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A B S T R A C T 

 

In open-pit mine planning, the design of the most profitable ultimate pit limit is a prerequisite to developing a feasible mining sequence. 
Currently, the design of an ultimate pit is achieved through a computer program in most mining companies. The extraction of minerals in 
open mining methods needs a lot of capital investment, which may take several decades. Before the extraction, the pit limit, which influences 
the stripping ratio, damp locations, ore processing site and access routes, should be designed. So far, a large number of algorithms have been 
developed to optimize the pit limits. These algorithms are categorized into two groups: heuristic and rigorous. In this paper, a new approach 
is presented to optimize the pit limit based on Dijkstra’s algorithm which is based on mathematical relations. This algorithm was implemented 
on a 2D economic graph model and can find the true optimal solution. The results were compared with those from the dynamic programming 
(DP) algorithm. This algorithm showed to have less time complexity compared to the dynamic programming algorithm and to be easier to 
write dynamic computer programs. 
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1. Introduction 

Pit limit optimization has always been an essential issue for mine 
designers for economic reasons. Powerful computers developed during 
recent decades have assisted mining engineers in applying more 
accurate and complicated algorithms to the problem [1]. In recent years, 
open-pit areas have been optimized by making revenue block models 
and performing model-related optimization algorithms.  

Many researchers have studied the ultimate pit limit optimization. 
Lerchs and Grossmann proposed a dynamic programming approach for 
two-dimensional final pit limit optimization [2]. Underwood and 
Tolwinski presented a mathematical programming for solving the same 
problem. They developed a network flow algorithm based on the dual 
to solve the ultimate pit problem [3]. Khalookakei et al. (2000) proposed 
a windows program for optimal open pit design with variable slope 
angles [4]. Askarinasab proposed an intelligent 3D interactive open pit 
based on the floating cone methods [5]. Sayadi et al. (2011) used a new 
artificial neural method to open-pit optimization [6]. kakaei et al. (2012) 
introduced a new algorithm for optimum open pit design based on the 
floating cone method [7]. 

Until now, many algorithms have been presented to determine the 
final open pit area of mines. The main purpose of these algorithms was 
finding a set of blocks to maximize the profit by extracting the blocks. 
These algorithms can be divided into two groups: 

A: Heuristic algorithms 
Heuristic algorithms refer to algorithms not supported by 

mathematical logic such as floating or moving cone method [8], floating 
cone II method [9], modified floating cone II methods [10], floating 
cone method III [7], Korobov algorithm [11], corrected form of the 
Korobov algorithm [12], genetic algorithm [13] and Network 
optimization [14]. However, these algorithms fail to guarantee the true 

optimal solution, but they can usually reach the optimal point. These 
algorithms are fast and straightforward in their concept, computer 
coding, and implementation [15]. 

B: Rigorous algorithm 
These algorithms, such as dynamic programming [2], are 

mathematically supported and take into account the area of 
hypothesized technical and economic constraints. Rigorous algorithms 
are generally able to guarantee the true optimal pit limits. 

Regardless of being rigorous or heuristic, all of these algorithms 
define certain limits for the pit to be mined. The validity of the solution, 
indeed, depends on the validity of the type of algorithm used. 

This paper aims to optimize the pit limits area using Dijkstra’s 
algorithm. Since Dijkstra’s algorithm is based on graph theory, the 
theory was used for simulation of block models. Then, 2D revenue block 
models of open pit area were explained and then the results of accuracy 
and performance were compared with the results of the dynamic 
programming algorithm. 

2. Graph theory  

Conceptually, a graph is formed with vertices and edges connecting 
the vertices. However, in a formal definition, a graph is a pair of sets (V, 
E), where V is the set of vertices and E is the set of edges formed by pairs 
of vertices. E is a multiset; in other words, its elements can occur more 
than once so that every element has a multiplicity. Often, we label the 
vertices with letters. As an example, the graph depicted in Fig. 1 has 
vertex set V= {a, b, c, d, e, f} and edge set E = {(a, b), (b, c), (c, d), (c, e), 
(d, e), (e, f)} [16]. 

A subject that has many applications in a graph is the exploration of 
the shortest or longest path from one vertex to another vertex. Such a 
path should be a straightforward path. Finding the shortest or longest 
path is an optimization problem that the optimum value may be either 
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a minimum or a maximum value. In the shortest path, the minimum 
length is an optimal solution value [16]. 

 
Fig. 1. An example of graph [16]. 

The optimization problem of open-pit mining using the graph model 
is the maximization of economic profit and the optimal path shows the 
maximum economic value of the extraction area. 

3. Dijkstra’s algorithm 

Dijkstra's algorithm (or Dijkstra's Shortest Path First algorithm, SPF 
algorithm) is an algorithm for finding the shortest paths between nodes 
in a graph, which may represent, for example, road networks. It was 
conceived by the computer scientist Edsger W. Dijkstra in 1956 and was 
published three years later [17, 18]. For a given source node in a graph, 
the algorithm finds the shortest path between that node and the others. 
It can also be used for finding the shortest paths from a single node to a 
single destination node by stopping the algorithm once the shortest path 
to the destination node has been determined. Two sets are maintained 
in Dijkstra's algorithm; one set contains vertices included in the shortest 
path tree, the other set includes vertices not yet included in the shortest 
path tree. At every step of the algorithm, a vertex that is in the other set 
(the set of not yet included) and has a minimum distance from the 
source is found. Fig. 2 shows the detailed steps used in Dijkstra’s 
algorithm to find the shortest path from a single source vertex to all 

other vertices [18]. These steps are as follows: 

Step 1- Mark Vertex 1 as the source vertex. Assign a cost zero to 
Vertex 1. 

Step 2- For each of the unvisited neighbors (Vertex 2, Vertex 3 and 
Vertex 4), calculate the minimum cost as min (current cost of vertex 
under consideration, the sum of the cost of vertex 1 and connecting 
edge). Mark Vertex 1 as visited, in the diagram we border it black. 

Step 3- Choose the unvisited vertex with minimum cost (vertex 4) 
and consider all its unvisited neighbors (Vertex 5 and Vertex 6) and 
calculate the minimum cost for both of them. 

Step 4- Choose the unvisited vertex with minimum cost (vertex 2 
or vertex 5, here we chose vertex 2) and consider all its unvisited 
neighbors (Vertex 3 and Vertex 5) and calculate the minimum cost for 
both of them. Now, the current cost of Vertex 3 is [4] and the sum of 
the cost of Vertex 2 and the cost of edge (2,3) is 3 + 4 = [7]. The 
minimum of 4, 7 is 4. Hence, the cost of vertex 3 will not change. By the 
same argument, the cost of vertex 5 will not change. We mark vertex 2 
as visited, and all costs remain the same. 

Step 5- Choose the unvisited vertex with minimum cost (vertex 5) 
and consider all its unvisited neighbors (Vertex 3 and Vertex 6) and 
calculate the minimum cost for both of them. Now, the current cost of 
Vertex 3 is [4], and the sum of  the cost of Vertex 5 and the cost of edge 
(5,3) is 3 + 6 = [9]. The minimum of 4, 9 is 4. Hence the cost of vertex 3 
will not change. Now, the current cost of Vertex 6 is [6] and the sum of 
the cost of Vertex 5 and the cost of edge (3,6) is 3 + 2 = [5]. The 
minimum of 6, 5 is 45. Hence the cost of vertex 6 changes to 5. 

Step 6- Choose the unvisited vertex with the minimum cost (vertex 
3) and consider all its unvisited neighbors (none). Then mark it visited. 

Step 7- Choose the unvisited vertex with the minimum cost (vertex 
6) and consider all its unvisited neighbors (none). then mark it visited. 
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Fig. 2. Computing the shortest paths using Dijkstra’s algorithm [18].

The performance of Dijkstra’s algorithm compared to mathematical 
logic algorithms are relatively good and acceptable. Time complexity 
was used for investigating the performance of algorithms. In Dijkstra’s 
algorithm, the time complexity is n2 and is estimated according to 
Equation 1 [18]. 
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where, n is the number of vertexes. 
However, Dijkstra’s algorithm is usually used for finding the shortest 

path in a graph model. In this paper, Dijkstra’s algorithm was used to 
compute the longest path (maximum economic value) in the graph 
model by applying some corrections to the algorithm procedure. Since 
there is no loop in each probable path and the graph contains only a 
simple path in the simulated graph model, this goal can be obtained. 

4. Pit Limit Optimization 

Since common optimization criteria are based on the maximum 
benefit achievement, revenue block models are used for determining the 
optimal area in most algorithms. In order to build a block model of the 
mining area, the deposit and a part of surrounding rocks of the mine 
were considered as a large block containing the whole mineralized areas. 
Then, the blocks were divided into smaller parts and the estimated grade 
was assigned to the blocks. In this way, the 2D conventional economic 
block model was built based on the economic data and the mining 
method [19]. The flow chart of calculating the limit of the open-pit area 
using Dijkstra’s algorithm is shown in Fig. 3. 

 
Fig. 3. The flow chart of calculating the limit of the open-pit area using Dijkstra’s 

algorithm. 

In order to illustrate the application of Dijkstra’s algorithm to 
optimize open-pit mining, a two-dimensional economic block model 
was created as shown in Fig. 4-a and also the cumulative revenue block 
model, as shown in Fig. 4-b. In this model, the economic value of each 
block is equal to the economic value of block plus the total economic 

value of the blocks which are placed on top of the block. In this block 
model (Fig. 4-b), the blocks had the same size and the final slope of the 
open pit was considered 1:1 (45 degrees). The purpose of open-pit 
mining optimization is the maximization of the economic value of the 
extraction area. In open-pit mining, the length of the optimal path shows 
the value of the maximum extraction area. 

 
 

 

 
 

a: Primary revenue block model 
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b: Cumulative revenue block model 

Fig. 4. 2D revenue block model. 

The two-dimensional revenue block model was used to build the ore 
graph model. The overall geometry and all paths in the graph model are 
based on the revenue block model and are defined by considering the 
technical and geometrical limitations of the extraction method. In order 
to develop the graph model based on the revenue block model, every 
corner of the blocks was considered as a vertex of the graph and the lines 
of blocks were considered as crests. In fact, each crest indicates a 
relationship between a block and other ones, which are located at the 
back and front of the block. Accordingly, the weight of each crest shows 
the cumulative economic value of the blocks that are placed on top of 
the crest. Fig. 5 shows a block of revenue block model and a part of the 
corresponding simulated graph. In this graph model, if the crest has 
upward concavity and the center of the block is placed on the top, it can 
be concluded that the economic value of the block is considered in the 
calculation of crest weight (crest Y2 in Fig. 5). It is clear that in this stage, 
the weight of this crest and the horizontal crest, which connect the V2 
and V3 vertices, are equal.  

 
Fig. 5. Simulated block using the graph model. 

In this study, the following assumptions are considered to simulate 
the block model using the graph model as shown in Fig. 4: 

A: Each vertex of the block is considered as a node. 
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B:  In order to show the connection between the blocks, three crests 
are drowned from each block to the others in the next column. 
One crest is connected to the block on the top row and the other 
one is connected to the next block on the same row and the final 
crest is connected to the block on the bottom row. Using this 
model, the limitation of open-pit mining is simulated when the 
final slop is considered 1:1. 

C:  In the graph model, the value of each crest represents the 
cumulative economic value of blocks that are placed above it. 

D:  In this model, the value of each vertex is related to the previous 
vertex. Fig. 6 shows how to assign value to each vertex in the 
graph by using the value of the previous vertex. For this purpose, 
the value of three previous vertices of each vertex in the 
previous column (top vertex, vertex in the same row, and the 
bottom vertex) are summed with the value of crests that entered 
to the vertex. The maximum calculated number is selected as 
the value of the vertex (Fig. 6-A). If the values of the two crests 
are the same, both crests are selected (Fig. 6-B). A graph is 
created using the block model with a cumulative value and by 
the valuation of the existing crests. In the next step, the value of 
each vertex that represents the economic value of the 
corresponding pit can be calculated. 

  
Fig. 6. Valuation of each vertex in the simulated graph of the block model. 

The block model in Fig. 4 was simulated as a weighted graph and 
solved using Dijkstra’s algorithm. The weighted graph is shown in Fig. 
7. The crests used for the valuation of vertices are depicted as continuous 
lines and the other ones are shown as dashed lines.  

 
Fig. 7. Block model simulated using Dijkstra’s algorithm. 

According to Dijkstra’s algorithm, the largest number in the last 
column is selected to determine the optimal area (Fig. 7). The optimal 
open pit mining area can be achieved by following the vertices which 
lead to the chosen crest. Nodes with the largest value represent the 
maximum economic value of the open-pit mining area. In this example, 
the obtained optimal value was equal to +4 units. In Fig. 7, the bold 
vertices show the maximum economic value corresponding to the 
optimal pit limit. The optimal area of mining on the block model is 
shown in Fig. 8 which was adjusted based on the results of Fig. 7.  

 
Fig. 8. Optimal block model limit using Dijkstra’s algorithm. 

 

4.1. Validity of the solution example  

The dynamic programming (DP) algorithm was used for the 
validation of the proposed algorithm. The DP algorithm is one of the 
most popular methods in operation research to find the optimal solution 
in optimization problems [2]. For the first time, Lerchs and Grossmann 
used a dynamic programming method to design final open-pit mines in 
the two-dimensional state [2]. In order to validate the results of 
Dijkstra’s algorithm, the dynamic programming algorithm was 
performed on the example presented in Fig. 4. As shown in Fig. 9, the 
result of the dynamic programming was the same as those obtained from 
Dijkstra’s algorithm. It should be noted that the main limitation of 
Dijkstra's algorithm is that it cannot provide proper results for the 
graphs having negative weighed edges when used for the shortest path. 
However, in this research, it was used to compute the longest path 
(maximum economic value) in the graph model by applying some 
corrections to the algorithm procedure. Therefore, this limitation was 
resolved. 

 
Fig. 9. The solution of 2D economic block model using the DP approach. 

5. Conclusion 

Dijkstra and dynamic programming algorithms are often used for 
solving optimization problems. Dijkstra’s algorithm, in comparison with 
the dynamic programming algorithm, offers a simpler procedure and 
efficient solution.  However, in dynamic programming, a dynamic 
character is used to divide the sample into smaller samples. In Dijkstra’s 
algorithm, however, the samples are not divided into smaller samples.  

Both algorithms provide a two-dimensional optimal pit limit but 
since time complexity of dynamic programming algorithm is higher 
than that of Dijkstra's algorithm, it is better to use Dijkstra’s algorithm 
for determining the optimal pit limit.. 
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