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A B S T R A C T 

 

Three Neuro-Fuzzy Inference Systems (ANFIS) including Grid Partitioning (GP), Subtractive Clustering (SCM), and Fuzzy C-means 
clustering Methods (FCM) have been used to predict the groutability of granular soil samples with cement-based grouts. Laboratory data 
from related available in the literature was used for the tests. Several parameters were taken into account in the proposed models: water:cement 
ratio of the grout, the relative density of the soil, grouting pressure, soil and grout particle size dimensions named 

15soilD , 
10soilD , 

85 groutd  and 

95 groutd  and the percentage of the soil particles passing through a 0.6 mm sieve. The accuracy of ANFIS models was examined by comparing 

these models with the results of experimental grout-ability tests. A sensitivity analysis showed that the ratios of 
15soilD /

85groutd  and 
10soilD /

95groutd  were the most effective parameters on the groutability of granular soil samples with cement-based grouts and the grout water:cement 

ratio of the grout was determined as the least effective parameter. 
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1. Introduction 

Grouting is a process whereby some external materials are injected 
into soil pores and rock fissures to improve the mechanical and 
hydraulic properties of the media for short- and long-term engineering 
needs. Generally, the process involves injecting a viscous grout mixture 
under the pressure into the porous media or joints until they are blocked 
by the larger grout particles. Permeation grouting has been commonly 
used in ground improvement techniques, it has also been used 
extensively to increase the liquefaction resistance of existing structures 
because it has a low grouting pressure (P) [1].  

Groutability (N) of grouts is defined in terms of its capability for 
injection into a target soil or rock to improve the mechanical properties 
of materials or to reduce their permeability [2–6]. An important issue 
for application of cement-based grout is the trustworthy prediction of 
groutability in different media. The grouting process relies on 
complicated time-dependent transportation of cement particles right 
through the other side of the soil or rock materials. This prediction 
process requires several variables such as the distribution of grain size 
in the grout and soil materials, pore size and hydraulic conductivity of 
the soil, the injection pressure, and the viscosity of the grout suspension. 
This complicates the predictions meaning that no universally 
comprehensive set of criteria or methodology have been determined. 
Many researches have been carried out on tests for soil groutability 
predictions. Some of these have presented basic empirical equations 
related to the size of the soil and cement particles [7,8,9–20]. In practice, 
empirical criteria are regularly applied as the main tools to determine 
the groutability ratio of soil samples. A primary research on groutability 
predictions of granular soil samples includes an analogy between the 

particle dimension of the host soil and cement grout. It was reported 
that the penetration zone by the grout mixture in a soil sample is limited 
by the grain size distribution of the soil [8]. However, the research on 
grout penetrability has reported that an important consideration is the 
size of the voids being grouted in relation to the size of the solid particles 
in the grout [12]. Groutabilty was defined as the ratio (GR) for grouting 
natural soil formations as Equation 1. 

15 soil 85 groutGR D / D 25   (1) 

Where D15 corresponds to the sieve diameter through which 15 wt % 
of the soil sample passes or 15 wt% of the soil sample is finer than the 
grain size diameter, and D85 represents the grain size diameter below 
which 85 wt % of the grout mixture is finer. According to [16], the first 
requirement for the selection of grout is that its particle size should be 
smaller than the dimensions of the voids to be filled, which is 
determined by Equation 2. 

15 soil 85 groutD / D N  (2)  

Where N ranges from 5 to 20 proposed for clay grouts and depends 
on local conditions. It was further added that the second and third (the 
last) requirements are stability and pumpability of a grout sample, 
respectively.  However, in [13], the major controllable variables affecting 
the efficiency of injection are as follow: pumping rate, setting time of the 
grout, pumping time at a given pipe location, the distance-time schedule 
for pulling or driving the pipe, grout viscosity, grouting pattern, and 
possible inter-relationships among the parameters. Additionally, in [15], 
the major uncontrollable variables were groundwater flow and 
stratification. According to [14], grouting with cement is not possible 
when the sand:grout ratio, 15sandD  / 15groutD  is below 11. Grouting is 

only possible when the sand:grout ratio, 15sandD  / 15groutD  is more 
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than 24. For an effective injection, the soil pore space should be three 
times of the diameter of the grout particle to avoid the blockage by 
bridging (Kennedy, 1962; King & Bush, 1963). Based on experimental 
data, the U.S. Army Corps of Engineers Waterways Experiment Station 
proposed that grouting could be successfully accomplished if the grout 
ability ratio was greater than N 15  [15], as shown in Equation 3. 

15 soil 85 groutN D / D 15      (3) 

According to [21], the groutability ratio is defined as the ability of 
grout particulates (soil, cement, clay) to penetrate a soil formation. For 
successful grouting of a soil: 

15 soil 85 groutGR D / D 25        (4)                

The soil grain size limits the penetrability of the grout mixture [22]. 
So that, in a soil sample, if more than 10 wt% of particles passes through 
sieve number 200, the soil sample is not considered groutable. 
According to [9], the dimensions of the voids exist within the soil 
particles compared to those of the grout mixture particles and is 
considered as a logical criterion. Furthermore, some ‘groutability ratios’ 
that have been proven useful for soil samples were presented as follows: 

15 soil 85 grout

c 10 soil 95 grout

N D / D

N D / D






     (5) 

When N 24 , grouting is permanently feasible and when N 11 , 
grouting is not practicable. As well, when

cN 11 , grouting is 

permanently feasible and when
cN 6 , grouting is not practicable [23].  

A method was developed and used to measure the complicated structure 
of pore spaces [24]. According to [25], permeation is controlled by the 
size of particle than by viscosity and cohesion. It was added that the size 
of the pores of granular soil and aperture of rock fissures were dominant 
controls over groutability. While the geometry of a fissure is relatively 
simple to model, the pore system of loose soils is complex. Based on the 
results of cement injected sands and gravel samples [11], groutability 
ratios are suggested to be as shown in Equation 6. 

10 soil 90 grout

soil 90 grout

N D / D 10

N Dm / D 3

 


 

  (6) 

In which, Dm is the size of soil voids.  An empirical the groutability 
ratio of granular soil was proposed for consolidation grouting as a 
function of grain size, relative density and fine contents of soil, the 
dimension of cement particulates, water:cement ratio of the grout 
mixture and the grouting pressure [7]. The performance of conventional 
groutability criteria which are based on the groutability ratios can be 
considered as optimistic. According to [17], test groutability formulas 
do not consider parameters such as the characteristic grain sizes of grout 
and soil, water-cement ratio, type and percentage of used additives, and 
sand density. Well-designed formulations through the proper 
application of additives reduce the cost of a grouting operation via 
decreasing the cohesion and increasing the penetrability of the grout 
[19]. Decreasing the cohesion of a grout mixture, whenever keeping a 
consistent grout mixture, which boosts its penetration, has been 
reported in other researches [26]. However, it is reported in [27] that 
groutability was also enhanced by using flash, while permeability 
showed a significant decrease. Moreover, the possible cement grout 
penetration, investigation of the influence of grout viscosity variation 
and filtration were studied in [28]. Artificial inference systems have 
been recently developed to solve complicated problems. Systems such 
as neural networks and fuzzy logic have been used to solve many 
geotechnical difficulties in recent years. Such systems and their 
associated methods have advantages and some disadvantages. The 
advantage of artificial neural networks is pattern recognition and the 
capacity of adapting a method to cope with changing environments. 
Fuzzy logic has the advantage of incorporating human knowledge and 
expertise to deal with uncertainty and imprecision. Therefore, many 
efforts have been made to take the advantage of both of these 
approaches. As a result of these studies, many investigators have recently 
suggested the application of a combination of these approaches termed 
as the ANFIS method [29-40]. In the case of permeation grouting, some 

researchers utilized an Artificial Neural Network (ANN) for predictions 
of soil groutability [41]. The researchers reported that classical 
groutability prediction formulas, which are mainly contingent upon the 
grain-size of the soil and the grout, were not suitable for semi-
nanometer scale grout. They found that the accuracy of the proposed 
formulas varied from 45% to 68%, a domain that is not suitable for 
practical purposes. Unlike this, an ANN model was proposed by [42] to 
predict the groutability of granular soils by cement-based grouts, 
utilizing grouting pressure, water:cement ratio of the grout, the diameter 
of sieve through which 15% of soil particles and 85% of the grout pass, 
and the relative density of the soil. It was reported that high success rates 
exceeding 90% for some existing empirical methods and a highly 
successful prediction ratio (95.4%) was obtained using the ANN models. 
According to [43], the water:cement ratio of the grout was the most 
effective parameter on the dynamic response of grouted sands and the 
influence of cement grain size and cement pozzolan ingredient were 
secondary, but not insignificant. 

In this paper, three known ANFIS models are developed to evaluate 
the groutability of granular soil samples with cement grout; these 
include GP, SCM, and FCM.  To fulfill this goal, datasets of 87 
laboratory-grouting tests were employed using the data available in the 
related literature. The efficiency of ANFIS models was compared with 
the test results. Since it was not clear which of the above-mentioned 
ANFIS methods had the better performance in terms of addressing the 
grouting problems, a comparison was carried out to compare the 
performance of the three models to determine the best performing 
model. Furthermore, a sensitivity analysis was performed to distinguish 
the most effectual input variables on the groutability of granular soil 
samples. 

2. Background study 

2.1. Takagi-Sugeno fuzzy system 

The theory of fuzzy sets was presented by Zadeh to cope with 
problems that have uncertainty due to ambiguity and imprecision [44]. 
The fuzzy set theory accurately investigates ambiguous conceptual 
phenomena using a precise mathematical framework. This theory is an 
appropriate modeling language for imprecision and ambiguous 
theoretical criteria, phenomena, and relations [45]. The process of 
formulating the mapping from an input to an output utilizing fuzzy logic 
is called fuzzy inference. The fuzzy set theory can decode the enigmatic 
states of reasoning utilized in an environment defined by uncertainty 
and ambiguity. Fuzzy logic is the system of concepts, rules, and 
approaches applied to rough reasoning using the fuzzy set theory [46].  
Fuzzy logic uses a list of ‘if-then’ statements called rules to map an input 
domain to an output domain. The general form of rules is as follows: 

if w is C then z is D 
in which w and z are variables in domains W and Z; C and D are fuzzy 

sets based on W and Z, respectively. In this rule, the antecedent ‘is if’ 
part of the sentence and the consequence is the ‘then’ part of the 
sentence [46].  Applying the information verbalized in the form of 
natural linguistic statements is the prominent feature of rule-based 
fuzzy logic. Membership function (MF) is the main concept of fuzzy 
logic, and numerically, it states the degree to which a given element 
belongs to a fuzzy set. Some methods such as expert judgment or data 
analysis can be used to apply the number of MF, location, and shape to 
the fuzzy model [46]. A subcategory of model designation that copes 
with creating a fuzzy logic is fuzzy modeling.  The response of an 
unfamiliar system specified using some sample data can be foreseen and 
explained using a fuzzy inference system [47]. A fuzzy interference 
system is a world-renowned computing system, which is contingent 
upon notions of fuzzy logic. Different parts of a Fuzzy Inference System 
(FIS) are presented in Table 1. Furthermore, a schematic diagram of FIS 
is presented in Fig. 1 [48]. 

Different applications of FIS have been published so far. The most 
prevalent fuzzy models used are the Mamdani, Takagi–Sugeno–Kang 
(TSK), Tsukamoto Singleton [49]; and the TS fuzzy model introduced 
by Takagi and Sugeno [50]. 

https://www.google.com/search?biw=1280&bih=635&q=define+precise&sa=X&ei=ZwsnVPnKCJDg7QbEvYCYBw&ved=0CDwQ_SowAA
http://www.thesaurus.com/browse/ambiguity
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Table 1. The different parts of a fuzzy inference system [48]. 

Different Parts of a 
fuzzy 

The responsibility of different Parts of a fuzzy 
inference system 

Fuzzification unit Converting crips input variables into a fuzzy 
amount 

Rule base Including fuzzy if – then rules 
Database Description of fuzzy sets membership functions 

Decision-making unit Performing inference operations on the rules 
Defuzzification unit Transforming fuzzy results into an output 

 The logic structure of the TSK model is presented as follows [51]: 

1 1 1 1 1 1if x is A & y is B then f p x q y r     (7) 

In Equation 7, when 1f
 is a constant. 

 
Fig. 1.  Schematic structure of a FIS model with a crisp output [52]. 

2.2. Basic Concept of ANFIS 

FIS is able to model the inference procedure and linguistic features of 
human understanding without applying accurate quantitative 
investigations. ANNs are a combination of many interdependent 
processing components that are comparable to neurons. A collection of 
data is imported to the training algorithm of ANN and the output is 
checked for the desired result through this algorithm. In this method, 
the human process of decision-making is intelligently imitated by a 
combination of ANN and FIS. In conventional ANN, just weight 
quantity alters throughout the learning phase, whereas in a neuro-fuzzy 
decision-making system, the learning capability of ANN is coupled with 
the reasoning process of FIS [53]. ANFIS has been introduced as an 
Adaptive Neuro-Fuzzy Inference System. Basically, ANFIS utilizes a FIS 
and adjusts it using a backpropagation algorithm and employing a set of 
input-output data. The combination of FIS and ANN enables FIS to 
learn. The structure of an adaptive neural network includes several 
nodes joined via oriented links. A node function with unchangeable or 
adaptable parameters defines each node. Neural network algorithms, 
when FIS is loaded, can be applied to calculate unknown factors and this 
decreases the error values, as traditionally described for every parameter 
of the model and this optimization process makes the model adaptive 
[54].  

ANFIS usually utilizes amalgamation of backpropagation for the 
purpose of learning the presupposition parameters and the least mean 
square for determination of resulting parameters. A stage of the learning 
process has two phases: the first phase involves the propagation of input 
patterns and applies the iterative least mean square process to evaluate 
the optimal ending parameters, whilst ancestor parameters are supposed 
not to change for the present phase throughout the training set. 
Furthermore, the second phase is included in the repeated propagation 
of patterns and in this epoch, backpropagation is utilized to adjust the 
ancestor parameters, whilst the ending parameters are maintained. This 
process is followed by iteration (Fig. 2a). For instance, we considered a 
FIS that has two inputs x and y and one output z. Therefore, two fuzzy 
‘if-then’ rules of Takagi and Sugeno's type are presented in Equation 8 
[52]. 

1 1 1 1 1 1

2 2 2 2 2 2

1

2

Rule : If x is A and y is B ,then f p x q y r

Rule : If x is A and y is B ,then f p x q y r

  

  
 (8) 

The adaptive neural network and its operationally identical to FIS are 
presented in Figs. 2a and 2b respectively.  

In this study, a neuro-fuzzy model was utilized containing five layers 
[55], as follow:  

In the first layer; every node i creates a membership grade of a lingual 

ticket. For example, the node function of the ith node could be as 
Equation 9, [52]: 

1 2i
i Ai

i

x c
Q (x) exp ( )

a

 
   

 
  (9) 

in which, x is the input to node i, and 
iA  is the lingual ticket (small, 

large, etc.) introduces this node and  i i ia ,b ,c  is the parameter 

collection that alters the MF configuration. The parameters of the first 
layer are named “premise parameters”. 

 

 
Fig. 2. (a) Schematic structure of the TSK fuzzy model; (b) ANFIS model 

Structure [52]. 

In the second layer, every node in computes the “firing strength” of 
each rule by multiplication described in Equation 10, [52]:  

2

i i Ai BiQ w (x) (y), i 1,2.      (10)               

In the third Layer; the i th node computes the ratio of the i th rule’s 
firing strength to the aggregate firing strengths of all rules as defined in 
Equation 11, [52]. 

3 i
i i

1 2

w
Q w , i 1,2.

w w
  


  (11) 

The outputs of the third layer are named “normalized firing 
strengths”. 

In the fourth layer, the node function of each node i is presented in 
Equation 12, [52]. 

4

i i i i i i iQ w f w (p x q y r )     (12) 

in which iw  is the third layer output. Parameters in the fourth layer 
are called ‘consequent parameters’. 

In the fifth layer, an individual node shown by a circle calculates the 
‘overall output’ as the aggregate of all interring signals. The node 
function is represented by Equation 13. 

5 i i i
i i i

i i

w f
Q OveralOutput w f

w


   


 (13) 

3. Data set 

As discussed in section 2, all techniques in the literature that predict 
groutability depend on an analogy between the distribution of grain size 
and permeability of host soil and cement grout. Nonetheless, some 
researchers have shown that many other parameters also affect 
groutability [27,43,56]. In addition, it has been agreed that a better 
estimation of groutability is made when many effective soil and grout 
variables are included.  Hence, the excellent ability of ANFIS in 
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parameter identification can be applied to boost the forestall-ability of 
the model. Therefore, a set of information including experimental tests 
is employed to develop the well-made ANFIS models. The tests consist 
mainly of water to cement proportion of the grout mixture (W/C), the 
amount of soil which is less than 0.6 mm (FC), the relative density of 
soil (Dr), the pressure under which grout is injected (P) and the grain-
size distribution of the host soil and the grout. Based on [57], an 
investigation was done to determine the groutability of sand samples 
with various grain-size distribution curves using micro fine cement 
samples. In that study, fifteen experiments were accomplished by 
injecting the grout mixture under 100 kPa pressure into the sand with a 

given relative density. Furthermore, in [42] the same test setup was used 
to carry out sixteen grouting tests. Based on [7], 38 grouting tests were 
performed on granular soil samples. However, eighteen experimental 
grouting tests were accomplished on granular soil samples [58]. All 
datasets were collected from the literature, and the ANFIS models were 
established according to a total of 87 experiments involving W/C, Dr, P, 
FC, 15 soil 85 groutN1 D / d , 10 soil 95 groutN2 D / d and the results of the 

grouting experiments. All data sets are presented in Table 2 and in order 
to investigate the exact details of the experimental procedure, related 
references are presented as follows [58]:  

Table 2. Data sets of groutability collected from [7,42,57,58]. 

No W/C Dr(%) P(kPa) FC(%) 
15 soil

85 grout

D
N1

d
  10 soil

95 grout

D
N2

d
  Experimental 

Groutability 
Reference 

1 1 80 50 1 87.10 41.67 1 [19]  
2 1 80 100 1 45.16 21.33 1 [19]  
3 1 80 100 1 20.97 10.00 1 [19]  
4 1 80 100 100 11.29 5.33 0 [19]  
5 1 80 150 100 11.29 5.33 0 [19]  
6 1 80 250 100 11.29 5.33 0 [19]  
7 2 30 100 100 11.29 5.33 0 [19]  
8 2 30 200 100 11.29 5.33 0 [19]  
9 1 80 100 34 14.19 6.17 0 [19]  
10 1 80 150 34 14.19 6.17 0 [19]  
11 1 80 200 34 14.19 6.17 0 [19]  
12 2 30 100 34 14.19 6.17 0 [19]  
13 2 30 200 34 14.19 6.17 0 [19]  
14 1 80 100 33 27.42 11.67 1 [19]  
15 1 80 100 15 19.35 8.00 0 [19]  
16 1 80 150 15 19.35 8.00 0 [19]  
17 1 80 200 15 19.35 8.00 0 [19]  
18 1 30 200 15 19.35 8.00 0 [19]  
19 2 30 200 15 19.35 8.00 0 [19]  
20 1 80 100 15 19.35 9.00 0 [19]  
21 2 30 200 15 19.35 9.00 0 [19]  
22 1 80 100 10 23.55 10.00 0 [19]  
23 1 80 100 5 28.39 12.67 1 [19]  
24 1 80 100 5 28.39 12.67 0 [19]  
25 1 80 150 5 28.39 12.67 0 [19]  
26 1 80 200 5 28.39 12.67 0 [19]  
27 1 30 200 5 28.39 12.67 0 [19]  
28 2 30 100 5 28.39 12.67 1 [19]  
29 2 30 100 5 28.39 12.67 1 [19]  
30 3 30 100 5 28.39 12.67 0 [19]  
31 2 30 200 100 11.29 5.33 0 [19]  
32 2 30 200 34 14.19 6.17 0 [19]  
33 1 80 200 15 19.35 8.00 0 [19]  
34 2 30 200 15 19.35 8.00 0 [19]  
35 1 80 100 5 28.39 12.67 1 [19]  
36 1 80 150 5 28.39 12.67 0 [19]  
37 1 80 200 5 28.39 12.67 1 [19]  
38 1 30 200 5 28.39 12.67 1 [19]  
39 4 70 517 100 28.33 18.75 1 [58] 
40 4 70 517 100 26.67 17.50 1 [58]  
41 4 70 517 100 25.00 16.25 1 [58]  
42 4 70 690 100 25.00 16.25 0 [58]  
43 4 70 690 100 21.67 15.00 0 [58]  
44 4 70 483 25 71.67 43.75 1 [58]  
45 4 70 517 25 66.67 40.00 1 [58]  
46 4 70 690 25 25.00 15.00 1 [58]  
47 4 70 690 25 58.33 37.50 0 [58]  
48 2 70 655 100 28.33 18.75 1 [58]  
49 4 70 517 100 28.33 18.75 1 [58]  
50 6 70 345 100 28.33 18.75 1 [58]  
51 2 70 552 65 36.67 23.75 1 [58]  
52 4 70 483 65 36.67 23.75 1 [58]  
53 6 70 241 65 36.67 23.75 1 [58]  
54 2 70 552 25 71.67 43.75 1 [58]  
55 4 70 448 25 71.67 43.75 1 [58]  
56 6 70 241 25 71.67 43.75 1 [58]  
57 1 30 100 100 13.64 6.67 0 [57]  
58 1 27 100 20 121.59 69.33 1 [57]  
59 1 30 100 19 57.95 24.00 1 [57]  
60 1 32 100 23 45.45 18.67 1 [57]  
61 1 30 100 29 34.09 15.33 0 [57]  
62 1 30 90 19 57.95 24.00 1 [57]  

https://www.google.com/search?biw=1280&bih=685&q=define+broaden&sa=X&ei=vbcgUsCCHomItQbb2YDwAQ&ved=0CEMQ_SowAA
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63 1 30 100 23 45.45 18.67 1 [57]  
64 1 30 100 29 34.09 15.33 1 [57]  
65 1 30 100 33 30.68 13.33 0 [57]  
66 1 30 100 38 25.00 11.33 0 [57]  
67 1 30 100 19 57.95 24.00 1 [57]  
68 1 30 100 23 45.45 18.67 1 [57]  
69 1 28 100 29 34.09 15.33 1 [57]  
70 1 31 100 33 30.68 13.33 1 [57]  
71 1 30 100 38 25.00 11.33 0 [57]  
72 1 30 490 100 146.67 83.33 1 [42] 
73 1 30 490 77 160.00 83.33 1 [42]  
74 1 30 490 69 173.33 91.67 1 [42]  
75 1 30 490 62 186.67 100.00 1 [42]  
76 1 30 490 54 200.00 108.33 1 [42]  
77 1 30 490 46 266.67 116.67 1 [42]  
78 1 30 490 23 760.00 433.33 1 [42]  
79 1 30 490 62 186.67 100.00 1 [42]  
80 1 30 490 69 173.33 91.67 1 [42]  
81 1 30 490 77 160.00 83.33 1 [42]  
82 1 50 490 54 200.00 108.33 1 [42]  
83 1 50 490 62 186.67 100.00 1 [42]  
84 1 50 490 69 173.33 91.67 1 [42]  
85 1 60 490 46 266.67 116.67 1 [42]  
86 1 60 490 54 200.00 108.33 1 [42]  
87 1 60 490 62 186.67 100.00 1 [42]  

 

4. Application of ANFIS to predict groutability 

As discussed in section 4, the Adaptive Neuro-Fuzzy Inference 
System is a FIS that has to be initialized one at a time. There are 
techniques for structure recognition to establish a prime ANFIS 
structure prior to the application of any parameter-adjusting 
mechanism.  

Structure recognition in fuzzy modeling includes the following parts 
[52]:  

o Selecting pertinent input parameters; 
o Dividing of input domain; 
o Quantifying MFs for every input variable;  
o Quantifying if-then rules; 
o Ancestor statement of fuzzy rules; 
o Result statement of fuzzy rules. 
o Selecting primary factors of MFs  

In this paper, in order to recognize the ancestor MFs, the following 
three ANFIS models have been utilized: 

1- Grid partitioning (GP);  
2- Subtractive Clustering Method (SCM); 
3- Fuzzy C-means clustering Method (FCM). 

4.1. Grid Partitioning (GP) 

Autonomous divisions of every ancestor parameter are proposed in 
the Grid Partitioning (GP) method [52]. For the purpose of developing 
a model, the MFs of all ancestor parameters can be defined by an expert 
and by applying former experience and understanding. The essence of 
linguistic phrases in an apparent text is represented by means of 
designed MFs. However, in plenty of organizations, particular 
understanding is not accessible in these divisions. In this method, the 
spaces of ancestor parameters are easily divided into a number of MFs 
with equal space and shape. The MFs parameters can be optimized by 
means of the available input-output data. 

4.2. Subtractive Clustering Method (SCM) 

SCM was originally suggested by [54]. In this method, data are 
considered as nominations for the central point of a cluster.  The SCM 
algorithm is presented below:  

First, imagine a set of n data points  1 2 3 nx ,x ,x ,..., x in an M-

dimensional domain. SCM calculates this matter utilizing data points as 
nominations for cluster centers. In view of the fact that every data point 

is a nomination for a cluster center, the function of density measure at 
a given data point 

ix  is presented as Equation 14. 

 
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n i j
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j 1 a

x x
D exp

r
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

 
  
 
  

  
  

                                                                                            

(14) 
in which 

ar is a positive constant. If a data point has lots of 

neighboring data, it will have a high-density value. The neighborhood is 
defined by the radius 

ar ; all data points beyond this radius grant just 

moderately to the density measure. When the density function of every 
data point is calculated, the maximum density will be chosen as the first 
cluster center. Following the calculation of the density function of every 
data point, with the maximum density measure is chosen as the first 
cluster center. If 

c1x  -the first cluster center- is selected as the data 

containing a higher density amount 
c1D , the density measurement of 

every data point 
ix will be updated as Equation 15. 
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   (15) 

in which 
br is an affirmative fixed amount. When the density 

computation was updated for every data point, the subsequent cluster 
center 

c2x will be chosen. Finally, the whole density computations for 

data points are updated reiteratively. This calculation is iterated up to 
create an adequate quantity of cluster centers.  

4.3. Fuzzy C-means clustering Method (FCM) 

It should be noted that FCM is based on Hard C-means clustering 
(HCM). The main difference between FCM and HCM is that in FCM 
all data is placed in a cluster with a degree of membership, provided that 
in HCM all data is rightly placed in a specific cluster or not. This 
algorithm was proposed by [18]. FCM divides a set of n vector

ix ,

i 1,2,...,n into fuzzy sets, and identifies the center of each cluster by 

minimizing the cost function of incongruity measure. i 1,2,...,c  are 
arbitrarily chosen from the n points. The FCM algorithm is explained as 
follows: at first, the cluster center

ic  , i 1,2,...,c  are selected arbitrarily 

out of n data points  1 2 3 nx ,x ,x ,..., x . The elements of membership 

https://www.google.com/search?biw=1280&bih=635&q=define+technique&sa=X&ei=WHI2VKC2DoXLsAT0t4DACg&ved=0CB8Q_SowAA
https://www.google.com/search?biw=1280&bih=635&q=define+moderately&sa=X&ei=M_s3VK2bGsTKOd-jgcgI&ved=0CCAQ_SowAA
https://www.google.com/search?biw=1280&bih=635&q=define+adequate&sa=X&ei=IDE4VKGcIMT3avrIgrgF&ved=0CB8Q_SowAA
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matrix U can vary from 0 to 1. However, as presented in Equation 16, the 
aggregate of membership degree of a data point to all clusters is unity. 

c

ij

i 1

u 1 j 1,..., n


    (16) 

Then, the membership matrix U is computed utilizing Equation 17. 

ij 2/m 1
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ij

k 1 kj

1
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d

d
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
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 
 



  (17) 

In which 
ij i jd c x   is the Euclidean interval of the ith cluster 

center from the jth data point, 
kj k jd c x   is the Euclidean interval of 

the kth cluster center from the jth data point, and m is the fuzziness 
index.  

Subsequently, the cost function is computed based on Equation 18. If 
the cost function is less than a specific limit, the process will stop. 

c c n
m 2

1 c i ij ij

i 1 i 1 j 1
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      (18) 

Finally, new fuzzy cluster centers 
ic , i 1,2,...,c  are computed 

utilizing Equation 19. 
n

m

ij j
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 (19) 

5. Groutability prediction utilizing ANFIS model 

In this study, three types of modeling producer were carried out to 
foretell groutability for granular soil samples. ANFIS models including 
GP, SCM, and FCM were applied to predict the groutability of granular 
soil samples with cement-based grouts. According to the GP model, the 
fuzzy rule-base for the Sugeno model was specified in MATLAB 
software utilizing the ANN model presented in [52]. The schematic 
design structure of ANFIS is illustrated in Fig. 3. Calculations for this 
study were conducted using Matlab R2010a software and all runs were 
carried out on a Laptop with Intel Core 2 Duo @2 GHz CPU and 2 GB 
RAM. Depending on the chosen method for the ANFIS models, the run 
time of each model varied from 2 to 5 minutes. 

 
Fig. 3. Shows a schematic of design structures for the GP, SCM and FCM ANFIS 

models. 

As illustrated in Fig. 3, the parameters of W/C, Dr, P, FC, N1, and N2 
were introduced to the ANFIS models as input parameters and just the 
‘a’ output parameter, i.e. groutability, was acquired. Specifications of 
groutability data are presented in Table 3.  

Table 3. Specifications of groutability data applied to ANFIS models. 

Parameter Description Symbols Range 

Input Water/cement ratio of the 

grout 

W/C 1-6 

 Relative density of the host 

soil (%) 

Dr 27-80 

 Grouting pressure (kPa) P 50-690 

 Content of soil passing 

through a 0.6 mm sieve (%) 

FC 1-100 

 15 base soil 85 cement groutD / d  N1 10-762 

 10 base soil 95 cement groutD / d  N2 4-433.33 

Output Groutability Groutability 0 or 1 
 

 
The training phase for each model applied 62 data collection, 

randomly selected from a database. For the purposes of having a more 
effective training phase, the normalization of datasets was carried out to 
the domain of [0,1] by Equation 20. 

min
normalized

max min

x x
x

x x





  (20) 

in which x is an input variable and 
minx  and 

maxx  are minimum and 

maximum values of each variable, respectively.  
In the grid partitioning ANFIS model, for every input parameter, two 

Gaussian fuzzy collections were adapted and 64 fuzzy rules were created 
in its network structure. Detailed properties of the GP model are 
presented in Table 4. 

Table 4. Types of parameters and the amounts applied to train the ANFIS 
models. 

ANFIS parameter type ANFIS 

(GP) 

ANFIS 

(SCM) 

ANFIS 

(FCM) 

MF type Gaussian Gaussian Gaussian 

Output MF Linear Linear Linear 

Number of nodes 161 345 177 

Number of linear parameters 448 168 84 

Number of nonlinear parameters 24 288 144 

Total number of parameters 472 456 228 

Number of training data pairs 62 62 62 

Number of testing data set 25 25 25 

Number of fuzzy rules 64 24 12 

The ultimate (trained) Gaussian shaped MFs of the input variables 
are presented in Fig. 4.  

 

 
Fig. 4. Ultimate MFs of the grid partitioning method. 

The ANFIS model based on SCM, includes 24 rules and its 
specification is presented in Table 4. The ultimate (trained) MFs of 
input variables are illustrated in Fig. 5. 
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Fig. 5. Ultimate MFs of subtractive clustering method. 

The last ANFIS model, which is based on FCM contains 12 rules. The 
MFs of the input variables are illustrated in Fig. 6. Details of the 
parameters of the ANFIS (FCM) model are presented in Table 4.  

 

 
Fig. 6. Ultimate MFs of Fuzzy C-means clustering method. 

6. Prediction performance 

In order to calculate the prediction capability of the proposed models, 
an efficiency evaluation of the ANFIS models has been made using the 
test data. The test data are almost 25 data that were not utilized in the 
learning process of the model. It should be noticed that the test data 
were chosen randomly. Ten samples of testing data are presented in 
Table 5. 

6.1. Performance assessment of ANFIS models  

The precision of the ANFIS models is tested through comparing and 
contrasting the model predictions with the results of groutability tests 
acquired through grouting experiments. Since the results of modeling 
and the measured data were discreet i.e. 0 (ungroutable) or 1 (grout 

able), in order to report the performance of the models, success, and 
failure rates were defined as Equations 21 and 22 respectively. 

Table 5. Sample of data used in testing phase [7,42,57,58]. 

No. W/C Dr (%) P (kPa) FC (%) N1 N2 Groutability 
1 1 80 100 100 10.00 4.00 0 
2 2 30 100 34 14.19 6.17 0 
3 2 30 100 5 28.39 12.67 1 
4 4 70 517 100 26.67 17.50 1 
5 1 80 250 100 10.00 4.00 0 
6 4 70 690 100 21.67 15.00 0 
7 2 30 200 34 14.19 6.17 0 
8 2 30 100 5 28.39 12.67 1 
9 1 80 100 33 23.00 9.00 1 
10 4 70 690 25 25.00 15.00 1 

(%) 100
Correct prediction

Success rate
Case records

    (21) 

(%) 100
Incorect prediction

Failure rate
Case records

 

 (22) 
As shown in Table 6, the average correct prediction cases of the 

ANFIS models, GP, SCM, and FCM, are 24.33, 25 and 24 out of 25 
testing cases, respectively. For the purpose of cross-validation, the set of 
87 data were separated into two groups, one of them 62 and the other 
one 25, as the training and testing datasets, respectively. The process was 
applied to three different arrangements. The test data were completely 
different in each arrangement. The results of applying these three 
datasets to the models are presented in Table 6.  

Table 6. Cross-validation and the average performance of the ANFIS models. 

Data sets 
ANFIS 
Model 

Case 
Records 

Incorrect 
prediction 

Correct 
prediction 

Failure 
rate (%) 

Success 
rate (%) 

1 
GP 25 1 24 4 96 

SCM 25 0 25 0 100 
FCM 25 3 22 12 88 

2 
GP 25 1 24 4 96 

SCM 25 0 25 0 100 
FCM 25 2 23 8 92 

3 
GP 25 0 25 0 100 

SCM 25 0 25 0 100 
FCM 25 0 25 0 100 

Average 
GP 25 0.67 24.33 2.7 97.3 

SCM 25 0 25 0 100 
FCM 25 1 24 6.7 93.3 

Cross-validation indicated that the models worked very well with 
different input data. Therefore, the overfitting could not be a problem 
and the models could be considered as comprehensive. In general terms, 
the outcomes presented in Table 6 and Fig. 7 display the remarkable 
possibility of the Subtractive Clustering Method with an average success 
rate of 100% in correctly foretelling the groutability of granular soil 
samples with the cement grout. However, other methods including Grid 
Partitioning and Fuzzy C-means clustering Method predicted the 
groutability of granular soil with success rate averages of 97.3% and 
93.3%, respectively. 

 
Fig. 7. Average failure and success rates of groutability prediction of the ANFIS 

models: (a) GP; (b) SCM and (c) FCM. 

The performance of proposed models was investigated utilizing 
confusion matrix analyses. A confusion matrix is a performance 
measurement for machine learning classification problem where the 
output can be two or more classes. This approach uses a table with four 
different combinations of predicted and actual values (Fig. 8). 
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Fig. 8. Confusion matrix for a 2-class classification. 

As seen in Fig. 8, several terminologies are used to calculate confusion 
matrix as follows: True Positive (TP) means that the model predicted 
positive values and it is true. True Negative (TN) indicates that the 
model predicted negative values and it is true. False Positive (FP) reveals 
that the model predicted positive values and it is false and finally, False 
Negative (FN) means that the model predicted negative values and it is 
false. The confusion matrix is extremely useful for measuring Recall, 
Precision, Accuracy, and F-Means according to the following formulas: 

Re
TP

call
TP FN




    (23)  

Pr
TP

ecision
TP FP


     (24)   

TP TN
Accuracy

Total




  (25)  
2 Re Pr

Re Pr

call ecision
F Measure

call ecision

 
 

     (26)  
       The calculated parameters are presented in Table 7:  

Table 7. Confusion Matrix Atlases. 

ANFIS Model Recall Precision Accuracy F-means 

GP 0.63 1.00 0.96 0.77 

SCM 0.60 1.00 1.00 0.75 
FCM 0.64 0.93 0.88 0.76 

As shown in Table 7, the results of confusion matrix analyses are in a 
high agreement with the previous results of the succession rate formula.  

7. Sensitivity analysis 

Sensitivity analyses were performed to determine the most effective 
input parameters on the output parameter. To achieve this goal, the 
cosine amplitude method (CAM) was used [46,47,59–62]. To apply this 
method, all data were declared in an X-space.  

The data pairs were utilized to establish a data array X as described in 
Equation 27. 

1 2 3{ , , ,... }mX X X X X   (27) 

 Every member iX  in the data order X is a vector with the length of 

m, which is presented in Equation 28. 

1 2 3 1{ , , ,..., }i i i i imX x x x x  (28) 

 
Therefore, each data pair was considered as a point in an m-

dimensional domain, whereby every data requires m-coordinates for a 
comprehensive explanation. Every element of ijr  in Equation (25), 

presents a pairwise comparison of two data pairs. 

The strength of the relation between the data pairs, ix and jx  is 

described by the membership amount introducing the strength and is 
presented in Equation (29). 

2 2/

1 1 1

m m m

r x x x xij ik jk ik jk

k k k



  

      (29) 

These strengths of relations’ quantities, i.e. rij, between the input 
parameters and groutability for three types of the ANFIS models are 
illustrated in Fig. 9.  

 

As illustrated in Fig. 8, the most effective variables on groutability 
were N1, N2, and P respectively. Furthermore, the least effective 
parameter on groutability was W/C. 

 
Fig. 9. The rij between input parameters and groutability. 

 

8. Conclusion 

Three new ANFIS models were improved to predict the groutability 
in geoscience operations based on laboratory tests. The models were 
boosted on the strength of experts’ knowledge and the datasets were 
collected from the literature. In this analogical investigation, three 
Takagi–Sugeno Fuzzy Inference Systems; GP, SCM, and FCM methods 
were applied to evaluate the groutability of granular soils . Some 
parameters included the proportion of water to cement in the grout 
(W/C), the relative density of soil (Dr), the soil percentage moving 
through a 0.6 mm sieve (FC), the injection pressure of grout (P), 

15 soil 85 groutN1 D / d and 10 soil 95 groutN2 D / d were considered as inputs 

for models. To achieve favorable outputs, the training of ANFIS models 
using the datasets was carried out and the neuro-fuzzy parameters were 
obtained utilizing an ANN.  The results of this study indicated that 
Subtractive Clustering Method with an average success rate and 
accuracy of 100% was the most effective method to foretell the 
groutability of granular soil samples in comparison with the other two 
methods. However, other methods including Grid Partitioning and 
Fuzzy C-means clustering with average success rates of 97.3% and 93.3%, 
respectively, were able to reasonably well foretell the groutability of 
granular soils. The comparison displayed the excellence of the ANFIS 
model on the strength of the SCM algorithm. In addition, it showed that 
the GP algorithm had better results in relation to the FCM algorithm. 
Furthermore, it was observed that the simulation results of the ANFIS 
models were close to the real measured values. Moreover, the three-fold 
cross validation indicated that the models worked very well with 
different input data. Therefore, overfitting cannot be considered as a 
problem and the models could be regarded as comprehensive. 
Consequently, sensitivity analyses were carried out using the cosine 
amplitude method (CAM) and indicated that based on the Grid 
Partitioning Method, the most effective factors in order of importance 
are N1, N2, and P respectively and W/C, FC and Dr respectively relate 
to the least effective parameter on groutability of granular soil.  
Moreover, according to the Subtractive Clustering Method, the most 
effective parameters in order of significance are N2, N1, and P 
respectively and W/C, Dr and FC are the least effective parameters on 
groutability, respectively. Finally, on the strength of the Fuzzy C-means 
clustering Method N1, N2, and P are respectively the most effective 
parameters and W/C, Dr and FC were the least effective parameters on 
the groutability granular soils . Although the three tested methods 
indicated the same parameters as the most/least effective parameters, 
the order of importance in each was different. The order of the most 
effective parameters in the GPM and FCM methods is N1, N2, and P 
respectively; however, the order of the least effective parameters in the 
SCM and FCM methods was W/C, Dr and FC. 

 
 Actual 

True (1) False (0) 

Predicted 

Positive (1) TP FP 

Negative (0) FN TN 
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