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A B S T R A C T 

 

One of the main tasks to analyze and design a mining system is predicting the behavior exhibited by prices in the future. In this paper, the 
applications of different prediction methods are evaluated in econometrics and financial management fields, such as ARIMA, TGARCH, and 
stochastic differential equations, for the time-series of monthly copper prices. Moreover, the performance of these methods is investigated in 
predicting the time-series of monthly prices of copper during early 1987 till late 2014. This study shows that the mean of about thousand runs 
using the Stochastic Differential Equations (SDE) method for 33 out of range cases gives better forecasting results for copper price time-series 
in comparison to traditional linear or non-linear functional forms (such as ARIMA and TGARCH) to model the price movement. 
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1. Introduction 

Although prediction is a key element in taking management 
decisions, it is always erroneous. The most significant researches 
undertaken in the field of future price forecasting are those 
corresponding to stock return or prices in stock exchange markets with 
major part of mathematical financial activities focused on this subject. 

Metals are important traded commodities, and thus, forecasting their 
price has important commercial and also economic implications. 
Despite the significant number of studies on metals and their price, the 
precise pricing mechanism in metals market has not been presented [1]. 
Dooley & Lenihan [2] argued that metals price tends to be the major 
factor causing variability in revenues from mining operations. Price 
forecasting is important to investigate whether a deposit can be 
exploited economically.  

System recognition principles and dynamic model governing stock 
price and return prediction undertaken via linear, non-linear, or random 
modelling approaches, can be extended to other pricing sectors such as 
future price prediction for metals such as iron, copper, gold, and even in 
the oil and gas industry. Metals prices are the result of complex market 
dynamics and stochastic economic processes, which makes the price 
forecasting process difficult [3]. Labys used a structural time-series 
model to forecast the monthly prices of copper, lead, tin, zinc, and other 
primary commodities. Dooley & Lenihan [2] presented 3-month 
forward and 15-month forward prices for lead and zinc. The results of 
comparing and evaluating the ARIMA and lagged forward modeling 
approaches show that, in mining industry, price forecasting is extremely 
difficult and these techniques are not capable of forecasting the price in 
mining systems. Kriechbaumer et. al [4] provided the motivation for 
combining wavelets with the ARIMA models to forecast the monthly 
base metal prices. Accordingly, the normal ARIMA models have shown 
to be rather unsuitable for predicting the monthly based metal prices. 

In traditional time-series-related predictions, future values are 
assumed to follow linear or non-linear trends followed by previous 
values [2]. Different tests have been already developed to evaluate and 

characterize the nature, linearity, non-linearity, chaos, and randomness 
of the time-series. 

There are several reports that have used non-linear models of the 
ARCH family for the economical time-series modeling [5-9]. Tan et. al. 
[10] used combination of ARIMA and generalized autoregressive 
conditional heteroskedasticity (GARCH) models for electricity price 
forecasting. Zhang & Tan [11] forecast Day-ahead electricity price using 
EGARCH model. So far, the use of autoregressive conditional non-linear 
ARCH family models in metal price time-series forecasting is not 
common and has not been reported. 

Long-term forecasts are more unreliable than short-term ones and it 
should be remembered that no forecasting methodology will be fully 
accurate all of the time so there are risks associated with using them. As 
Van Rensburg & Bambrick [12] pointed out, forecasting remains an art 
rather than a science. Future values are assumed to follow linear or non-
linear trends processed by common models such as auto regressive 
integrated moving average (ARIMA), generalized autoregressive 
conditional heteroskedasticity (GARCH), etc. For these models to be 
efficient, there should be a linear relationship (except for ARCH model 
family) along with datasets of normal distribution and sustainability – 
these are normally not meet in financial markets [13-15]. Stochastic 
differential equations are recommended for more complex cases where 
the exhibited non-linear behavior looks completely of a stochastic 
nature [16-18]. 

In this paper, the important role of copper in the industry as well as 
the excessive need for modeling and forecasting its price are taken into 
account in drawing a future image of the design of mining systems. 
Therefore, in this study, different forecasting methods are discussed 
among which the SDE method is suggested as an appropriate 
forecasting method.  

2. Time-series analysis of Box – Jenkins model (linear 
models) 

The time-series analyses were theoretically and practically developed 
during 1970s to perform the prediction and control tasks. Some analyses 
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are commonly related to data that lack the independency and are 
sequentially dependent on one another. This interdependency along 
sequential observations is used for in prediction tasks [15]. The linear 
time-series models include the auto regressive (AR) model, the moving 
average (MA) model, the auto regressive moving average model 
(ARMA), and the autoregressive integrated moving average (ARIMA). 
In these models, the variable under consideration is expressed in terms 
of its historical values along with previous interference or error terms. 
The Box – Jenkins approach determines how the time-series under 
consideration does or does not follow any of the mentioned linear 
models [13]. 

3. Nonlinear models 

Time-series models are generally analyzed based on the variance 
homology assumption which may not be valid for many time-series 
datasets including economic ones. Therefore, the rational method is to 
use models where in heteroskedasticity constraints are considered when 
having models fitted. One of well-known families of such non-linear 
models is called autoregressive conditional heteroskedasticity (ARCH) 
including the symmetric GARCH model. In this model, the conditional 
variance (i.e. instantaneous or short-term variance) is assumed to be a 
function of stopping the conditional variance and prediction error 
values, with the variance of errors for each period being a function of its 
preceding values. In this way, one can undertake dynamic predictions in 
time-series models based on their average and variance values. In the 
symmetric GARCH model, in contrary to asymmetric models and 
systems, an identical variance variability is assumed for either of positive 
or negative shocks. Later on, the TARCH model was proposed to model 
the effects of good and bad events on the fluctuations. This model is 
characterized by the conditionality of standard deviation rather than 
variance [9]. In total, so far, different models of ARCH family have been 
proposed to model non-linear series such as, TARCH, TGARCH, 
EARCH, GARCH-M and etc. 

4. Stochastic differential equations method 

The dynamic nature of time-series of prices often follows stochastic 
and chaos behaviors. Considering random fluctuations in stock prices, 
using stochastic differential equations can be an efficient workaround 
for the modeling and prediction of the economic time-series. These 
models were first introduced to the economy literature by the works of 
Black & Scholes [19], and Merton [20, 21] which were dedicated to the 
modeling of stock prices in terms of a geometrical motion stochastic 
differential equations. In this model, a return on stock or stock price are 
assumed with the stock prices following a log-normal distribution of 
fixed fluctuations [22]. Even with non-fixed fluctuations, one can use 
the average values without any interference with the job flow. 
Accordingly, if the price fluctuations follow a given time-dependent 
function, the model recovery principles will remain unchanged with the 
instantaneous fluctuations considered in terms of the average 
instantaneous fluctuations [19]. Principally, the future price prediction 
is highly sensitive to the initial price conditions, so that a given level of 
error in the present period may generate very significant levels of error 
in the periods to come. 

In spite of its chaos or random nature, stochastic differential 
equations method provides suitable applicability in terms of predicting 
future economic parameters. The stochastic trend of the time-series is 
introduced into the model in terms of random Weiner process, and due 
to this trend, the model results are unstable to overcome which problem 
or simulations are launched for many runs [22]. In simulations, rather 
than introducing a mathematical relation to solve the problem, the 
model is analyzed and tested under stochastic conditions for many 
times, so as to achieve reliable results on actual performance of the 
system [23]. The corresponding Black – Sholes – Merton stochastic 
differential equations to model the stock prices is as follows: 

0( ) ( ) ( ) ( ), (0)dS t S t dt S t dw t S S     (1) 

where S(t) denotes the stock price at time t,  represents the 

mathematical expectation of return on stock,   is the instantaneous 
return on stock, and w(t) refers to the geometric Brownian motion or 
Weiner process which reproduces the fluctuating behavior of the time-
series S(t) [18, 23]. One of apparent limitations of the model is the 
normality assumption of return on securities prices accounted for as a 
required condition for the model to be applicable. However, further 
studies have shown the efficient applicability of this model to non-
normal distributions as well [19]. Interested readers on the Brownian 
motion and the Weiner process are referred to references [7, 16, 24] for 
more details. 

With p(t) denoting price levels,   and   being the price drift and 
price volatility at time t, respectively, Black – Sholes – Merton idea 
implies that p(t) will be satisfied in the Brownian motion equations, so 
that the stochastic differential equations can be solved to determine the 
stochastic process which represents the behavior of price variable 
throughout the time as follows: 

0( ) ( ) ( ) ( ), (0)dp t p t dt p t dw t p p     (2) 

According to appendix A, for
0 0( )p t p , 

0 0t  , we have: 
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Eq. (3) demonstrates the dynamic nature of price behavior 
throughout the time. There are different methods to calculate   and 
 , among which the simplest one is to use their preceding values 
according to Eq. (4) and (5) [22]. 
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5. Modeling of time-series of monthly copper prices 

Fig. 1 shows the chart of time-series of monthly copper prices from 
early 1987 till late 2014 [25]. Based on the existing experiences and 
comparing the figure with other featured series, the time-series of 
copper prices is evidently stochastic and irregular. In order to model the 
time-series of copper prices, some of the most important common 
above-mentioned models were used; the time-series was extrapolated 
using these models. 

5.1. Prediction of time-series using linear and non-linear models 

The EViews software package was utilized to model the time-series 
using some linear models of Box – Jenkins family (such as ARMA and 
ARIMA) as well as some non-linear models (such as ARCH, GARH, 
TARCH, TGARCH, etc.). 

The following steps were undertaken to perform the modeling task 
using the mentioned software: 

The determination of overall series trend using the linear model. 
The use of Dicky – Fuller test and other tests to evaluate whether the 

series is stationary or not. 
Making the series stationary by taking different logarithms, if 

required. 
The determination of autocorrelation function (ACF) and partial 

autocorrelation functions (PCF) to obtain the optimum stops for either 
of ARIMA models. 

The determination of the series variance using the heteroskedasticity 
variance test for the complementary recognition, once finished with 
determining the linear model. 

Undertaking the required steps to eliminate the heteroskedasticity 
variance effect, once it was confirmed further proving the non-linear 
condition. 

In the absence of symmetry across the series under study, the TARCH 
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and TGARCH models can also be used. Other non-linear models of the 
ARCH family are also recommended under special conditions and on-
demand. The following presents a descriptive summary of the modeling 
results of copper prices time-series using the EViews software. 

Initially, through investigating the series diagram and the results of 
the Dicky- Fuller test, the data was once changed to achieve a stationary 
time-series; the results of the Dicky- Fuller test confirmed the series to 
become stationary. Then, by introducing different autoregressive terms 
along with an adequate moving average and an ordinary least squares 
(OLS) estimation, and based on the Akaike and Shwarz criteria while 
considering the fitness evaluation measures of Dublin – Watson, 
standard deviation of error, and correlation coefficient, the ARIMA 
method was selected as the proper model. After selecting the ARIMA 
model as the proper model via Box – Jenkins method, the Lagrange 
multiplier heteroscedasticity test was used to investigate the data on 
monthly prices of copper. The null hypothesis was defined as the 
hypothesis testing the non-existence of ARCH within the data, as the 
rejection of this hypothesis proves the ARCH effect and further 
necessitating its removal. The Lagrange multiplier heteroscedasticity 
test showed that the series suffer from a non-linear structure, so that, 
due to the variance fluctuations, linear models may not be able to 
adequately address the problem; this necessitates the use of non-linear 
models. To separate the non-linear effects from the series of monthly 
copper prices, the predictions were conducted using the ARCH, 
GARCH, TARCH, and TGARCH models. Knowing that the conditional 
variance is not constant in the ARCH non-linear model family, the 
maximum likelihood method is used to predict the models. Generally 
speaking, the ARCH non-linear model family has an equation for the 
average, and another one for the variance. The corresponding equations 
of the average model the copper price changes, while that of the variance 
models the copper price fluctuations. Based on the experiences gained 
in linear estimation methods, the decreasing trends observed in Akaike 

and Shwarz indicate the improving nature of the model; while in non-
linear estimation methods (maximum likelihood), an increasing trend 
may provide the same indication. Table 1 reports a summary of the 
results of modeling using different methods; these are explained in 
further details in appendix B.  

 
Fig. 1. Chart of time- series of monthly copper prices from early 1987 till late 

2014. 

5.2. Model prediction using stochastic differential equations 

Knowing that the common linear and non-linear models used in the 
analysis of time-series cannot predict the non-linear structure within the 
data, more complex models such as stochastic differential equations are 
required. In order to model copper prices, first, parameters   and   
are set to 0.0039   and 0.070  , respectively, based on the time-
series of monthly prices (including 336 data points). 

Table 1. A summary of the results of prediction models for time-series of copper prices (exported from EViews software). 

Model First order 
Durbin – Watson 

measure 

Akaike 

criterion 

Shwarz 

criterion 

Multiplier 

significance level 
Comments 

ARIMA ARIMA(2,1,3) 1.97 14.25 14.32 Significant 

Although the model is stationary, it suffers from the 

variance heteroskedasticity. In particular, as the time 

passes and the prices increase or change, the long-term 

model estimation results are highly erroneous 

TGARC

H 
TGARCH(1,1) 1.66 14.05 14.16 Significant 

In spite of being stationary, as well as the elimination of 

conditional variance heteroskedasticity of the model, its 

accuracy is on doubt due to instability of unconditional 

long-term variance of the time- series 

By substituting these values together with the initial copper price 
(5830) into the corresponding stochastic differential equations, the 
following equation is developed: 

   1 2

2
( ) 5830exp 0.0039 0.070 0.070p t t w t   

 
 (6) 

Assuming a normal distribution of the Weiner multiplier, 1000 runs 
of the simulation were undertaken. Fig. 2 shows the simulation results 
in the form of the Brownian motion for 72 months. Further indicated 
values in this figure are the average simulated values. The average 
simulation results indicate the time-series follow and increase a trend 
throughout the time. 

Fig. 3 indicates the estimation and forecast results of the monthly 
copper prices corresponding to an interval outside the range of study, 
i.e. from 2015 till 2020. In addition, the annual World Bank forecast is 
presented for comparison. 

The results of different prediction method for 2015, 2016, and the first 
9 months of 2017 are presented in Table 2 (33 cases). The best results 
are the average values estimated by stochastic differential equations. 
Compared to non-linear TGARCH, linear ARIMA provided higher 
accuracy for the recent 33 months. However, taking the 

heteroskedasticity variance of the ARIMA model into account, its 
accuracy is somehow in doubt. In addition, the non-linear TGARCH 
model was confirmed to provide lower accuracy than the other models. 

Based on the results presented in Fig. 3 and Table 2, as well as the 
undertaken qualitative and quantitative evaluations, the following 
summery can be concluded: 
 ARIMA-based models also suffer from inefficiencies stemming 

from failing to account for intense changes in the variance of time-
series of copper prices. Failing to account for either of short-term 
or long-term intense fluctuations will contribute to the tendency 
towards predicting around a fixed value or impose a linear 
increasing trend in long-run. 

 Long-term series variance is known as the unconditional variance, 
while the variable short-term variance is called the conditional 
variance. It may be the case that a series has its long-term variance 
fixed yet, its short-term one changes in which the time-series 
enjoys the conditional heteroskedasticity variance. Changes in the 
unconditional variance and its increasing trend throughout the 
time along with the conditional variance changes may result in 
unconventional estimates of commonly near zero values. 
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Regarding the smaller changes in early years while larger changes 
in the latter ones, some models of the ARCH family including the 
ARCH, GARCH, and TARCH models fail to model the series of 
monthly copper prices; while the response by TGARCH was 
somehow adequate to the recent case. In general, application of 
non-linear ARCH methods and their derivatives as 
heteroskedasticity variance models do not respond in cases similar 
to time-series of copper prices where the unconditional long-term 
variance exhibits a large deal of fluctuations. 

 The stochastic nature of copper series, intense fluctuations, and the 
changing variance may justify the performance of stochastic 
differential equations method. Comparing the estimation results of 
the recent 33 months further highlighted the superiority of this 
method over its counterparts. 

Due to the stochastic nature of the series, intense fluctuations 
throughout the time, and lack of future information, a comprehensive 
quantitative measure for the evaluation of the performance of well-
known models is yet to be proposed. As such, it seems necessary to 
account for the stochastic nature of the time-series of copper prices and 
implementation of experts’ opinions when one is to draw a proper 
scenario for the future of copper price. 

 

 

Fig. 2. Simulation results of the SDE monthly copper prices over 72 months. 

 
Fig. 3. Prediction results of monthly copper prices corresponding to an interval 

outside that of available data, i.e. from 2015 till 2020. 

Table 2. Different prediction method results for 2015, 2016, and the first 9 
months of 2017 (33 cases). 

Time Price ($/t) ARIMA TGARCH SDE 

Jan. 2015 5830.54 6305.053 8227.286 5862.613 

Feb. 2015 5729.27 6319.529 8247.582 5862.485 

March 2015 5939.67 6334.005 8267.894 5858.464 

April. 2015 6042.09 6348.48 8288.19 5870.119 

May 2015 6294.78 6362.956 8308.502 5892.549 

June  2015 5833.01 6377.432 8328.798 5919.627 

July 2015 5456.75 6391.908 8349.109 5948.184 

Aug. 2015 5127.3 6406.384 8369.406 5984.842 

Sept. 2015 5217.25 6420.86 8389.717 6014.606 

Oct.  2015 5216.09 6435.336 8410.014 6039.24 

Nov. 2015 4799.9 6449.812 8430.325 6055.978 

Dec. 2015 4638.83 6464.288 8450.622 6091.784 

Jan 2016 4471.79 6478.764 8470.933 6117.629 

Feb 2016 4598.62 6493.24 8491.23 6110.946 

Mar 2016 4953.8 6507.716 8511.54 6129.225 

Apr 2016 4872.74 6522.192 8531.838 6170.893 

May 2016 4694.54 6536.668 8552.148 6206.115 

Jun 2016 4641.97 6551.144 8572.446 6218.982 

Jul 2016 4864.9 6565.62 8592.756 6243.332 

Aug 2016 4751.67 6580.096 8613.054 6263.154 

Sep 2016 4722.2 6594.572 8633.364 6291.735 

Oct 2016 4731.26 6609.048 8653.662 6313.25 

Nov 2016 5450.93 6623.524 8673.971 6336.7 

Dec 2016 5660.35 6638 8694.271 6341.769 

Jan 2017 5754.56 6652.475 8714.579 6362.587 

Feb 2017 5940.91 6666.951 8734.879 6361.367 

Mar 2017 5824.63 6681.427 8755.187 6373.589 

Apr 2017 5683.9 6695.903 8775.487 6382.083 

May 2017 5599.56 6710.379 8795.795 6400.39 

Jun 2017 5719.76 6724.855 8816.095 6412.17 

Jul 2017 5699.48 6739.331 8836.403 6406.762 

Aug 2017 5978.6 6753.807 8856.703 6395.388 

Sep 2017 6478.35 6768.283 8877.01 6443.896 

Mean Absolute Error 

(MAE) 
1112.86 2894.28 831.021 

Mean Square Error (MSE) 1670178 10445064 986932.2 

Mean Absolute Percentage 

Error (%) (MAPE) 
20.90 54.36 15.61 

6. Conclusions 

Although the inefficiency of linear models such as ARIMA and the 
non-linear approaches such as TGARCH is evident, but as a general 
recommendation, it is suggested to use the evaluation tests on the 
normality or non-normality, the chaos or non-chaos, and the stochastic 
or deterministic nature of the time-series under study to select a final 
method to undertake the analysis and modeling tasks. Choosing a well-
suited modeling approach to the series nature will prepare a basis to 
achieve more convenient and more accurate predictions.  

It is highly difficult to present a definite conclusion regarding which 
long- term forecasting produces are acceptable of the predictions. 
However, according to the results of the current research, considering 
the mean value of around one thousand runs using the SDE method for 
33 cases of out of range, the forecasts using the SDE method provide a 
superior result to the ARIMA and TGARCH prices. The highest forecast 
accuracies were achieved using SDE in addition to the lowest MAPE 
with about 15.60 %. MAPE of ARIMA and TIGARCH were calculated 
20.90 % and 54.36 %, respectively. Employing the SDE model, the 
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highest predictive power was achieved for both MAE and MSE. The 
predictive power of the TGARCH model was drastically low and 
inacceptable. Therefore, in the absence of comprehensive method for 
forecasting, SDE model is a good choice as a promising technique for 
copper price forecasting.  

In the stochastic differential equation method, two terms are usually 
used to express the pricing process; one of these two terms correspond 
to the average instantaneous price changes, while the other one 
represents the instantaneous fluctuations in the pricing process. In more 
complex cases, it is also possible to introduce the mutation and shock 
terms to the related equations. These configurations may justify the use 
of stochastic differential equations method to predict the time-series of 
monthly copper price that has an absolutely stochastic nature. 
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Appendix A. 

The Ito lemma is probably the most important stochastic arithmetic 
theorem, which is used to solve stochastic differential equations. Using 
Ito lemma along with variable exchange in Eq. (A.1), differencing rule of 
stochastic differential equations, the following relations can be written 
to find the solution of Eq. (2) [26]: 
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(A.3) 
 
Based on mathematical relationships related to stochastic differential 

equations, we have: 
 

2, ( ), 0; ( ), ( ) ( )dt dt dw t dt dw t dw t dw t dt     

(A.4)  
 
As such, Eq. (A.3) can be incorporated into Eq. (A.5) to achieve the 

following relationship: 
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Similarly, it can be expressed that: 
 

    
 
   

 
 
 

22 2

2

1 1 1
ln 0

2 2

dp t dp t
dY t d p t p t dt dt

p t p tp t
                            

(A.6) 

 
 

 
dp t

dt dw t
p t

                                                                                                

(A.7) 

        12 2

2

1
ln

2
d p t dt dw t dt dt dw t                                     

(A.8) 
 
Integrating both sides within [0, t] we will have: 
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Therefore, for
0 0( )p t p ,

0 0t  , we have: 
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Appendix B. 
 
B.1. Summary of ARIMA model 
 

 
 
B.2. Summary of TGARCH model 
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