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A B S T R A C T 

 

This paper aims to study the mechanical behavior of rocks subjected to different mechanical loading conditions using the Cohesive Crack 
Model (CCM) and Grain-Based Model (GBM) in the Distinct Element Method (DEM) simulations. In the GBM-DEM, the Voronoi 
tessellation scheme is used, and intact materials are simulated as a collection of structural units (particles/blocks) bonded together at their 
contact areas. Implementing the CCM revealed a nonlinear behavior of grain interfaces under various loading modes. Numerical simulation 
of a tension-compression and direct shear test was conducted to verify that the CCM was implemented correctly. The simulated numerical 
curves were consistent to the results of theoretical calculations, indicating that the model incorporated into GBM-DEM could simulate more 
realistically similar to the micro-cracking mechanisms. Finally, CCM was used to simulate the uniaxial and biaxial compression tests under 
the Universal Distinct Element Code (UDEC). The results of the models were in a good agreement with the relevant responses of the rock 
under different loading conditions, verifying the applicability of the CCM. 
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1. Introduction 

The mechanical behavior of rock is strongly affected by its micro 
properties, such as grains and contact parameters of cohesive interfaces 
[1-3]. The evaluation of the mechanical behavior of rock is still of great 
importance in geomechanics and civil engineering. In recent years, a 
considerable number of grain-based numerical investigations has been 
performed based on the discrete element method (DEM) simulations to 
reproduce many mechanical features of rocks in a laboratory and large-
scale experiments.  This approach has been used to study progressive 
damage in slow-moving landslides [4] within the disturbance zone 
around underground openings [5], typical rock slope failure 
mechanisms [6], effects of grain-scale heterogeneities [7,8], intra-
granular failure [9], mesh geometry dependencies [10], scale 
dependency of rock mass properties [11], estimating the confined 
strength of rock blocks considering scale effects and in-situ 
heterogeneity [12]. 

In DEM modeling, the interaction between inter particles/blocks is 
explicitly considered to simulate the mechanical behavior and fracture 
of rocks [13]. The two most known commercial DEM codes are 
Universal Distinct Element Code (UDEC) and Particle Flow Code 
(PFC). In PFC, the intact material is simulated as a collection of rounded 
particles while in UDEC Voronoi models, and using the Voronoi 
tessellation generator, the specified domain is represented by densely 
packed rigids, deformable polygons, or trigon particles, which are 
bonded together and interact one another at their contact points [14]. 
Voronoi models are often mentioned as Damage Models (DM) or 
Grain-Based/Boundary Models (GBM) or Particle/Block Bonded 
Models (PBM). Micro fracturing, i.e., initiation and propagation of 
cracks along grain boundaries of rocks, and are controlled by predefined 
contact micro properties and the interaction contact constitutive law. 

Therefore, damage, in the form of broken bonds, can be captured [8,15], 
which can coalesce into a macroscopic fracture. 

Although PFC is widely used in geomechanical engineering problems 
to reproduce many mechanical features of rocks, it suffers from an 
underestimation of tensile strength, for instance. The underestimation 
of tensile strength in PFC could be because rounded particles cannot 
appropriately represent the irregular-shaped and interlocked grains of 
rock. In order to solve this drawback, different solutions, such as 
clustering [16], clumping [17], logic and grain-based models (GBM) 
[18], and flat-joint models [19] are used. However, despite many efforts, 
challenges still remain [20]. Moreover, a more desirable and explicit 
representation of rock texture is polygonal, rather than circular, 
representation of grains [3]. 

In the GBM-UDEC, micromechanical parameters cannot be easily 
measured in the laboratory or directly related to either measurable or 
physical material parameters. Therefore, a calibration process is 
required, in which the micro properties are chosen to match laboratory 
tests or field results of the rock material. In the trial and error calibration 
process, several procedures were suggested to reproduce the model 
response by performing uniaxial, triaxial, and Brazilian tests [1, 14,21]. 
Generally, a variation of contact stiffness and the stiffness ratio affected 
the Elastic modulus and Poisson’s ratio. While shear strength properties 
led to variants in uniaxial and biaxial compressive strengths.  

Modeling displacement stress relationships of the interfaces/contacts 
are essential for realistic numerical simulation and failure analysis of 
geomaterial. In numerical analysis of an intact rock, a generally linear 
contact model is used. In this approach, the behavior of intact material 
is assumed to be a linear and nonlinear zone in front of a crack tip in 
damage stage, known as fracture process zone (FPZ), which is also 
considered to be negligible [22]. However, it has long been recognized 
that in quasi-brittle materials, such as rocks, concrete, and soil, this state 
is not always true. Also, such behaviors have been proven to be 
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representative of hard rocks [23]. The nonlinearity in FPZ is 
characterized by the Cohesive Crack Model (CCM), as illustrated in Fig. 
1. Based on the user-defined failure criterion, CCM allows the initiation 
of new fractures and facilitates the use of physical concepts, such as 
critical energy release rate, for simulating the growth and opening/ 
sliding of fractures [1,11,21,24]. 

 
Fig. 1. Characterization of the cohesive crack model. 

The objective of this study is to implement CCM as a constitutive law 
for the behavior of particle boundaries in GBM-UDEC to represent 
more realistic models of the progressive degradation and failure 
mechanism of geomaterials under various loading regimes applied to 
geomechanical problems. In order to achieve this objective, the 
compressive–tension and shear test was performed for model validation, 
and then conventional laboratory tests such as uniaxial, biaxial 
compressive tests were performed numerically using the implemented 
CCM in UDEC GBM. In order to show the performance of the proposed 
model, the results were compared with typical and obtained laboratory 
values. 

2. Interface constitutive law of cohesive crack model for 
inter-granular cracking 

Mechanism-based concepts provide key insights into supporting the 
development of computational models to predict crack initiation and 
propagation in the material. The Cohesive Crack Models (CCM) were 
introduced by Dugdale [25], Barenblatt [26], and later extended by 

Hillerborg et al. [27], in which the constitute interaction law governs 
the mechanical load exchanging across the contact boundaries. In this 
study, CCM [11], with the unloading-loading feature, was adopted to 
characterize the nonlinear relationship between relative displacements 
and the stress inside the FPZ. Therefore, this method appropriately 
reflects the mechanical behaviors and failure characteristics of the grain 
interfaces (as shown in Fig. 1). In the FPZ, for a 2D case, stress exists in 
normal and shear directions across the crack surface, and the 
corresponding relative displacements are 𝑜 and 𝑠. Fig. 2 shows a typical 
nonlinear stress displacement response for the Tensile Cracking Mode 
(Mode I) and the Shear Cracking Mode (Mode II). In Mode I, the 
contact interface follows a nonlinear elastic constitutive behavior at the 
tip of the crack opening (as shown in Fig. 2a).  This behavior shows the 
decay of stiffness in the pre-failure state owing to the progression of 
damage. The interface starts to yield when the crack opening (o) reaches 
the critical value of 𝑜𝑝 , which can be calculated by the following 
equation: 

𝑜𝑝 = 𝑒
𝑓𝑡
𝑘𝑡

 
(1) 

where, 𝑒 = exp (1)  is the base of the natural logarithm, 𝑓𝑡 is the 
intrinsic tensile strength of the rock material obtained from laboratory 
experiments, and 𝑘𝑡 is the contact initial normal stiffness value. Next, a 
nonlinear softening behavior is captured until the residual opening 
value (𝑜𝑟𝑒𝑠) is reached, and the contact interface finally breaks. In the 
softening stage of Mode I and Mode II of fracturing, the decay in the 
bonding stress is defined by softening function proposed by Evans and 
Marathe [28] based on experimental results as: 

𝜒(𝐷𝑖) = [1 −
𝑎+𝑏−1

𝑎+𝑏
𝑒𝐷𝑖(𝑎+𝑐𝑏 ((𝑎+𝑏)(1−𝑎−𝑏))⁄ )] × [𝑎(1 − 𝐷𝑖) +

𝑏(1 − 𝐷𝑖)
𝑐] 

(2) 

where 𝑎, 𝑏, and 𝑐 are empirical curve fitting parameters equal to 0.63, 
1.8, and 6.0, respectively; and 𝐷𝑖(𝑖 = 𝐼, 𝐼𝐼, 𝐼 − 𝐼𝐼) is a damage variable 
with a value between 0 and 1. 𝐷𝐼 for (𝑜𝑝 < 𝑜 < 𝑜𝑟𝑒𝑠) defined as:  

𝐷𝐼 =
𝑜 − 𝑜𝑝

𝑜𝑟𝑒𝑠 − 𝑜𝑝
 (3) 

 
Fig. 2. Constitutive relations of cohesive contact interface elements. A) Under tension, b) shear, c) Mixed Mode, d) compression conditions.

The residual opening value 𝑜𝑟𝑒𝑠  can be determined by 𝑜𝑟𝑒𝑠 = 𝑜𝑝 +
3𝐺𝐼𝐶

𝑓𝑡
 . 𝐺𝐼𝐶  is fracture energy of Mode I (𝐺𝐼𝐶 =

𝐾𝐼𝐶
2

𝐸
), the area under the 

curve in Fig 2a is required to extend the crack surface of a unit area. 

Therefore, 𝑜𝑟𝑒𝑠  is obtained by solving this equation 𝐺𝐼𝐶 =

∫ 𝜒(𝐷𝐼)𝑓𝑡
𝑜𝑟𝑒𝑠

𝑜𝑝
𝑑𝑜 . For unloading/reloading cycles path when  𝑜 < 𝑜𝑚𝑎𝑥  

contact follows a linear stress displacement path where 𝑘𝑛,𝑟𝑒𝑑 is the ratio 
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of stress to effective displacement at 𝑜𝑚𝑎𝑥 (see Fig. 2a). The constitutive 
law for Mode I cracking can be expressed as follows: 

𝜎 =

{
 
 

 
 𝑘𝑛 . 𝑜. exp (−

𝑜

𝑜𝑝
)  𝑜 < 𝑜𝑝

 𝜒(𝐷𝐼). 𝑓𝑡 𝑜𝑝 ≤ 𝑜 < 𝑜𝑟𝑒𝑠 , 𝑜 = 𝑜𝑚𝑎𝑥 

𝑘𝑛,𝑟𝑒𝑑 . 𝑜 𝑜𝑝 < 𝑜 < 𝑜𝑟𝑒𝑠 , 𝑜 < 𝑜𝑚𝑎𝑥
0 𝑜 ≥ 𝑜𝑟𝑒𝑠

 

 
 
 

(4) 
 

The damage initiation criterion that is used here is the Mohr-
Coulomb criterion, with a tension cut-off (Fig. 3). For a given CCM, the 
maximum shear stress is characterized by the normal stress, 𝜎𝑛 , 
cohesion, 𝑐, and internal friction angle, 𝜑. Damage is assumed to initiate 
when the following expression is satisfied: 
|𝑓𝑠| = 𝑐 + 𝜎𝑛 tan𝜑 (5) 

 
Fig. 3. Damage initiation criteria based on the Mohr-Coulomb model with a 

tension cut-off. 

As shown in Fig. 2b, the contact interface behaves nonlinearly and 
elastically until the critical slip (𝑠𝑝). In the post-peak stage, a damage 
variable in the softening function can be obtained as follows: 

𝐷𝐼𝐼 =
𝑠 − 𝑠𝑝

𝑠𝑟𝑒𝑠 − 𝑠𝑝
 (6) 

As the shear slip 𝑠 increases under the shear strength, the tangential 
stress gradually reduces to a residual friction value 𝑓𝑟𝑒𝑠  once the 
interface experiences complete damage: 
|𝑓𝑟𝑒𝑠| = 𝜎𝑛 tan𝜑𝑟𝑒𝑠 (7) 
The constitutive law for Mode II cracking can be expressed as follows: 

𝜎 =

{
 
 

 
 𝑘𝑠 . 𝑠. exp (−

𝑠

𝑠𝑝
)  𝑠 < 𝑠𝑝

 𝜒(𝐷𝐼𝐼). 𝑓𝑠 𝑠𝑝 ≤ 𝑠 < 𝑠𝑟𝑒𝑠 , 𝑠 = 𝑠𝑚𝑎𝑥 

𝑘𝑠,𝑟𝑒𝑑 . 𝑠 𝑠𝑝 < 𝑠 < 𝑠𝑟𝑒𝑠  , 𝑠 < 𝑠𝑚𝑎𝑥
𝑓𝑟𝑒𝑠 𝑠 ≥ 𝑠𝑟𝑒𝑠

 

 

 
 
 

(8) 

The critical sliding value 𝑠𝑝  and the residual sliding value 𝑠𝑟𝑒𝑠  (by 
solving 𝐺𝐼𝐼𝐶 = ∫ [𝜒(𝐷𝐼𝐼). 𝑓𝑠 − 𝑓𝑟𝑒𝑠]

𝑠𝑟𝑒𝑠

𝑠𝑝
𝑑𝑠) are calculated as follows: 

𝑠𝑝 = 𝑒
𝑓𝑠
𝑘𝑠

 
(9) 

𝑠𝑟𝑒𝑠 = 𝑠𝑝 +
3𝐺𝐼𝐼𝐶
𝑓𝑠

 
(10) 

Where, 𝑘𝑠 is the contact initial shear stiffness value, and 𝐺𝐼𝐼𝐶  is the 
Mode II fracture energy. In this study, the value of 𝐺𝐼𝐼𝐶 is considered to 
be two times the value of 𝐺𝐼𝐶 . 

The contact interface may be subjected to a combination of opening 
and sliding displacements (as shown in Fig. 2c) instead of pure Mode I 
or pure Mode II separation. In this case, the damage variable of a contact 
interface is determined by: 

𝐷𝐼−𝐼𝐼 = √(
𝑜 − 𝑜𝑝

𝑜𝑟𝑒𝑠 − 𝑜𝑝
)

2

+ (
𝑠 − 𝑠𝑝

𝑠𝑟𝑒𝑠 − 𝑠𝑝
)

2

 
(11) 

It should be noted that contact damage and breakage can only happen 
under tension and shearing loading conditions. Although pure 
compression exists in numerical simulations, due to the high normal 

stiffness value, no penetration is satisfied between the adjacent particles. 
Nonlinear compression behavior of contact under compressive normal 
stress (Fig. 2d) can be modeled using the following hyperbolic function, 
as described in Bandis et al. [29].  

𝜎𝑛 =
𝑘𝑛0𝑜

1 − (𝑜 𝑜𝑚𝑎𝑥⁄ )
 

(12) 

3. Verification of implemented CCM in UDEC 

The contact interface constitutive relation, CCM (introduced in 
Section 2), was incorporated into UDEC by the user-defined FISH 
program. In the following sections, uniaxial compression, tension 
(Mode I), and shear (Mode II) tests were conducted for CCM 
verification.  

3.1. Uniaxial compression and tension tests 

The purpose of this test is to validate the implementation of defined 
stress displacement behaviors of the contacts under tensile, 
compressive, and then shear loadings in UDEC. Carbonatite rock from 
the Palabora mine was used as the material for verification. The input 
parameters for the model were Young’s modulus, Poisson’s ratio, and 
for CCM were the initial tensile strength, initial and residual cohesion, 
friction and residual friction angle, and initial normal and shear stiffness,  
as summarized in Table 1. 

Table 1. Typical geomechanical properties for Carbonate rock [30]. 

Material property Value 

Young’s modulus (GPa) 60 
Poisson’s ratio 0.25 
Density (kg/m3) 3100 
Tensile strength (MPa) 10 
Fracture energy (j/m2) 150 
Normal stiffness (GPa/m) * 105000 
Shear stiffness (GPa/m)* 94500 
Cohesion, residual cohesion (MPa)* 29, 0 
Friction, residual friction (°)* 54, 5 
Tension, residual tension strength (MPa)* 13, 0 

* Calibrated micro-scale properties of cohesive contacts 

The numerical simulation was performed on a rectangular sample 
having a dimension of 125×50 mm with a horizontal cohesive contact 
line in the middle, as shown in Fig. 4. Fig. 4(a) and (b) are respectively 
showing the results of uniaxial tension and uniaxial compression tests. 
In the first stage and in order to simulate the behavior of the contact 
under tension, a constant velocity (𝑣𝑦) was applied to the top external 
boundary of the sample, while the bottom external boundary was fixed 
along both x and y directions in zero displacement conditions. During 
modeling, the normal stress along the interface and the relative 
displacement were tracked. The simulated results are shown in Fig. 5. As 
Fig. 5 shows, all the simulation results are in good agreement with the 
values directly calculated from model equations for the opening-closing 
displacement and the tensile-compressive stress on the crack. The 
tensile stress initially increases with opening until it reaches the peak 
stress (13 MPa) at 3.37E-07 (eq. 1). Then the softening stage starts and 
the tensile stress on the fracture surface decreases with opening until 
reaching zero when the opening is at 3.49E-05 ( 𝑜𝑟𝑒𝑠 ). Under 
unloading/reloading cycles in this range, the contact follows a linear 
stress displacement path with normal stiffness of 𝑘𝑛,𝑟𝑒𝑑 , which is the 
ratio of stress to effective displacement at an unloading point. Following 
the breakage of the contacts, a constant velocity (𝑣𝑦) was imposed on 
the top external boundary. This loading condition was conducted to 
validate a defined approach (eq. 4) on simulating the normal stress-
displacement behavior of the contact. Finally, tensile stresses were 
applied to the top external boundary of the upper block again to check 
the stress-displacement response of the broke contact in tension. The 
results of this numerical test show the validity of the numerical 
implementation of the CCM.  
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Fig. 4. The numerical models and the boundary condition in a) uniaxial tension, 

b) compression, c) shear tests. 

 
Fig. 5. Compression-tension stress with relative opening-closing displacement in 

the Mode I test. 

3.2. Shearing test  

In this simulation, the same model geometry but different boundary 
conditions were built to validate the shearing behavior of the contact 
(Fig. 4c). A constant velocity (𝑣𝑥) was exerted at the two side boundaries 
of the top part of the model. A constant vertical load (𝐹𝑦) was applied to 
the top boundary of the model to keep contact interfaces in touch. 
Meanwhile, the contribution of normal stress of contact interface to 
shear strength (eq. 5), was avoided by setting friction angle to zero. The 
shear stress and displacement along the interface were tracked during 
the simulation, and the results are plotted in Fig. 6. The shear stress 
initially increased with crack slipping until it reached the peak stress (29 
MPa) at 8.34E-07 (eq. 9). Then the softening stage started, and the shear 
stress on the fracture surface decreased with slipping until slipping was 
at 3.19E-05 (eq. 10). Under unloading/reloading cycles in this range, 
contact followed a linear stress displacement path with normal stiffness 
of 𝑘𝑠,𝑟𝑒𝑑 , which was the ratio of stress to effective displacement at an 
unloading point. Afterward, the shear stress was equal to the residual 
shear stress (eq. 7; for 𝜎𝑛 = 40𝑀𝑃𝑎, |𝑓𝑟𝑒𝑠| = 3.5𝑀𝑃𝑎). Throughout this 
procedure, any changes in the direction of applied constant velocity 
(𝑣𝑥), would directly be seen in the implemented model (e.g., Fig. 2b after 
breakage of contact interface). It should be noted that 
unloading/reloading in the pre-peak stage for both tensile and shear 
simulations was a nonlinear elastic behavior. All the results were in good 
agreement with the analytical results, suggesting a valid numerical 
implementation of the CCM. 

4. Application of the CCM 

This section validates the applicability of the CCM in reproducing the 
mechanical behavior of rocks under Mixed Mode loading regimes. As 
the preliminary applications of the CCM, uniaxial and biaxial 
compression tests were simulated. The contact interface of particles was 
assigned to the CCM. Damaging and fracturing could only occur along 

the interfaces of a block when it exceeded its fracture strength. 

 
Fig. 6. Shear stress with relative shear displacement in the Mode II test. 

 In the GBM-DEM approaches, micromechanical parameters are, 
often, iteratively selected to determine appropriate combinations of 
micro parameters that approximately reproduce the macroscopic 
behavior of intact rocks. In this study, micro parameters of the GBM 
were obtained by a series of laboratory simulation tests, including 
uniaxial and biaxial compressive strengths. The typical macro properties 
of carbonate rocks from the Palabora mine were used as calibration 
targets (listed in Table 1). 

Numerical specimens had a width of 50 mm, a height of 125 mm, an 
average grain edge length of 3 mm, and contained about 755 particles. 
These specimens were constructed to simulate uniaxial and biaxial 
compression tests (as shown in Fig. 7). A constant velocity was applied 
to the upper stiff platen for both uniaxial compressive tests while the 
lower stiff platen was fixed in both the x and y directions. A preliminary 
study showed that this velocity rate was sufficiently slow to ensure that 
the specimen would remain in quasi-static equilibrium throughout the 
test [1]. The applied axial stress versus the axial strain behavior was 
measured during the loading process. Compressive stresses were 
measured in the rectangular domain, as shown in Fig. 7. Nine 
measurement points were placed at the very top and bottom of the 
specimen for the compressive test, and the axial strain was recorded 
during the loading process by dividing the measured axial deformation 
to the length of the specimen. In addition, the lateral strain was recorded 
by 24 sets of measuring the horizontal displacement of the measurement 
points, which were placed at the left and right sides of the specimen.  

 
Fig. 7. Layout, boundary conditions, and monitoring the domain of the uniaxial 

and biaxial compression test. 

After conducting a trial and error calibrating procedure, an 
approximation of the macromechanical behavior was obtained from the 
numerical tests. The calibrated micromechanical parameters values are 
listed in Table 1. The sample failed in the brittle mode (Fig. 8). The 
stress-strain curve of the numerical model under the uniaxial 
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compression test is shown in Fig. 8b. In general, the macromechanical 
properties of the carbonate rock samples were adequately 
approximated, and the numerical model well replicated the failure 
mode.  

 
Fig. 8. Uniaxial compression test a) stress-strain relation, b) final fracture pattern 

from the numerical simulation. 

To derive the macro scale Mohr-Coulomb properties of the rock, i.e., 
cohesive and friction properties, biaxial compression test simulations 
were conducted for different confinements of the GBMs-UDEC 
through linear regression using the equations 13 and 14 [31]. The biaxial 
compression tests were performed at different confining pressures 
ranging from 1 to 4 MPa, and the results are shown in Fig 9. These ranges 
were chosen to ensure good compliance with the model calibration, 
which was conducted at low confinement. In the biaxial tests, stresses 
were applied isotropically to the lateral boundaries (Fig. 7a) and static 
equilibrium was reached before axial loading. It was observed that as the 
confining pressure increased, there was a corresponding increase in 
peak strength. The strength envelopes exhibited approximately a linear 
relationship for the applied confinement stress range. The obtained 
cohesion and friction angle for the specimen matched very closely with 
the typical data reported in Ref. [30] as the simulated cohesion and 
friction angle were found to be 18.35 MPa and 57.68°, respectively. These 
results clearly showed that the Voronoi model could properly reproduce 
the strength of the material under different loading conditions.  

𝜑 = 𝑎𝑟𝑐𝑠𝑖𝑛
𝑚 − 1

𝑚 + 1
 

(13) 

𝑐 = 𝑏
1 − 𝑠𝑖𝑛𝜑

2𝑐𝑜𝑠𝜑
 

(14) 

Where, 𝜑 is the friction angle, 𝑐 is the cohesion, and 𝑚 and 𝑏 are the 
slope and intercept obtained from linear regression of a peak strength 
versus confining stress plot (Fig. 9). 

 
Fig. 9. The failure criterion for conventional biaxial compression tests showing 

the linearity of failure response.  

5. Conclusions 

In this research, the cohesive crack model was successfully 
implemented under the discrete element code (i.e., UDEC) to account 
for more realistic simulations of the complex fracturing phenomena of 
brittle rocks. In order to validate the capability of the implemented CCM 
when applied to the analyses of brittle rocks, a 2D computational model 
of Carbonatite rock was tested in numerical uniaxial compression, 

tension, and shear tests. The CCM was capable of representing the 
nonlinear behavior of the contact under different loading regimes. 
Afterward, in order to determine the validity of the CCM, it was applied 
in the GBM-UDEC uniaxial and biaxial compression tests. The results 
showed a perfect match in macroscopic behavior, compared to that of 
the real rock mass. 
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