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A B S T R A C T 

 

In this paper, a new method called adaptive bandwidth in the kernel function has been used for two-dimensional upscaling of reservoir data. 
Bandwidth in the kernel can be considered as a variability parameter in porous media. Given that the variability of the reservoir characteristics 
depends on the complexity of the system, either in terms of geological structure or the specific feature distribution, variations must be 
considered differently for upscaling from a fine model to a coarse one. The upscaling algorithm, introduced in this paper, is based on the 
kernel function bandwidth, written in combination with the A* search algorithm and the first-depth search algorithm. In this algorithm, each 
cell in its x and y neighborhoods as well as the optimal bandwidth, obtained in two directions will be able to be merged with its adjacent cells. 
The upscaling process is performed on artificial data with 30×30 grid dimensions and SPE-10 model as real data. Four modes are used to start 
the point of upscaling and the process is performed according to the desired pattern, and in each case, the upscaling error and the number of 
final upscaled blocks are obtained. Based on the number of coarsen cells as well as the upscaling error, the first pattern is selected as the 
optimal pattern for synthetic data and the second pattern is selected as the optimal simulator model for real data. In this model, the number 
of cells was 236 and 3600, and the upscaling errors for synthetic and real data were 0.4183 and 12.2, respectively. The results of the upscaling 
in the real data were compared with the normalization method and showed that the upscaling error of the normalization method was 15 times 
the upscaling error of the kernel bandwidth algorithm. 
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1. Introduction 

Heterogeneous reservoirs are characterized by variation in the 
reservoir properties in all directions and at different length scales within 
the reservoirs. Generally, reservoir heterogeneity can be divided into 
small-scale and large-scale heterogeneities. In practice, the properties of 
a reservoir are described by collecting the available well data assigned to 
specific well locations, and then, using geostatistical methods to 
populate the properties throughout the reservoir. The behavior of 
reservoir properties is investigated by geological models. The geological 
models usually consist of tens or even hundreds of millions of grid 
blocks. Although geological models are referred to as very fine models, 
fine cells are still much larger than the small-scale heterogeneity, 
especially in the areal direction. This is due to the costs imposed by long 
computation times and possible rise of convergence problems, 
especially when it is required to run multiple fine-scale simulations in 
order to assess various geological and development scenarios. Therefore, 
building more coarse and practical models (usually referred to as 
simulation models) becomes important. In the simulation model, the 
number of fine grid cells are reduced by merging the fine cells into 
coarser ones. Afterwards, reservoir properties are averaged within the 
coarse domain. The process of coarsening the fine grid is usually referred 
to as up-gridding, while averaging reservoir properties within the coarse 
cells is referred to as upscaling. The target of upscaling is to replace very 
fine and detailed models with coarse models, including much less data. 

These coarse models are more feasible for running simulations than fine 
models. However, upscaling does not aim to speed up reservoir 
simulations at the cost of simulation results. On the contrary, upscaling 
techniques aim to build coarse models that preserve the most important 
flow characteristics of fine models and capture the sub-grid 
heterogeneity [1-8].  

Several upscaling methods have been introduced in the literature, 
some of which are analytical, and others are numerical. Analytical 
methods (also called averaging methods) such as arithmetic, harmonic, 
and geometric methods are simple and can be applied successfully to 
reservoir properties such as porosity and water saturation. However, 
applying these averaging methods to permeability requires idealized 
conditions that may not be present in heterogeneous reservoirs. 
Numerical methods are usually used for permeability determination. 
These methods can be divided, according to fluid phases flowing in the 
reservoir, into single-phase and two-phase upscaling methods [2, 4, and 
6]. 

Normally, regardless of the type of upscaling method, the upscaling 
process should be such that the results of the coarse-grained model can 
replace those of the fine-grained model. Chen et al. (2015 & 2018) have 
presented the multiple boundary method for three-dimensional 
fractured porous rocks with the commonly used Oda upscaling method 
and the volume averaging method [3 and 9]. In two-dimensional 
upscaling, it is important to enter the effect of wells because these areas 
witness high changes under pressure and fluid saturation, and it is highly 
desirable to maintain a fine structure in these areas. The near-well 
upscaling technique, which can dramatically improve the accuracy of 
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coarse grid simulation for well productivity in heterogeneous media, 
was presented by Ding (2004) [10]. Gholinezhad et al. (2015) applied 
quad-tree decomposition method for areal upscaling of irregular-shaped 
petroleum reservoirs. The simulation results demonstrated that the 
resulted upscaled model could give accurate results compared to the 
original fine model, but it was 13.5 times faster than the original fine 
model [11]. Wavelet transform is also a common method for upscaling 
that has extensively been used. Moslehi et al. (2016) used an upscaling 
method based on the wavelet transformations (WTs) coarsening the 
computational grid based on the spatial distribution of property. The 
technique is applied to a porous formation with broadly distributed and 
correlated property values, and the governing equation for solute 
transport in the formation is solved numerically. The WT upscaling 
preserves the resolution of the initial highly-resolved computational 
grid in the high property zones, as well as that of the zones with sharp 
contrasts between the neighboring properties, whereas the low-property 
zones are averaged out. From a computational point of view, the wavelet 
transform upscaling method generates non-uniform grids with a 
number of grid blocks that represent, on average, only about 2.1% of the 
number of grid blocks in the original high-resolution models [12]. 

Most of the upscaling methods, developed in two dimensions, are so 
that the final cells in the upscaling process are obtained on a regular 
basis. For example, in the wavelet-based upscaling, two cells along x and 
y either merge or not and there is no state that due to different 
variability, three cells are merged and one cell remains in the fine-scale. 
Upscaling based on adaptive bandwidth in the kernel method will solve 
this problem. Due to the variability in various directions, the threshold 
or bandwidth can be defined in such a way that cell upscaling can be 
made by combining the cells until the coarse-graining condition is 
established. The only condition for cell integration is merely variability 
with no restrictions to be imposed through the method. In this method, 
the bandwidth of the kernel function is a function of cell variability. The 
bandwidth is determined by the variability of features in a non-uniform 
and intelligent manner. In this method, it will be possible to construct 
the simulator based on the upscaling error or the number of required 
upscaled blocks. In the following, first, the research methodology is 
presented and the bandwidth upscaling algorithm will be described. 
Then, by describing the data used in this research, the results of 
upscaling will be examined.  

The results of upscaling based on the bandwidth of the kernel 
function are compared with the normalization method. The 
renormalization approach is based on replacing the direct upscaling 
process of a fine model to a coarse one by series of upscaling steps in 
which the initial grid is coarsened by merging cells to obtain successively 
coarser grids until a grid with one block only is built. The 
renormalization method was first used for single-phase flow upscaling 
and demonstrated to give accurate results [13]. 

2. Research Method 

Nonparametric estimators provide an accurate estimate of the 
probability distribution of data without any assumptions about 
parameters and the density distribution of a feature. The kernel density 
estimator (KDE) is the most widely used method among these 
estimators, and has many applications in many fields [14 and 15]. A 
typical formula for the multivariable kernel density function is given by 
the following expression: 

(1) f̂(x, H) =  
1

n
∑

1

det (H)
K(H−1(Xi − x))                       

n

i=1

 

where x = (x1, x2, x3, … , xd)T  and X = (Xi1, Xi2, X, … , Xid)T , i =
1, 2, … , n are a sequence of independent identically distributed d-variate 
random variables drawn from a (usually unknown) density function f. 
H  is the bandwidth matrix or the stationary smoothing parameter, 
which in the univariate mode, is a scalar quantity and K is the kernel 
function. There are two main computational problems related to KDE: 
(a) the fast evaluation of the kernel density estimate f̂, and (b) the fast 
estimation (under certain criteria) of the optimal bandwidth matrix H 

(or scalar h in the univariate case). Determining the optimal smoothing 
parameter is far more important than evaluating the type of the kernel 
function [16]. In practice, if bandwidth is too large, the estimate will be 
very smooth and there might be many mistakes. In contrast, if 
bandwidth is small, the estimate will be much distorted. Thus, 
determining the optimal bandwidth is very important. Typical methods 
for the determination of the optimal bandwidth or threshold are cross 
validation methods and plug-in methods [17]. In the kernel estimation, 
there are two basic approaches to determine the bandwidth: 1. fixed 
bandwidth and 2-.variable bandwidth. In the variable bandwidth 
approach, the points and more precisely their variability for bandwidth 
determination plays a significant role while in a fixed bandwidth 
method, a constant fixed value for bandwidth is used everywhere in the 
range of observations, and the oscillation of the points has no effect on 
bandwidth at any point. Considering that the upscaling should be 
related to cell variability, the variable bandwidth approach can be 
considered as the bandwidth, which is a function of the variability of the 
reservoir property. By the use of a small bandwidth, one will have the 
smallest upscaling level in areas with high variations, where they will 
remain fine. On the contrary, in areas with low and smooth variations, 
when choosing a large bandwidth, most blocks will be merged and the 
areas will be coarse. Therefore, the bandwidth will be determined based 
on variability.  

For upscaling in two dimensions based on the bandwidth of the 
kernel function, the optimal bandwidth in each direction must be 
determined for each row of data. This work requires an upscaling 
algorithm in one dimension, as displayed in Fig. 1.  

 
Fig. 1. Kernel bandwidth-based upscaling process in one dimensional. 

In each row of data in two directions, the optimal bandwidth is 
calculated for both x and y directions. These values are required in the 
two-dimensional reservoir upscaling algorithm. The upscaling 
algorithm in two dimensions is a combination of two algorithms 
including; A* search and the first-depth search pattern. In computer 
science, A* is a computer algorithm that is widely used in pathfinding 
and graph traversal, which is the process of finding a path between 
multiple points, called nodes. It has enjoyed widespread use due to its 
performance and accuracy. It can be considered as an extension of 
Edsger Dijkstra’s algorithm introduced in 1959. A* achieves better 
performance by using heuristics to guide its search [18]. Depth-first 
search (DFS) is an algorithm for traversing or searching tree or graph 
data structures. The algorithm starts at the root node (selecting some 
arbitrary nodes as the root node in the case of a graph) and explores as 
far as possible along each branch before backtracking. The first depth 
search strategy for scrolling the graph, as its name implies, is to look 
deeper into the graph as long as possible. In each step, the neighboring 
vertices of the current head are examined and, as soon as they encounter 
the neighbors that have not been seen before, they execute vertically for 
that vertex. If all the neighbors have already been seen, the algorithm 
will roll back and run the algorithm for the verge from which we reach 
the top of the head. In other words, the algorithm goes as deep as 
possible and retreats in the face of a dead end. This process continues 
until all of the roots are accessible from the root [19]. 

In the two-dimensional upscaling algorithm, based on the bandwidth 
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of the kernel function, each cell is considered as a vertex of the graph. 
The starting point is arbitrary. For example, the origin of the coordinates 
can be the starting point of the algorithm, for which all neighborhoods 
are placed on a stack. Each point, depending on the position, is located 
in two directions x and y, and has a bandwidth obtained from the 
previous step. The point is compared with its neighborhoods that are on 
the stack. If the difference between the two data is lower than the 
threshold or bandwidth these two cells will be merged. Then the 
neighbors of this cell enter, the stack, and the data of the neighbor cell 
will be compared with the cell data. If the difference between the two 
data is greater than the threshold, it means that the two data are 
important and the two cells should remain in its original state or fine-
scale. This procedure will continue and all data will be examined. 
Eventually, in a computational grid, a series of cells will remain fine and 
a series of cells will be merged together. In upscaled cells , the average 
property data of the cells is calculated as the equivalent property and the 
cells will be considered as a coarsen cell. To control and validate the 
model, we can also use the sum squared error (SSE). Obviously, the 
lower number of upscaled cells in the final model, the more the 
upscaling error. Given that the thresholds or bandwidths in each row of 
data are optimally selected either along x or y directions, the resulting 
model will be optimal. The pseudo-code of the kernel bandwidth 
upscaling algorithm written in MATLAB is described below:  

1. Based on the one-dimensional algorithm, the optimal 
bandwidth vector is selected as [λx λy] 

2. Of the four different starting modes, the first pattern is 
selected. 

3. For each target cell, which is indicated as the root, neighbors 
are identified and placed in a data column. 

4. Depending on the direction of movement, the difference 
between the target cell and the next cell is measured with 
bandwidth. If x is to move, it will be calculated xi-xi-1, if y is to 
move, it will be calculated yi-yi-1.  

5. If the difference is less than the bandwidth (see Fig. 2), then 
the two cells will merge, otherwise, they will remain fine. A is 
selected as the root cell of the graph. If A-B< λx, so A and B 

can get merge with each other, then B cell is targeted and its 
neighbors are entered into the data column. Fig. 1 shows how 
to perform the algorithm. 

6. This process is repeated for all cells in order to reach the same 
extent as the ultimate number of upscaled blocks. 

7. The starting pattern changes, and steps 3 through 7 are 
executed (According to Fig. 3). 

8. The upscaling error is calculated, and each lesser is 
introduced as the final simulator or upscaled model.  

 
 

A B C D 

E F G H 

I G K L 

M N O P 

Fine model 

For a starting point in 
state 1, A is root cell 

 

A B 

 E 
 

If A-B< λx, B Neighbors 
enter the column; 

otherwise, B will be 
dropped out 

A B C 

  F 
 

If A-E< λy, E Neighbors 
enter the column, cell F 

is duplicate 

A B C 

 E F 

  I 
 

B is root cell, If B-C< λx, 
C Neighbors enter the 

column; otherwise, C will 
be dropped out 

B C 

 F 
 

1 2 3 4 5 

If B-F< λy, F Neighbors 
enter the column; 

otherwise, F will be 
dropped out 

 

This process continues 
until the difference 
between two cells is 
larger than λx or λy 

Suppose you A, B, C and F 
have merging conditions; 
so, these cells get merged 

and a large cell (A’) is 
produced 

A’ D 

E  G H 

I J K L 

M N O P 
 

The next root will be D 
and the process will 

continue 

6 7 8 9 10 

Suppose the D, H and G 
cells are merged into 

each other (B’) 

A’ 
 

E  B’ 

I J K L 

M N O P 
 

The next root will be E; if 
it does not integrate with 

any cells 

A’ 

 
E  B’ 

I J K L 

M N O P 
 

The next root will be I; 
suppose the I, J, K and O 

cells are merged with 
each other (C’) 

1 12 13 14 15 

A’ 
 

E  B’ 

C’ L 

M N  P 
 

The next root will be L; 
if L-P< λy, these cells will 

merge together (D’) 

A’ 
 

E  B’ 

C’ 
D’ 

M N  
 

The next root will be M; 
if L-P> λx, these cells will 

not merge together 

A’ 
 

E  B’ 

C’ 

D’ 

M N  
 

    Coarse model 
16 17 18 19 20 

Therefore, the upscaled model has 7 blocks, out of which 4 are coarse and 3 are fine, 
A’ = mean(A,B,C,F) 
B’ = mean(D,H,G) 
C’ = mean(I,J,K,O) 

D’ = mean(L,P) 

21 
 

Fig. 2. Pseudo-code function. 
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3. Research Data 

In order to investigate the upscaling algorithm based on the 
bandwidth of the kernel function in two dimensions, a 30×30 grid with 
900 cells is randomly generated. The porosity distribution in this grid, 
representing a level of the reservoir, is shown in Fig. 2. The size of fine 
cell is 1×1. Synthetic data are generated from a normal distribution with 
a mean of 0.5 and a variance of 0.15, varying from 0.2 to 0.65. After 
examining the efficiency of the method on synthetic data, the algorithm 
is tested on the actual data of the SPE-10 model. The SPE-10 model 2 
(Christie and Blunt, 2001) is a heterogeneous fine model with 
dimensions of 1200×2200×170 ft. The model has a simple geometry, with 
no top structure or faults. The reason for this choice is to provide 
maximum flexibility in choice of upscaled grids. At a fine-scaled 
geological model, the model is described on a regular Cartesian grid. The 
model dimensions are 1200 x 2200 x 170 (ft). The top 70 ft (35 layers) 
represents the Tarbert formation, and the bottom 100 ft (50 layers) 
represents Upper Ness. The fine-scale cell size is 20 ft×10 ft ×2 ft. The 
SPE 10 model 2 size is 60×220×85 (1.122×106 cells). In this study, a level 
of the porosity model with dimensions of 60×220 was examined. The 
model consisted of part of a Brent sequence, originally generated to be 
used in the PUNQ project. The top part of the model was a Tarbert 
formation, a representation of a prograding near shore environment. 
The lower part (Upper Ness) was fluvial. Fig. 3 (a) shows the porosity 
for the whole model. The model was based on data from 5 wells, that all 
of which were vertical. All wells completed throughout the formation. 
The central well was used for injection and the rest of them were 
production wells. The position of the wells is shown in Fig. 3 (b) 
(Christie, 1996). 

 
a 

 
b 

Fig. 3. a) Porosity for the whole model and b) well location (Christie, 1996) 

4. Results and Discussion  

In the two-dimensional upscaling process based on the kernel 
adaptive bandwidth, for each row of data along the x and y directions, 
depending on variability, the optimal bandwidth was determined and 
stored based on the number of upscaled final blocks. The optimal 
bandwidth vector for the dataset was computed [λx λy] = [0.076, 0193]. 
Therefore, in the upscaling algorithm, depending on the position of the 
cell as well as the direction of the algorithm, the bandwidth was 
different, showing the multiscale upscaling characteristic of the method. 

For upscaling the reservoir property, four modes were considered to 
start the upscaling process. Each of these states was the upscaling 
starting point from each of the grid corners. Thus, four different 
upscaled patterns were obtained. Fig. 4 shows the position of the 
scenarios and the upscaling starting points. Obviously, the results of the 
upscaling are different; however, the goal was to determine the optimal 
upscaling pattern. The selection criterion to determine the optimal 
pattern was the upscaling error and the number of upscaled cells in the 
final model. Fig. 5 shows the fine-scale model. 

 
Fig. 4. Upscaling pattern in different states 

The upscaling results are shown in Fig. 6. In the first mode, based on 
the upscaling algorithm, the coarse-grained model was the one shown 
in the section of Fig. 4. The upscaling error was obtained from the 
comparison of two coarse-scale and fine-scale models. In this case, the 
upscaling error was SSE = 0.4183. Moreover, the upscaled model had 236 
cells. In the second mode, based on the upscaling algorithm, the coarse-
grained model was the one displayed in the section b of Fig. 6. In this 
case, the upscaling error and the number of upscaled cells in coarse 
model were 0.4211 and 227, respectively. Similarly, the upscaling error 
in state or mode 3 was equal to 0.4055 and the number of upscaled cells 
was 272. In state or mode 4, the number of coarsened cells were 271 and 
the error resulting from the upscaling is 0.4056. The sections c and d in 
Fig. 4 show the upscaled models in modes 3 and 4. Parts of e to h also 
show zoomed parts of the upscaled models in different modes.  

 
Fig 5. a) Fine-scale model 

Based on this upscaling method, four different patterns were 
obtained. It can be seen that in places where variability was intense, and 
in fact, heterogeneous, the cells remained fine. In homogeneous regions, 
one the other hand, the cells were merged together and produced larger 
cells. In the two modes 3 and 4, the number of cells, as well as the error 
rate, were approximately equal, except that ordering the cells was 
different. However, the homogeneous regions in both patterns were 
almost in good agreement. Patterns 1 and 2 were similar in the upscaling 
error and cell numbers. As mentioned above, the results of upscaling 
were strongly dependent on the search starting point and the movement 
direction. Given that the aim of upscaling in porous media was to search 
for homogeneous regions and merging the cells in these regions, the 
direction of movement could be determined based on the variability of 
data. Suppose choosing the search point in the two directions x and y, 
the difference of the first 5 data was considered, and the direction for 
which the average of these differences was less would be selected as a 
pathway in the upscaling process based on the defined algorithm. For 
example, in pattern 1, the difference of the first 5 data, which included 
the starting point of the search, was calculated binary, and then, the 
average value of the data was obtained. The average value in the 
direction x was equal to 0.076, and in the direction y was 0.193, which is 
known as the bandwidth vector (0.076, 0193). Therefore, because the 
property variability along the direction x and in the vicinity of the search 
point was less than that along the direction y, the former was chosen for 
the movement in the upscaling pattern. Similarly, the movement 
directions in states 2, 3 and 4, determined to be y, x and x respectively. 

http://www.nitg.tno.nl/punq/index.htm
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Fig 6. Upscaled model in a) First state, b) Second state, c) Third state and d) 

Forth state, zoomed part of the upscaled model e) First state, f) Second state, g) 
Third state, and h) Forth state. 

In summary, Table 1 shows the results of upscaling at four different 
starting points of the search. Validation criteria in the upscaling process 
in this paper were including the number of upscaled blocks and the SSE. 
Between the two choices, in similar conditions for the number of 
upscaled cells, the pattern with less upscaling error would be a more 
appropriate pattern, and in the same condition for the upscaling error, 
the model with fewer upscaled cells would be a better pattern.  

Table 1. Upscaling results in four different patterns. 

Movement 
direction 

Data 
variance 

N. of upscaled 
blocks 

SSE Pattern 

X 0.0064 466 0.4183 1 
Y 0.0065 499 0.4211 2 
X 0.0065 510 0.4055 3 
X 0.0064 481 0.4056 4 

According to the upscaling parameters of four different patterns 
(Table 1), if the goal is to select an optimal pattern, based on the number 
of cells and the upscaling error, pattern 1 can be a more appropriate 
pattern than the other patterns. The movement direction of the 
upscaling algorithm is understandable in pattern 1. Of the five cells at 
the beginning of this pattern in the direction x, four cells were upscaled 
and only one remained fine, but in direction y, all five cells were kept in 
the fine-scale state. In the case of fluid flow simulation, selecting the 
appropriate pattern was possible with greater certainty, because the 
validation criterion could be the number of upscaled cells. Naturally, in 
this case, the model with the smallest number of coarsen cells is optimal. 
In the case of real datasets, this process was also carried out. For every 
starting pattern, an upscaled model was obtained. The optimal 
bandwidth vector was (0.13, 0.145) for this dataset. Given the upscaling 
error as well as the number of upscaled blocks, pattern 2 was the best 
pattern for the real data. A part of the initial model and the results are 

shown in Fig 7. The movement direction of the algorithm was x 
according to the upscaling approach. As seen, the cells were coarsened 
quite intelligently, non-uniformly and irregularly. Based on the 
bandwidth vector, the final upscaled model had 3600 upscaled blocks, 
in which the upscaling error scale was 12.2. Bandwidth can play a crucial 
role in computing efficiency, as well. If the goal of the simulator model 
is to depict small heterogeneities in comparison with the fine-scale 
model, selecting a bandwidth smaller than optimal bandwidth can meet 
these requirements. If the purpose of the simulation model is to lower 
the calculation cost and increase the efficiency of computation, choosing 
a bandwidth larger than the optimal bandwidth will be required as well. 
When the bandwidth is greater than the optimal bandwidth, the 
upscaling error decreases, but the number of blocks increases. For such 
data, if the bandwidth vector was considered (0.5, 0.6), the scale-up 
model with 890 blocks would have an error of about 46 units. In this 
case, the upscaling model was constructed with only about 7% of the 
data. In fact, with such a volume of data, the fine-scale model could be 
retrieved, but the computational error increased. Conversely, when 
bandwidth was considered (0.01, 0.02), the coarse-scale model would 
have 11000 blocks, and the upscaling error would be 0.04. Table 2 shows 
the upscaled parameters for the real data.  

Table 2. Upscaled parameters. 
% of 
data 

Data 
variance 

N. of 
blocks SSE Model 

100 0.0083 13200 0 Fine model 

27 0.0065 3600 12.2 Coarse model with bandwidth 
(0.13, 0.145) 

83 0.0081 11000 0.04 Coarse model with bandwidth 
(0.01, 0.02) 

7 0.0045 890 46 Coarse model with bandwidth 
(0.5, 0.6) 

 

It can be seen that in larger bandwidth, the variance of the fine-scale 
model varies with the coarse-scale model. This difference signifies the 
loss of important information. This explains why an optimal bandwidth 
should be selected so that the model is also optimized. The upscaling 
error also supports this issue. As the bandwidth increases, the upscaling 
error also increases.  

 

 
Fig 7. a ) Fine-scale model, b) upscaled model, c) zoomed part of fine model and 

d) zoomed part of upscaled model 

 
As observed above, the cell merging is based on the variability of the 

cells, and  no method still exists for upscale the cells precisely. The data 
of the SPE model were also tested with the normalization method. In 
the first step, the fine-scale model would become a coarse-scale model 
with 3300 blocks, in which case the upscaling error of the model would 
be 174. Compared to the similar condition of upscaling based on the 
bandwidth of the kernel function, the error of the normalization method 
was about 15 times higher. Obviously, the kernel bandwidth-based 
upscaling error was far less than the normalization method, because the 
upscaling pattern was based on variability. Also, in the proposed 
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method, based on the upscaling error, the simulation model could be 
determined by determining the appropriate bandwidth.  

The SPE-10 had a simple geometry, with no top structure or faults. 
The mean and variance of porosity were 0.16 and 3.63×10-6 respectively. 
The fine-scale model had 13200 cells. Porosity variability created a 
variance of 3.63×10-6 in the original grid. The goal of upscaling is to 
minimize the loss of the main information that is resulted from the 
approach used for reducing the number of cells. Data variance can be a 
measure of data information loss. In the coarse-scale model, with a 
certain bandwidth vector, the number of upscaled blocks dropped to 
3600, which was 27% of the total fine cells. In fact, data were reduced to 
73% by upscaling based on the kernel bandwidth method. When this 
volume of data is reduced, it is expected that much information will be 
removed from the original model. The variance of the coarse-scale 
model can now be calculated. The variance of the upscaled model was 
3.01×10-6. Therefore, it is clear that the variance of the original data 
decreased by 17%. This indicates that although 73% data were reduced, 
the data variance reduced only 17%.   

5. Conclusion 

In this paper, two-dimensional upscaling of the reservoir data was 
performed using an adaptive bandwidth algorithm in the kernel 
function. For this purpose, four different models were obtained based 
on the starting point of the upscaling algorithm. The movement 
direction in the algorithm was also defined based on the variability of 
the data. The optimum bandwidth was calculated based on the number 
of cells required in the upscaled model. If the number of cells in the 
upscaled model is lower, the upscaling error in converting the fine-scale 
model into the coarse-scale model will be greater. Among the four 
upscaling patterns examined in this paper, the third and fourth patterns 
were similar in terms of upscaling parameters. In terms of the number 
of cells and the upscaling error, the first and second patterns were 
almost identical. According to these results, based on the number of cells 
and the upscaling error for the synthetic data, the first pattern was 
optimal. In that case, the number of coarse blocks was 236, and the error 
rate due to the upscaling was 0.4183. The process was also performed on 
a real dataset. With the same process, the second state pattern was 
selected for the real data, based on the bandwidth vector (0.13, 0.145), 
the number of upscaled blocks was 3600, and the upscaling error was 
12.2. The results of the proposed method were compared with the 
normalization method. On this basis, the upscaling error from the 
normalization procedure was 15 times of the kernel bandwidth method. 
Upscaling based on the bandwidth of the kernel function is an 
incoherent and intelligent method that performs the coarsening of the 
cells based on the property variability. 
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