) 

0 1ijkx or    (12) 

where i is the block index in columns (easting), j is the block index in 
rows (northing), k is the block index in levels (elevation), Vijk is the net 
value of ore blocks in the CU, xijk is a binary decision variable of presence 
or absence of block ijk within the optimum ultimate pit, OB is the set of 
coordinates of all ore body blocks, UBijk is the set of coordinates of upper 
blocks which must be removed to facilitate the access to the block ijk. 

An extension of equation (10) can be expressed subject to constraints 
(11) and (12), as follows: 

(13)  
( , , ) ( , , )

ijk ijk ijk ijk ijk ijk

i j k Ore i j k Waste

Max P g T C T x C T x
 

 
         

 
    

where P is the metal price per ton in the CU, gijk is the grade of block 
ijk in percent, Tijk is the tonnage of block ijk, C is the mining cost of 
blocks per ton in CU, Ore is the set of all ore blocks coordinates and 
Waste is the set of all waste blocks coordinates. 

Using equation (7) and the equivalent non-monetary concept of 
mining costs, equation (13) can be rewritten as equation (14). 

(14)  
( , , ) ( , , )

ijk ijk cutoff ijk ijk cutoff ijk ijk

i j k Ore i j k Waste

Max P g T P g T x P g T x
 

 
           

 
    
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Assuming the equality for weights of all blocks especially in low-grade 
deposits and eliminating the common positive coefficients P×T from 
equation (14), equation (15) subject to constraints (11) and (12) is 
obtained as the grade-based objective function of for determining the 
ultimate pit limit. 

(15)  
( , , ) ( , , )

ijk cutoff ijk cutoff ijk

i j k Ore i j k Waste

Max g g x g x
 

 
     

 
    

This objective function can be solved with the use of the LG 
algorithm. 

7. Heuristic algorithm 

In order to solve the objective function (15) subject to constraints (11) 
and (12), the complex mathematical algorithms such as Branch-and-
Bound or the LG algorithm can be used. In this section, using the 
Downward Cone concept in Gershon’s algorithm [12], a heuristic 
algorithm was developed to generate the ultimate pit limit. Gershon's 
algorithm is a grade-based heuristic algorithm proposed to determine 
an extracting sequence for the blocks within the ultimate pit limit. 
Therefore, to use this algorithm, first, the optimum pit limit must be 
determined. Having no mathematical proof, heuristic algorithms seek 
an appropriate solution according to the logic of the problem. Due to 
the huge number of decision variables and constraints in ultimate pit 
optimization and production planning problems, these issues are 
defined in the NP-hard category. 

In order to present the heuristic algorithm, two concepts of the 
biggest possible pit and positional weight are introduced first. In the 
proposed algorithm, the search is performed initially by removing the 
unnecessary blocks in the pit and includes the furthest and deepest ore 
blocks. This pit is called the biggest possible pit (BPP). Also, the 
positional weight (PW) of a block is the sum of the grades of ore blocks 
within the downward cone of a block without considering its grade. The 
meaning of a block PW is the metal amount that can be obtained from 

the underneath blocks after this block in the extraction path. Fig 4 shows 
the BPP and PW values of the block (1, 5). 

 
Fig. 4. BPP determination and PW calculation. 

The flowchart of the proposed algorithm is illustrated in Fig 5. First, 
the BPP should be defined for the deposit. To define the BPP for each 
ore block, an upward cone must be determined, then all of these upward 
cones should be collected. Then, the PW of all blocks within the BPP 
must be calculated as explained above (Fig 4). The algorithm uses a 
block-to-block search approach to determine the extraction sequence of 
blocks and to calculate the cumulative value of the blocks to find the 
highest value. The number of search steps is equal to the number of 
blocks within the BPP. In each step, two sub-steps of determining the 
technically minable blocks and then selecting the suitable block for 
extraction should be executed. A practically mineable block is one 
whose upper blocks mining sequence is determined or it is located on 
the topographic surface. At first, among the BPP blocks, the practically 
extractable blocks are selected as candidates. The technical condition for 
block extraction is removing its overlying nine or five blocks in the 3D 
block models and three overlying blocks in the 2D block models. The 
candidate blocks that are practically extractable and must be compared 
to each other to choose the most suitable block is shown in Fig 6. Further 
details will be provided in the following paragraphs using a numerical 
example. 

Input geological block model

Determine BPP

Calculate PWs for BPP blocks

Determine candidate minable blocks

If maximum NNVs in some blocks

are equal?

Extract the block with maximum PWExtract the block with maximum NNV

Calculate cumulative value

Cumulative value > Max(value)

Select this point as ultimate pit

Update topography

Are all the blocks within BPP 

investigated?
State the latest ultimate pit

State the latest Max(value)

End

yes

no yes

no

no

yes

Start

Max(value) = 0

Max(value) = cumulative value

 
Fig. 5. Presented heuristic algorithm (PW: positional weight, NNV: non-monetary value of block).
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Fig. 6. Updated topography and technically candidate blocks in the 10th step. 

The first parameter used to compare the candidate blocks in each step 
is the non-monetary net value (NNV). Among the candidate blocks, the 
block that has the highest non-monetary value (NNV) would be selected 
as the extracted block at this step. If the highest NNV of some candidate 
blocks is equal, their PWs should be compared. In this case, the block 
with the highest PW will be selected as the extracted block at this step. 
It should also be noted that at the beginning of the algorithm, the 
parameter of Max(value) must be determined with the temporary initial 
value of zero. After selecting the block in each step, the block value of 
this step should be added to the values of previous blocks. In each step, 
the cumulative value of the extracted blocks should be compared with 
the Max(value) value. If the cumulative value of this step is greater than 
Max(value), this cumulative value will be replaced with Max(value) and 
the blocks from the first to this step will be introduced as the temporary 
final pit. Otherwise, Max(value) and temporary values remain 
unchanged. In each step, the selected blocks must be removed from the 
block model and the topographic level should be updated for the next 
step. These steps will continue until the mining sequence of all BPP 
blocks is specified. 

The algorithm was used for geological block modeling, as shown in 
Fig 7. In Fig 8, the non-monetary net value and the PW of the blocks are 

calculated with a cutoff grade of 3%. 

 
Fig. 7. Geological block model. 

 
Fig. 8. Grades, NNVs and PWs of the geological block model shown in Fig 7. 

Fig 9 shows the process of determining the most appropriate block to 
be extracted in each step, as the NNVs of the candidate blocks are 
compared and the block with the highest NNV is selected for extraction. 
For equal NNVs in steps 2, 3, and 5, the PW values of the blocks are 
compared. Finally, the block with the highest PW is selected. 
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Fig. 9. Steps of the algorithm for sample block modeling.
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Fig. 10. Ultimate pit and mining sequence for the geological block model shown 

in Fig 7. 

Determining the ultimate pit and the extraction sequence of the 
blocks can be conducted simultaneously using this new algorithm. Based 
on the comparison of PW values for candidate blocks at each step, the 

extraction sequence will move towards the high-grade areas of the ore 
body. In fact, the algorithm attempts to extract more valuable blocks in 
a shorter period of time. Accordingly, the proposed sequence of this 
algorithm can maximize the net present value (NPV). In this algorithm, 
the point with the highest cumulative value is determined as the 
optimum final pit. 

8. Numerical Two-Dimensional Example 

In this section, the new algorithm is applied to the 2D geological 
block model shown in Fig 11 to generate the ultimate pit limit. To do 
this, after determining the BPP, the PWs and NNVs of blocks are 
determined. In this model, the cutoff grade is assumed at 0.1%. Fig 12 
shows the grades, PWs, and NNVs of the BPP blocks. 

 
Fig. 11. The 2D geological block model. 

 
Fig. 12. Calculation of NNVs and PWs for the block model shown in Fig 11. 

The suggested extraction sequence by the algorithm for the BPP blocks is shown in Fig 13. 
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Fig. 13. Mining sequence for the block model shown in Fig 11.

The graph of cumulative values based on the mining sequence is 
shown in Fig 14, in which the maximum cumulative value is obtained at 
step 96. Therefore, the non-monetary value of the final pit limit 

generated by the algorithm is 61.1. This final pit is shown in Fig 15. 

 

 
Fig. 14. Cumulative values of blocks and the Max(value). 

 
Fig. 15. The ultimate pit and mining sequence by the algorithm. 
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Also, in order to validate the new algorithm, the ultimate pit for the 
geological block model shown in Fig 16 was generated by the 2D 
dynamic programming algorithm [5]. The result shows that both 

methods produce the same ultimate pit with 96 blocks and a total value 
of 61.1. 

 
Fig. 16. The optimum ultimate pit by the 2D Dynamic Programming algorithm.

9. Three-Dimensional Block Model 

In this section, the developed valuation system and the presented 
algorithm were applied to a 3D grade block model of a massive sulfide 
copper ore body. The number of blocks toward the north and east was 
60. Also, the number of blocks from the top of the blocky model to the 
floor was equal to 20. The size of blocks was 15 × 15 × 15 m with an 
average density of 2.8 ton/m3, with a cutoff grade of 0.25 percent. This 
block model had 7340 ore blocks with grades higher than the cutoff 
grade. The number of BPP blocks was 9970. The optimum pit of the ore 
body with LG algorithm had 6586.6 non-monetary values. The presented 

heuristic algorithm was used to determine the ultimate pit and blocks 
sequences. The graph of cumulative values vs blocks sequence is shown 
in Fig 17. The run time of the algorithm for this block model in MATLAB 
was 40 seconds. The results showed that its ultimate pit had 9901 blocks 
with total a non-monetary value of 6436.1. The obtained pit is shown in 
Fig 17. The numbers within the plot are a summation of the blocks in 
the vertical direction. According to the results of LG and the presented 
algorithms, the accuracy of the new method is 97.7 percent in this case 
study. 

 
Fig. 17. The graph of results obtained from the presented algorithm for the 3D geological block model. 
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Fig. 18. The plot of the ultimate pit obtained from the algorithm for the 3D geological block model. 

10. Discussion  

It is a fact that the economic parameters (cost and metal price) are 
not stable over the lifetime of an open-pit mine. The economic 
parameters and the grades of blocks are two sources of uncertainty in 
open-pit design. Generally, taking both of these uncertainties into 
account is highly complicated in ultimate pit limit design and 
production planning. As said, according to equation (1), the operating 
cost-to-metal price ratio in each time t is α (t). Achieving a relation to 
predicting the behavior of this ratio is a key objective to consider the 
economic changes during the lifetime of a mine. Two average trends of 
descending and ascending along with the constant value over time are 
three possible statuses for the cost-to-price ratio over long-term periods. 
These trends are shown in Fig 19. Some of the traditional and simple 
assumptions in economical investigations in mining engineering 
suppose that the trend of mineral prices in ascending or the trend of 
mining costs is descending. Accordingly, these simple assumptions in 
unlimited long-term mine scheduling will mathematically support this 
notion that in mine designs, the prices will be so high and the mining 
costs will be near to zero. In other words, the metal price will have a 
huge effect on the mining project and the mining costs can be neglected. 
But in contrast, obviously, the present time is the long-term future of 
the last decades and nowadays the prices are not so huge and the costs 
are not near-zero. As mentioned earlier, the average cost-to-price ratio 
approximately remains unchanged over the long-term. This is evidence 
of the importance of simultaneous investigation of long-term variations 
of operating costs and mineral prices. The results of this paper support 
this idea that the long-term variations of operating costs and metal 
prices can be assumed the same. This means that α (t) has less amount 
of uncertainty than cost and price. As an important advantage, the 
presented non-monetary valuation system reduces the uncertainty 
sources into one. Accordingly, the only remained source of uncertainty 
is the grades of blocks. A comparison of uncertainties in monetary and 
non-monetary valuations is shown in Fig 20. The next most important 
advantage of the presented valuation system is that it can be used for 
ultimate pit determination. Therefore, the developed heuristic 
algorithm can determine the ultimate pit limit and the mining sequence 
of blocks, simultaneously. If the old grade-based valuation method is 
used for the presented algorithm, since the operating cost is not 

considered, the Max(value) parameter will increase following a quite 
straight line in the cumulative value-to-block sequence graph. 
Consequently, the algorithm is unable to find the optimum or near-
optimum ultimate pit limit. The mentioned straight graph would not be 
able to determine an economic ultimate pit that has the optimum net 
value and it will determine the BPP as the ultimate pit. This problem 
raised from the old grade-based method shown in Fig 21. By adding the 
non-monetary cost of mining operations to the grade-based valuation 
method, the developed system can be used to determine the ultimate pit 
limit and block mining sequence.   

α
 (

t)

Time

Constant value

Descending trend

Ascending trend

  
Fig. 19. The possible statuses for α (t) trending vs time. 
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Fig. 20. A comparison of uncertainty sources in monetary and non-monetary 

valuation systems. 
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Fig. 21. The straight graph obtained from the algorithm based on the old grade-

based valuation system. 

The main goal of the ultimate pit is maximizing the net present value 
(NPV) not the undiscounted profit. The developed algorithm is steering 
the mining path toward the valuable blocks that have higher grades. The 
NPV of mining operations can be maximized through the obtained 
mining sequence indirectly from this algorithm. The developed method 
for open-pit mining design is independent of the discount rate. The 
presented algorithm can be applied to an economic block model for the 
simultaneous determination of the ultimate pit limit and block mining 
sequence. The steps of pit design through the developed non-monetary 
valuation system is shown in Fig 22. 

Blocks grades 

estimation

Cut off grade 

determination

Blocks non-monetary 

values calculation

Ultimate pit limit and 

production scheduling 

determination  
Fig. 22. The steps of open-pit design according to the non-monetary valuation 

system. 

Totally, the developed non-monetary valuation system is based on the 
fact that the global economic environment changes as an integrated 
dynamic system. This means that the long-term variation of costs and 
prices are in a reciprocal relation together. Consequently, the obtained 
idea in this paper can be used for the long-term design of open-pit mines 
through the suggested block valuation system. It should be noted that 
the accuracy of this idea should be reviewed in mid-term and short-term 
designs like 6- or 12-month production planning.  

11. Conclusions 

The optimum open-pit outline is generally determined with the use 
of economic or geological block models. The ultimate pit, which is based 
on the economic block model, is valid until economic condition remains 
unchanged. The long-term variations of the metal price and mining costs 
involve severe uncertainty. In this paper, a non-monetary valuation 
system was developed to determine the optimum open-pit limit. For this 
aim, the long-term stability of the cost-to-price ratio was used to define 
the non-monetary valuation system. Consequently, the objective 
function of the ultimate pit limit determination was presented based on 
the blocks’ non-monetary value. A new heuristic algorithm was 
developed to solve this objective function. This algorithm determines 
the ultimate pit limit and production planning simultaneously. The 
results obtained using this algorithm are consistent with those of the LG 
method. The new algorithm is more straightforward in understanding, 

calculating, and programming than the LG algorithm. Another 
advantage of the algorithm is providing a mining sequence so that the 
high-grade areas will be extracted more quickly. Since this algorithm 
applies a block-to-block search approach to the ore body, it is easy to 
incorporate variable slope angles. 
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