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A B S T R A C T 

 

Estimating the xanthate decomposition percentage has a crucial role in the treatment of xanthate contaminated wastewaters and in the 
improvement of the flotation process performance. In this research, the modeling of xanthate decomposition percentage was performed using 
the least squares regression method and the Adaptive Neuro-Fuzzy Inference System (ANFIS). A multi-variable regression equation and the 
ANFIS models with various types and numbers of membership functions (MFs) were constructed, trained, and tested for the estimation of 
xanthate decomposition percentage. The statistical indices such as Root Mean Squared Error (RMSE), Mean Absolute Percentage Error 
(MAPE), and coefficient of determination (R2) were used to evaluate the performance of various models. The lowest values of RMSE and 
MAPE and the closest value of R2 to unity were determined for the ANFIS model with the triangular membership function and the number 
of input MFs 9 9 9 (0.766906, 3.553509 and 0.998793). This indicates that ANFIS is a powerful method in the estimation of xanthate 
decomposition percentage. The performance of new-adopted ANFIS data modeling was significantly better than the conventional least 
squares regression method. 
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1. Introduction 

The flotation process is widely used to up-grade base metal sulfide 
ores [1]. Annually, billion tons of sulfide ores are treated through this 
separation method and a huge amount of xanthate is used as the 
collecting agent in the flotation process [2]. Xanthates have a 
heteropolar molecular structure with a nonpolar hydrocarbon group 
and a polar head [2]. An electrochemical reaction occurs between the 
sulfide mineral surface and the polar head of xanthate [3]. This reaction 
makes the surface of sulfide minerals hydrophobic and it allows these 
mineral particles to be floated by air bubbles and be separated from 
other hydrophilic gangue minerals [4]. The dosage of xanthate in the 
flotation process varies in the range of 50 to 350 gr per ton of ore treated 
[5].  

Decomposition percentage of xanthate can be determined through 
the following equation:  

0

% (1 ) 100tC
Decomposition

C
    (1) 

where C0 (mg/L) is the initial concentration of xanthate in the 
solution and Ct (mg/L) is the xanthate concentration in the solution at 
time t.   

The decomposition of xanthate in the flotation pulp can reduce its 
effective concentration [6]. The effective concentration of xanthate in 
the flotation pulp plays a crucial role in the floatability of sulfide 
minerals [6]. Furthermore, the decomposition products of xanthate can 

reduce the selectivity of a flotation process [6]. The stability of xanthate 
in aqueous solutions depends on several factors, especially the solution 
pH and temperature [6, 7]. In acidic aqueous solutions, xanthate 
undergoes hydrolysis to xanthic acid (ROCS2H) which decomposes into 
carbon disulphide (CS2) and alcohol (ROH) according to the following 
equations [8]: 

ROCS2- + H2O → ROCS2H + OH- (2) 
ROCS2H → CS2 + ROH (3) 

In neutral and alkaline media, the decomposition of xanthate occurs 
through hydrolytic decomposition according to the following reaction 
[8]: 

6ROCS2- + 3H2O → 6ROH + CO32- + 3CS2 + 2CS32- (4) 
As the solution temperature increases, the decomposition percentage 

of xanthate increases as well [9]. This is important due to the fact that 
the flotation of sulfide minerals is performed at various pulp 
temperatures during the summer and winter [6].  

Although xanthates react selectively with the mineral surfaces in the 
ore pulp and are utilized at optimum dosages, excess and unreacted 
concentrations of these organosulfur compounds end up into the plant 
effluents [8]. Xanthates are toxic to aquatic life and therefore the release 
of xanthate contaminated wastewaters into the environment has sever 
environmental problems [10]. In recent years, several methods have 
been developed to remove xanthate from wastewaters, such as 
adsorption [10], chemical precipitation [11], chemical oxidation [8, 12-
14], biodegradation [15, 16]. In natural degradation, chemical oxidation 
and biodegradation methods, the removal of xanthate is usually 

Article History: 
Received: 08 May 2018, 
Revised: 13 December 2018 
Accepted: 06 January 2019. 
 

https://dx.doi.org/10.22059/ijmge.2019.257534.594741
https://dx.doi.org/10.22059/ijmge.2019.257534.594741


158 A. Behnamfard & F. Veglio / Int. J. Min. & Geo-Eng. (IJMGE), 53-2 (2019) 157-163 

 

performed through accelerating the degradation kinetics.  
The estimation of xanthate decomposition percentage is highly 

crucial in sulfide mineral flotation and in the treatment of xanthate 
contaminated wastewaters, but it has not received enough attention up 
to now. In this research, we initially try to establish an equation for the 
estimation of xanthate decomposition percentage based on the process 
parameters including pH, temperature, and time by using the 
conventional least squares regression method. For this reason, the 
initially best subsets regression was applied using Minitab 17 software 
to identify a model with as few variables as possible and then the 
regression model was developed by multivariable regression. In this 
study, we also try to model the xanthate decomposition percentage by a 
new-adopted ANFIS data modeling procedure. ANFIS was first 
introduced by J. Jang in 1993 [17]. It is an artificial neural network that 
is based on the Takagi–Sugeno fuzzy inference system [17]. ANFIS has 
the potential to capture the benefits of both neural networks and the 
fuzzy logic in a single framework since it integrates the principles of 
both methods [18, 19]. ANFIS can be considered as a universal estimator 
since its inference system corresponds to a set of fuzzy IF–THEN rules 
that have a learning capability to approximate nonlinear functions [18, 
19].  

2. Methodology 

2.1. Data  

Table 1 shows the statistical parameters of the input and output data. 
The available dataset consisting of 1160 records was randomly divided 
into two subsets, the training set, and the testing set. Totally, 80% of the 
dataset (80%=929 data sets) was utilized for training the model and the 
remainder data points (20% =231 data sets) were utilized for the testing 
procedure. The datasets were extracted from previously published 
papers [6-9, 20-23].  

 
Table 1. Description of input and output parameters in ANFIS and regression 

models. 

Parameter Description Symbol Range Mean Variance 

Input Solution 
temperature 

Temp 283-300oK 294.85 3.76 

Solution pH pH 2.18-9.98 7.75 3.92 
Time Time 0.1-52350 

min 
13657.86 206818080 

Output Decomposition 
percentage 

%decomposi
tion 

0-87.90% 37.51 492.53 

2.2. Adaptive neuro-fuzzy inference system (ANFIS) 

To describe an ANFIS system, it is simply surmized that the inference 
system has two inputs x and y and one output f. A first-order Sugeno 
fuzzy model has two rules as the following: 

Rule 1. If x is A1 and y is B1, then f1 = p1x +q1y + r1. (5) 
Rule 2. If x is A2 and y is B2, then f2 = p2x +q2y+ r2. (6) 

where p1, p2, q1, q2, r1 and r2 are linear parameters in the consequent 
part and A1, A2, B1 and B2 are nonlinear parameters [24].  

Fig. 1 illustrates the corresponding equivalent ANFIS architecture for 
two input first-order Sugeno fuzzy model with two rules. The entire 
system architecture consists of five layers, including the fuzzy layer, 
product layer, normalized layer, de-fuzzy layer, and total output layer 
[25]. The node functions in the same layer are of the same function 
family as described in the following: 

Layer 1: this layer is called the fuzzy layer. The adjustable nodes in 
this layer are represented by the square nodes and marked by A1, A2, B1 
and B2 with x and y outputs. A1, A2, B1 and B2 are the linguistic labels 
(small, large, etc.) used in the fuzzy theory for dividing the MFs. The 
node functions in this layer that determine the membership relation 
between the input and output functions can be given by: 
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where O1,i and O1,j denote the output functions, and µAi(x) and µBi-2(y) 
denote the appropriate MFs, which could be triangular, trapezoidal, 
Gaussian, generalized bell functions [24].  The MFs are defined as 
follows:  

A triangular MF is specified by three parameters {a, b, c} as follows 
[25]:  
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The parameters {a, b, c} (with a < b < c) determine the x coordinates 
of the three corners of the underlying triangular MF.  

A trapezoidal MF is specified by four parameters {a, b, c, d} as follow 
[25]: 
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 (9) 

 The parameters {a, b, c, d} (with a < b <= c < d) determine the x 
coordinates of the four corners of the underlying trapezoidal MF. A 
Gaussian MF is specified by two parameters as follows [25]: 

 
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(10) 

A Gaussian MF is determined complete by c and σ; c represents the 
MFs center and σ determines the MFs width.  

A generalized bell MF is specified by three parameters {a, b, c} as 
follows [24]:  
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where parameter b is usually positive. 
Layer 2: this is the product layer and each node is a fixed node marked 

by a circle node and labeled by Prod. The outputs w1 and w2 are the 
weight functions of the next layer. The output of this layer, O2,i, is the 
product of all incoming signals and is given by: 

2, ( ) ( ), 1,2
i ii i A BO w x y i     (12) 

The output signal of each node, wi, represents the firing strength of a 
rule [24]. 

Layer 3: this is the normalized layer and each node in this layer is a 
fixed node, marked by a circle node and labeled by Norm. The nodes 
normalize the firing strength by estimating the ratio of firing strength 
for this node to the sum of all firing strengths, i.e. 

3,

1 2

, 1,2.i
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w
O w i

w w
  


 (13) 

Layer 4: This is the de-fuzzy layer having adaptive nodes and marked 
by square nodes. Each node i in this layer is an adaptive node with a 
node function: 

4, ( ), 1,2i i i i i i iO w f w p x q y r i      (14) 

where iw is the normalized firing strength output from layer 3 and 

pi, qi and ri are the parameters set of this node. These parameters are 
linear and referred as consequent parameters of this node [24]. 

Layer 5: The single node in this layer is a fixed node marked by circle 
node and labeled sum, which computes the overall output as the 
summation of all incoming signals: 

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Inference_system
https://en.wikipedia.org/wiki/Fuzzy_logic
https://en.wiktionary.org/wiki/framework
https://en.wikipedia.org/wiki/Conditional_(programming)
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Fig 1. An ANFIS network structure for a simple FIS. 

An ANFIS network can be trained based on supervised learning to 
reach from a specific input to a definite target output. In the forward 
pass of the hybrid algorithm of ANFIS, the node outputs go forward 
until the fourth layer and consequent linear parameters, (pi, qi, ri), are 
found by the least-squares method using the training dataset. The error 
signals propagate backwards in the pass and the premise nonlinear 
parameters, (ai, bi, ci) are updated by the gradient descent. It has been 
proven that this hybrid algorithm is highly efficient in training ANFIS 
models [26]. 

2.3. Development of ANFIS models 

To model the decomposition percentage of xanthate, a network with 
three inputs was selected, with input variables corresponding to the 
solution temperature, pH, and time (Fig. 2).  

 
Fig 2. System ANFIS: 3 inputs (Temperature, pH, and Time), 1 output 

(decomposition percentage) 

The applicability of ANFIS models to estimate the decomposition 
percentage of xanthate was validated by the following criteria: 

Root Mean Squared Error (RMSE) [27]: 
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where At and Ft are actual and predicted values, respectively, and N is 
the number of training or testing samples. 

Mean Absolute Percentage Error (MAPE) [27]: 
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Coefficient of determination (R2) [27]: 
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Where, 
1

1 N

tt
A A

N 
  is the average value of At over the training or 

testing datasets. The lower RMSE and MAPE values and closer R2 value 
to unity mean better performance of the models. 

The best subsets regression approach is an efficient way to identify 
the models that achieve our goals with as few predictors as possible. This 
method identifies the subset models that produce the highest R2 values 
from a full set of the predictor variables that we specify. Subset models 
may actually estimate the regression coefficients and predict future 
responses with smaller variance than the full model using all predictors 

[28]. Minitab examines all possible subsets of the predictors, beginning 
with all models containing one predictor, and then all models containing 
two predictors, and so on [28]. Table 2 shows the results of best subsets 
regression performed by Minitab 17. Each row in the table represents 
information about one of possible regression models. The first column—
labeled Vars—shows how many predictors are in the model. The last 
three columns show which predictors are in the model. If an "X" appears 
in the row, it will include in the model as the predictor. The other five 
columns—labeled R2, R2 (adj), R2 (pred), Cp, and S— pertain to the 
criteria that we use in deciding which models are "best." 

3. Results and Discussion 

3.1. Estimation of xanthate decomposition percentage by Least Square 
Regression Method 

The effect of solution pH and temperature on the decomposition rate 
of xanthate is shown in Fig. 3. As seen, the decomposition rate of 
xanthate increases by increasing the solution temperature. The 
decomposition rate of xanthate drastically increases by decreasing the 
solution pH from 7.95 to 4.15 and to a lesser extent by increasing the 
solution pH from 7.95 to 9.95.  

 
Fig 3. The effect of a) solution pH and b) solution temperature on the 

decomposition rate of xanthate   

The model with all the variables has the highest R2 (58%) and 
adjusted R2 (57.9%), and the lowest Mallows' Cp value (4.0) and S value 
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(14.402). Hence, the model with all the variables can be considered as 
the best model for the estimation of xanthate decomposition percentage 
at different solution conditions.  

Table 2 The results of best subsets regression   

Vars R2 R2 (adj) R2 (pred) Mallows Cp S Temp pH Time 

1 40.8 40.8 40.7 473.9 17.084   X 
2 1.8 1.7 1.5 1550.8 22.013 X   
3 0.6 0.5 0.2 1583.9 22.148  X  
4 57.3 57.2 57.1 22.6 14.523  X X 
5 41.6 41.5 41.3 455.4 16.984 X  X 
6 2.4 2.3 2.0 1534.8 21.950 X X  
7 58.0 57.9 57.8 4.0 14.402 X X X 

The general regression was applied by Minitab 17 to fit least squares 
models to understand the relationship between the decomposition 
percentage of xanthate and the predictors' variables including 
temperature, pH, and time. Eq. 19 shows the relevant equation. 

Decomposition % = 0.24298 Temp – 26.1 pH – 0.205 
Time + 0.0654 Temp*pH + 0.000692 Temp*Time + 
0.000283 pH*Time 

(19) 

Table 3 shows the analysis of variance (ANOVA) table and the model 
summery for the multi-variable regression model. As can be seen, the p-
value for the regression model is 0.000 in the ANOVA table which 
indicates that the equation is statistically significant at an α-level of .05. 
Furthermore, the value of R2, R2 (adj), and R2 (pred) is 0.9041, 0.9036, 
and 0.9031, respectively. These values are close to unity which further 
confirm that the model is significant at 95% confidence level for the 
estimation of xanthate decomposition percentage.    
Table 3 ANOVA table and the model summary for the multi-variable regression 

model. 

Analysis of Variance 

Source         DF   Adj SS  Adj MS  F-Value  P-Value 

Regression      6  1993645  332274  1815.09    0.000 

  Temp          1   255187  255187  1393.99    0.000 

  pH            1      463     463     2.53    0.112 

  Time          1      135     135     0.74    0.391 

  Temp*pH       1      253     253     1.38    0.240 

  Temp*Time     1      133     133     0.73    0.394 

  pH*Time       1    28288   28288   154.53    0.000 

Error        1155   211437     183 

Total        1161  2205081 

Model Summary 

      S    R-sq  R-sq(adj)  R-sq(pred) 

13.5300  90.41%     90.36%      90.31% 

Coefficients 

Term           Coef   SE Coef  T-Value  P-Value          VIF 

Temp        0.24298   0.00651    37.34    0.000        23.35 

pH            -26.1      16.4    -1.59    0.112    109208.27 

Time         -0.205     0.239    -0.86    0.391  1.42938E+08 

Temp*pH      0.0654    0.0557     1.17    0.240    109252.52 

Temp*Time  0.000692  0.000811     0.85    0.394  1.42936E+08 

pH*Time    0.000283  0.000023    12.43    0.000       100.06 

In order to further validate the relevant equation, the histogram and 
the normal probably plot of residuals, the plot of residual versus fitted 
values and the plot of residual versus the run order were plotted (Fig. 4). 
The histogram of residuals has a bell shape which confirms the normal 
distribution of the residuals. The normal probability plot shows an 
approximately linear pattern which is consistent with normal 
distributions. The plot of residual versus fitted values shows a random 
pattern, which confirms the constant variance of the residuals. The 
residual versus order plot displays the order that the data was collected 
and can be used to find the non-random error, especially of time-related 
effects. The residual versus order plot shows a random pattern which 
indicates the time-independent variance of residuals. 

3.2. The estimation of xanthate decomposition percentage by ANFIS 

In this research, a hybrid grid partitioning ANFIS was applied for the 
estimation of xanthate decomposition percentage as a function of 
solution temperature, pH, and time. To evaluate the effect of MF type 
on the performance of ANFIS models, it was set as Triangular, 
Trapezoidal, Generalized bell, and Gaussian. The number of input MFs 
was set 3 3 3. Fig. 5 shows the general structure of ANFIS models. The 
characteristics of ANFIS models are shown in Table 4. 

 
Fig.4 Residual plots for decomposition percentage of xanthate 

 
Fig.5 ANFIS model structure used for estimation of xanthate decomposition 

percentage 

Table 4 Parameter types of ANFIS models with different MF types. 

ANFIS parameter type Membership Function Type 

Triangular Trapezoidal Generalized bell Gaussian 

Number of MFs 
Output MF 
Number of nods 
Number of linear parameters 
Number of nonlinear parameters 
Total number of parameters 
Number of training data pairs 
Number of testing data pairs 
Number of fuzzy rules 
Number of epochs 
Training error 

3 3 3 
Linear 

78 
108 
27 
135 
929 
231 
27 
100 

0.9978 

3 3 3 
Linear 

78 
108 
36 
144 
929 
231 
27 
100 

4.4248 

3 3 3 
Linear 

78 
108 
27 
135 
929 
231 
27 
100 

1.378 

3 3 3 
Linear 

78 
108 
18 

126 
929 
231 
27 
100 

1.34923 

The proposed ANFIS models were trained separately for 100 epochs 
by using various MFs and their performance was compared in terms of 
RMSE, MAPE, and coefficient of determination (R2) for the training and 
testing data sets. The results are presented in Table 5. The lowest RMSE 
and MAPE values and the closet value of coefficient of determination 
(R2) to unity are observed for the triangular MF for both of training and 
testing data set. Hence, the ANFIS model with triangular MF is a more 
accurate and consistent method for the estimation of decomposition 
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percentage of xanthate than the other ANFIS models.  

Table 5 Performances of ANFIS models with different MFs in estimation of 
xanthate decomposition percentage 

Membership 
function 

Training data set Testing data set 

RMSE MAPE (%) R2 RMSE MAPE (%) R2 

Triangular 0.997799 5.114386 0.997986 1.052606 6.403248 0.997726 
Trapezoidal 4.424813 119.5478 0.960386 4.279191 101.7817 0.962419 

Gaussian 1.34923 7.374592 0.996317 1.284703 7.389331 0.996613 
Generalized bell 1.378041 9.23183 0.996158 1.31637 8.902129 0.996444 

Fig. 6 shows the applicability of ANFIS models by different MF types 
for the estimation of xanthate decomposition percentage. The ANFIS 
model with triangular MF is clearly the most accurate and powerful 
method for the estimation of xanthate decomposition percentage. 

In order to evaluate the effect of number of input MFs on the 
performance of ANFIS models, various models are constructed with 
different number of input MFs. Based on the previous results the MF 
type was triangular. Table 6 shows the characteristics of different ANFIS 
models.  

 
Fig.6 Predicted xanthate decomposition percentage by different ANFIS models 

vs. experimental values. 

Table 6 Parameter types of ANFIS models with different number of input MFs. 

No. of 
input 
MFs 

ANFIS parameter type 

Output 
MF 

No. of 
nods 

No. of linear 
parameters 

No. of 
nonlinear 

parameters 

Total 
number of 
parameters 

No. of 
training 

data pairs 

No. of 
testing 

data pairs 

No. of 
fuzzy 
rules 

No. of 
epoch 

Training 
error 

3 3 3 Linear 78 108 27 135 929 231 27 100 0.9978 

6 3 3 Linear 138 216 36 252 929 231 54 100 1.00017 

3 6 3 Linear 138 216 36 252 929 231 54 100 0.94426 

3 3 6 Linear 138 216 36 252 929 231 54 100 0.99893 

6 6 3 Linear 252 432 45 477 929 231 108 100 0.94363 

6 3 6 Linear 252 432 45 477 929 231 108 100 0.99542 

3 6 6 Linear 252 432 45 477 929 231 108 100 0.80468 

6 6 6 Linear 474 864 54 918 929 231 216 100 0.80186 

9 6 6 Linear 696 1296 63 1359 929 231 324 100 0.79515 

6 9 6 Linear 696 1296 63 1359 929 231 324 100 0.76384 

6 6 9 Linear 696 1296 63 1359 929 231 324 100 0.70979 

9 9 6 Linear 1026 1944 72 2016 929 231 486 100 0.75768 

9 6 9 Linear 1026 1944 72 2016 929 231 486 100 0.70355 

6 9 9 Linear 1026 1944 72 2016 929 231 486 100 0.68977 

9 9 9 Linear 1518 2916 81 2997 929 231 729 100 0.68522 

The performance of various ANFIS models with different number of 
input MFs was compared based on RMSE, MAPE, and R2 criteria for the 
training and testing datasets and the results are presented in Table 7. 
The model performance improves by increasing the number of input 
MFs so that the lower values of RMSE and MAPE and closer R2 value to 
unity are obtained at higher numbers of input MFs. 

Fig. 7 shows the final rules of the fuzzy inference system by using the 
triangular MF. The trained IF–THEN rules can be used for the 
estimation of xanthate decomposition percentage at different solution 
temperatures and pH values and at different time intervals. In other 
words, if we change the values of inputs (i.e., Temperature, pH, and 
Time) in the input box (down left side of Fig.7), then we can 
immediately find the corresponding decomposition percentage of 
xanthate.  

3.3. Comparison between ANFIS and the statistical method  

A comparison between ANFIS and the statistical model was made 
and the results are presented in Table 8 and Fig. 8. The comparison 
between ANFIS and least square regression methods through RMSE, 
MAPE, and R2 criteria shows that ANFIS is a more powerful method for 
the estimation of xanthate decomposition percentage than the least 
square regression method. Furthermore, Fig. 8 clearly shows that the the 
estimation of xanthate decomposition percentage by ANFIS is 

significantly more accurate than that of the regression method. 
 

Table 7 Performance of ANFIS models with different number of input MFs in 
estimation of xanthate decomposition percentage 

No. of input 
MFs 

Training data set  Testing data set 

RMSE  MAPE (%) R2 RMSE  MAPE (%) R2 

3 3 3 0.997799 5.114386 0.997986 1.052606 6.403248 0.997726 

6 3 3 1.000172 5.194478 0.997976 1.054964 6.469476 0.997716 

3 6 3 0.944257 4.426145 0.998196 0.995175 5.837537 0.997967 

3 3 6 0.998929 3.156303 0.997981 1.053362 4.83931 0.997723 

6 6 3 0.943629 4.332312 0.998198 0.994815 5.764674 0.997969 

6 3 6 0.995422 2.986689 0.997995 1.050147 4.687518 0.997737 

3 6 6 0.804678 2.478982 0.99869 0.868791 4.286556 0.998451 

6 6 6 0.80186 2.429795 0.998699 0.866439 4.248398 0.998459 

9 6 6 0.79515 2.414279 0.998721 0.860694 4.238341 0.99848 

6 9 6 0.763836 2.323379 0.99882 0.831903 4.170483 0.99858 

6 6 9 0.709791 1.753631 0.998981 0.787767 3.627235 0.998726 

9 9 6 0.757666 2.301569 0.998839 0.826724 4.153399 0.998597 

9 6 9 0.703557 1.735269 0.998998 0.783033 3.615325 0.998742 

6 9 9 0.68977 1.664708 0.999037 0.770085 3.562222 0.998783 

9 9 9 0.685223 1.650587 0.99905 0.766906 3.553509 0.998793 
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Fig.7 IF–THEN rules after training that can be used for the estimation of 

xanthate decomposition percentages at different solution conditions. 
  

Table 8 The comparison between ANFIS model (Triangular MF and number of 
input MFs 9 9 9) with least squares regression model in the estimation of 

xanthate decomposition percentage 

Modeling 
Method 

Training data set Testing data set 

RMSE MAPE (%) R2 RMSE MAPE (%) R2 

Regression 14.3683 210.5587 0.582291 13.63942 192.4572 0.618196 

ANFIS 0.685223 1.650587 0.99905 0.766906 3.553509 0.998793 

 

 
Fig.8 The estimated xanthate decomposition percentage by ANFIS-TriMF and 

statistical methods vs. experimental data. 

4. Conclusion 

In this research, the estimation of xanthate decomposition percentage 
was carried out based on the solution temperature, pH, and time 
through the least squares regression and ANFIS methods. The best 
subsets regression in the Minitab 17 package indicated that the model 
with all of the variables has the highest R2 (58%) and adjusted R2 
(57.9%), and the lowest Mallows' Cp value (4.0) and S value (14.402). 
The least squares regression through general regression by Minitab 17 
proposed the following equation for the estimation of xanthate 
decomposition percentage:   

Decomposition % = 0.24298 Temp – 26.1 pH – 0.205 Time + 0.0654 
Temp×pH + 0.000692 Temp×Time + 0.000283 pH×Time  

The validity of the model was confirmed through an analysis of the 
variance table and residual plots.   

Different ANFIS models were constructed with various types and 
numbers of MF and the best results were obtained by Triangular MF 
and the number of input MFs 9 9 9. The low values of RMSE and MAPE 
(0.77 and 3.55%) for this model confirmed the ability of this model in 

the estimation of xanthate decomposition percentage. The rule viewer 
GUI after training can be easily applied for the estimation of xanthate 
decomposition percentage at any point of temperature, pH, and time. 

The comparison of ANFIS and the statistical method revealed that 
the ANFIS model is a more powerful method than the statistical method 
for the estimation of xanthate decomposition percentage. 
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