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A B S T R A C T 

 

Nowadays, numerical modelings play a key role in analyzing hydraulic problems in fractured rock media. The discrete fracture network model 
is one of the most used numerical models to simulate the geometrical structure of a rock-mass. In such media, discontinuities are considered 
as discrete paths for fluid flow through the rock-mass while its matrix is assumed impermeable. There are two main parameters to simulate 
the geometry of discontinuities in this model; the density and connectivity pattern of fractures. Despite the advantages of the discrete fracture 
network modeling, in order to apply the numerical solution schemes, the discretization of this model has encountered serious challenges due 
to the geometrical complexities. Generally, some of previous meshing methods present a framework that changes the geometrical structure 
and connectivity pattern of the model, and some others are incapable to mesh intricate networks with a large number of fractures. In this 
research, a new algorithm is developed to mesh the geometrical framework of three-dimensional discrete fracture networks. This algorithm 
is designed based on a refined conforming Delaunay triangulation and is computationally efficient, fast and low-cost. Furthermore, it never 
changes the geometrical structure of a DFN primitive model, therefore, the connectivity pattern will remain intact and the mesh is a proper 
representative of DFN. The algorithm was validated using the analytical methods and a series of sensitivity analysis was performed to evaluate 
the effect of meshing parameters on fluid flow using a finite element scheme of steady state Darcy flow. The results show that an optimized 
minimum internal angle of meshing elements should be predetermined to guarantee termination of the algorithm. 
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1. Introduction 

Numerical simulations of fluid flow through fractured rocks play a 
vital role in many applications in the energy industry, such as 
hydrocarbon reservoirs, geothermal resources, underground fluid 
storage, groundwater aquifers, nuclear waste disposal and clearance of 
contaminated areas in the fractured rocks [1-7]. Generally, numerical 
models of the fluid flow through fractured rocks can be classified into 
three subcategories: the equivalent continuum model, the double 
medium model and the discrete fracture network (DFN). DFN is one of 
the most accurate and mostly used methods to simulate the fluid flow 
through fractured rocks [8-10]. In this method, the effect of discrete 
discontinuities on the fluid flow is explicitly considered with the 
impermeability assumption of rock matrix. DFN method is very popular 
because of its many advantages so that several models including a large 
number of fractures have been carefully studied using this method [11, 
12]. 

The foundation of a DFN method is partitioning an n-dimensional 
domain to an n-1-dimensional statistically distributed set of fractures. 
This partition has a significant effect on computational cost of the flow 
models, particularly for three-dimensional models. The fracture 
locations are generated in a desired domain using a statistical process, 
and the geometrical parameters of the fractures, such as, the orientation 
(dip and dip direction), and length are modeled using the probability 
density functions (PDF) based on sampling methods [7, 13]. Geological 

datasets are directly obtained from boreholes, surface outcrops, trenches 
using one of the mapping methods (scanline, mapping window and 
circular estimator), and geophysical mappings are the most important 
part of a DFN modeling [14-16]. The shape of fractures is a hypothetical 
parameter and often simulated by circles, ellipses and polygons in 
various research works [17-19]. Hydrological parameters such as 
aperture and roughness of fracture wall surfaces may be estimated either 
by laboratory tests or using in-situ field tests. These parameters can be 
assigned to the location of fractures as a constant value or a PDF [20, 
21].  

In the literatures, various numerical solution schemes have been used 
to solve fluid flow problems in fractured rocks. In this regard, the finite 
element method (FEM) [11, 22], finite volume method (FVM) [23, 24], 
boundary element method (BEM) [25, 26], finite difference method 
(FDM) [27], discontinuous deformation analysis (DDA) [28,29] and 
hybrid methods [30-32] have obtained more attention. In general, such 
methods require a high quality meshing framework to solve the flow 
with an adequate precision.  

Unfortunately, there are some serious challenges to discrete a DFN 
model into a high quality mesh. On one hand, the structured meshing is 
not convenient to represent a complex three-dimensional geometry of a 
fractured medium and on the other hand, a high quality unstructured 
meshing must be able to meet particular geometrical requirements [1, 
33]. As shown in Fig. 1, a network of statistically generated fractures can 
include fractures length spanning over several orders of magnitude. In 
order to solve the flow field in small fractures, they must have small 
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enough meshing elements compatible with their length. A good mesh 
requires a balance between two concepts: to avoid increasing the 
computational costs, its elements should not be too small or too large 
whereby the precision of the problem decreases. In addition, due to the 
complex structure of three-dimensional DFNs with arbitrary shape and 
spatial position of fractures, it is possible to form the intersection lines 
of fractures planes which are parallel or crossover on a third fracture 
plane. If the distance between parallel intersections or the angle between 
the crossover intersections is too small, a low-quality meshing may be 
generated. The meshing elements may lead to an ill-conditioned 
discretization matrix and cause divergence in numerical solution [34].   

 
Fig. 1. A realization of DFN generated by the developed code in the research. 

So far, many methods have been developed to mesh a DFN model. 
These methods are divided into two main subcategories, conforming 
and non-conforming methods. The conforming mesh refers to the case 
that nodes on the intersection line are unique and common to these two 
intersecting fractures. Instead, the non-conforming mesh discretizes 
each fracture plane independently. Although the non-confirming mesh 
is more flexible, an additional system of equations has to be 
implemented to ensure continuity of the hydraulic head and flow rate 
on the intersection of fractures; therefore, the solution scheme may be 
time-consuming [34,35]. 

Koudina et. al [24] provided one example of a conforming meshing 
algorithm for a DFN. An alternative algorithm based on the paving 
method was proposed by Wang et al. [8]. Although these methods are 
used successfully in simple networks of fractures, they cannot overcome 
the aforementioned challenges when the number of fractures increases 
and the geometrical structure of the DFN becomes more complex. The 
challenge was partially address by Maryška et al. [36]. However, in their 
method, the geometrical structure of the DFN changed and the 
intersections of fractures were changed with the length variation and 
displacement. It could change the connectivity pattern of fractures, 
therefore, it seems that the mesh was no longer a representative of the 
geometrical structure of the DFN.  

Two similar meshing methods were also suggested by Mustapha and 
Mustapha [37] and Erhel et al. [38] in which the boundaries of fractures 
and intersection of them were first referred to regular cubes with 
constant mutual edges between the intersected fractures. Then, the cube 
that included the elements of a fracture was projected on the same 
fracture again. Although these methods could generate a high quality 
mesh, they were unable to model the intersection of more than two 
fractures. A generalization of these models was provided by Mustapha 
et al. in which the vertices of triangles in a two-dimensional space [33] 
or the tetrahedrons in a three-dimensional space [39] were displaced 
and merged inside regular cubes and were projected back on the fracture 
surfaces to improve the meshing quality. An alternative generalization 
of these methods was developed by Karimi-fard and Durlofsky [40] in 
which a conforming mesh was generated using add, displacement, 
remove and merging of vertices of meshing triangles.  

Another method was proposed by Hyman et al. [34] in which using 
the feature rejection algorithm (FRAM), the creation of inconvenient 
fractures was prevented during generating the DFN. However, the 
meshing challenges occurred in that method, and the geometry of the 
network completely changed; therefore, the connectivity pattern of 
fractures altered as well. 

Li et al. [41] provided a method to generate a conforming mesh for 
the DFN in which using the Persson and Strang meshing generator, the 
location of vertices of triangles were determined through solving a 
system of equations of force balance in truss and resulted in a high 
quality mesh. This method was not optimal due to high computational 
load and was unable to completely overcome the meshing challenges.  

Some studies have focused on developing the non-conforming 
meshing methods. As mentioned before, these methods have more 
computational costs than the conforming methods. Therefore, they are 
not generally appropriate for networks with a huge number of fractures 
[35, 42, 43]. Benedetto et al. [44] provided a combined conforming and 
non-conforming method to solve a fluid flow problem in the DFN using 
the virtual element method (VEM). In their method, some additional 
unique vertices were added on intersections of fractures and each 
fracture was meshed independently. The application of that method was 
limited to VEM. 

The main purpose of this research is developing a new 
computationally efficient algorithm to mesh three-dimensional DFN 
structures. This algorithm never changes the geometrical structure of 
the network and thereby the connectivity pattern of fractures will 
remain unchanged. Accordingly, the meshing framework can be well 
representative of the original geometry of the DFN.  Triangular elements 
of the meshing structure are generated based on the Delaunay criterion 
and are refined to increase the quality. Thus, discretizing the matrices 
assembled by the numerical schemes are not ill-conditioned and in most 
cases, the solution converges using this algorithm. Because of a huge 
number of fractures with a wide range of lengths in the DFN, this 
method is designed so that the size of triangles is neither smaller nor 
larger than an optimized range. Therefore, in addition to low 
computational costs, this method can achieve high numerical precisions. 
Furthermore, this algorithm is able to properly cover the critical 
meshing conditions such as conjunction of two fracture intersections 
with a small angle or two parallel fracture intersections with a small 
distance on the third fracture plane. 

This paper is organized as follows: section 2 provides the algorithms 
of generating a DFN, finding the intersections of the fractures, and 
triangulation and refinement algorithms. Section 3 discusses on the 
details of the validation of the present algorithm with describing the 
finite element scheme, and elaborates how to solve the flow problem in 
two simple regular geometrical structures and compares the results with 
those of analytical methods. In addition, a series of sensitivity analyses 
on the meshing parameters in a complex DFN will be conducted to 
determine the effect of various parameters and to demonstrate the 
performance of the algorithm.  

2. Methodology 

In this section, various algorithm and methods used to develop the 
present meshing algorithm are separately described. 

2.1. Generation of DFN 

Depending on their geological origin, the rock fractures are grouped 
into joint sets that have similar geometrical properties (dip and dip 
direction). In a three-dimensional geometrical model, the joint sets were 
estimated using the hemispherical projection. The joint sets were 
simulated independently and the ultimate model was a union set of all 
of them. Each joint set included certain geometrical distribution 
parameters such as, the location, orientation (dip and dip direction) and 
length of planar fractures. 

The location of fractures is the first parameter that must be 
considered in the simulation of joint-sets. A single-point homogeneous 
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Poisson process is generally used to determine the location of fractures 
in the domain of model. Given a constant number as fracture intensity 
(𝜆) (the number of fracture planes per unit volume of the model), the 
location is distributed in a three- dimensional space. The average of 
Poisson distribution is calculated from Eq. 1 [7]. 
𝜇 = 𝜆 ∙ 𝑉𝑚 (1) 
where, 𝑉𝑚  is volume of the model. Since, the center of some of 

fractures are outside of the model domain, while their length is large 
enough to enter it and affect the connectivity pattern, the generation 
domain of the fractures is initially considered several times larger than 
the model domain. The cube model is extracted from the generating 
domain after the completion of generating process. In order to generate 
the location of fractures, a random variable ( 𝜂 ) from Poisson 
distribution function is generated using Eq. 2 [7]. 

𝑃(𝜂 = 𝑛) = 𝑒−𝜇
𝜇𝑛

𝑛!  (2) 
A sequence of random numbers (𝑥𝑖) in the range of [0,1] as far as, 

∏ 𝑥𝑖 < 𝑒−𝜇𝑘
𝑖=1 , are generated using a uniform distribution function. For 

any 𝑛 = 𝑘 events, three independent values are calculated by setting 𝑃 
in the uniform distribution function. These values are considered as 
coordinates of the location of the fracture (𝑜). Fig. 2 demonstrates an 
image of the generated locations of DFN fractures.  

 
Fig. 2. Locations of DFN fractures generated using developed code in this 

research. 

After that, the orientation and the length of fractures are generated 
using PDF and Monte-Carlo sampling, and are assigned to the locations 
of the fractures. The parameters, dip (𝛼), dip direction (𝛽) and rotation 
angle (𝛾) have been schematically shown in Fig. 3. The uniform and 
Fisher PDF are usually used to model the dip and dip direction 
respectively. The rotation angle is modeled by a uniform PDF as well. 

 
Fig. 3. A schematic fracture, its geometrical parameters and the global (X,Y,Z) 

and local (x,y) coordinate systems. 

 

In the literatures, the power-law or log-normal is used as PDF of the 
fracture length (𝐿). The shape of fractures is a hypothetical parameter 
which is simulated as circular, elliptical or polygonal shapes (Fig. 3). 
Then, the hydraulic parameters of fractures such as, aperture and 
roughness is assigned to the location of fractures as required similar to 
the generation of geometrical parameters. The aperture PDF is usually 
uniform [45]. Several equations have been suggested to determine the 
relationship between the aperture and the length of fractures. An 
example of such equations has been represented in Eq. 3 [46]. 
𝑎 = 𝜍√𝐿 (3) 
Where, 𝑎  is the aperture and 𝜍  is a constant coefficient which is 

determined depending to the conditions of fractures and in general 
cases is equal to 0.004. Various PDFs and their parameters that are 
required to generate DFN have been listed in Table 1. 

Table 1. PDF and their parameters. 
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As mentioned before, after completing the process of generating the 
fractures, the original model domain is extracted from the primary 
generated domain. Each fracture and the set of all the fractures of the 
model are shown by 𝑓𝑖 and 𝐹 = ⋃

𝑖=1

𝑁𝑓 𝑓𝑖, respectively, in which 𝑁𝑓 is the 
number of all fractures. Regarding Fig. 3, two coordinate systems of are 
introduced in this research. Earlier is a global Cartesian system (X, Y, Z) 
defined in a three-dimensional space and later is locally defined on each 
fracture plane in a two-dimensional space (x, y). 

2.2. Determination of intersection of fractures 

In this research, the fractures are considered planar and the 
intersection of two fractures is a linear segment. In order to determine 
the coordinates of two ends of an intersection segment in (X, Y, Z), each 
fracture is intersected by other fractures and the boundary facets of the 
model. Fig. 4-a shows how the intersections are formed. Each of 
intersections and the set of all of them are represented by 𝑠𝑖 = 𝑓𝑗 ∩

𝑓𝑘 .    𝑗. 𝑘 = 1⋯𝑁𝑓 and 𝑆 = ⋃𝑖=1
𝑁𝑠 𝑠𝑖 , respectively where, 𝑁𝑠 is the number 

of all intersections of the model. Therefore, the domain is characterized 
as = 𝐹⋃𝑆 . 

Fractures can have one of three main types of the connectivity with 
other fractures or boundaries of the model: multiple connectivity 
(persistent fractures), only one connection (dead-end fractures), and no 
connection (single fractures). As Fig. 4-b shows, the persistent fractures 
(blue colored) usually have a larger length and several (at least two) 
intersections with the other entities. Such fractures can be intersected 
by the boundaries of the model or be connected to dead-end fractures 
and be completely located inside the model. However, dead-end (green 
colored) and single (red colored) fractures can have important effects 
on the ultimate strength and mechanical properties of the rock-mass; 
they do not have any significant effect on hydraulic properties [47].  
Since hydraulic analyses are the main aim of generating the three-
dimensional DFNs in this research, it is convenient to remove dead-end 
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and single fractures from the model domain. It dramatically increases 
performance and speed of solution, particularly if the model is dealt with 
a huge number of fractures.  𝐹 is investigated to find the isolated and 
dead-end fractures. The fractures with these conditions and their 
corresponding 𝑠 are removed from 𝐹  and 𝑆 respectively. This process 
continues until there is no fracture with such conditions. Fig. 4-c shows 
an image of found intersections in the model domain. 

 
(a)                                                 (b) 

 
(c) 

Fig. 4. Schematics of (a) formation of intersections, (b) isolated (red), dead-end 
(green) and persistent fractures [29], and (c) intersections of DFN fractures on 

boundaries of the model (green) and inside the model (black) found by the 
developed code in the research. 

2.3. Mesh generation 

The present meshing algorithm generates triangular elements in a 
two-dimensional (x, y) coordinate system on the surface of each fracture 
using the Delaunay criterion. The ultimate meshing geometry in the 
three-dimensional global (X, Y, Z) coordinate system is a union of all 
planar triangles which transpose using a transpose matrix. Since the 
vertices of the triangles on each intersection are unique, it results in a 
conforming mesh. To increase the quality of the triangulation, the 
Ruppert algorithm is used through refining low-quality triangles [48]. 
Elements of an unstructured triangulation do not follow a uniform 
pattern. On one hand, due to the complexity of the DFN geometry as 
well as the statistical shape and position of fractures and intersections in 
a three-dimensional space, and on the other hand, because of the 
tendency to not change the geometrical structure of the DFN during the 
mesh generation (to avoid changes in the fractures connectivity 
pattern), this algorithm provides an optimized unstructured 
triangulation.  

The present algorithm includes four main steps: 

● Step I; intersection vertices (𝑣𝑠𝑖
𝑗 ) are formed in 𝑆. 

● Step II; Boundary vertices (𝑣𝑏𝑖
𝑗 ) are formed on the boundaries of 

the fractures (𝛤𝑓𝑖). 
● Step III; a Delaunay-based triangulation (𝑇𝑖) is generated using 

a set of all vertices of fracture 𝑓𝑖, 𝑉𝑖
𝑗
= (⋃

𝑗=1

𝑁𝑣𝑠𝑖𝑣𝑠𝑖
𝑗
) ⋃  (⋃

𝑗=1

𝑁𝑣𝑏𝑖𝑣𝑏𝑖
𝑗
), 

where 𝑁𝑣𝑠𝑖
 and 𝑁𝑣𝑏𝑖

 are the total number of intersection and 
boundary vertices of 𝑓𝑖 . 

● Step IV; 𝑇𝑖 is refined using Ruppert algorithm. 
● Steps I to IV are repeated for 𝑖 = 1.⋯ .𝑁𝑓 . 

According to the flowchart of Fig. 5, in the first step, 𝑠𝑖 from the 𝑆 is 

intersected by the other intersections to find a possible crossover. If such 
a crossover is found, the vertex  𝑣𝑠𝑖

𝑘 = 𝑠𝑖  ∩ 𝑠𝑗 .   𝑖. 𝑗 = 1.⋯ .𝑁𝑠  is 
registered and a coverage radius (ℎ𝑠) is dedicated to it. ℎ𝑠 governs the 
mesh size and is determined arbitrarily by the user. More discussions are 
given regarding the determination of ℎ𝑠 in the following sections. Then, 
the middle point of the intersection segment 𝑠𝑖 is identified using the 
coordinates of its two ends. If this point is not inside a sphere with a 
center and radius of 𝑣𝑠𝑖

𝑘  and ℎ𝑠  respectively, a new vertex ( �̂�𝑠𝑖 ) is 
registered with the coordinates of the center of this point and ℎ𝑠  is 
dedicated to it. In order to maintain the connectivity pattern of fractures, 
at least one of the vertices 𝑣𝑠𝑖

𝑘  and 𝑣𝑠𝑖  must be saved if both of them 
overlap with previous registered vertices. After that, a iteration loop is 
created and for each iteration 𝑙 , two vertices with spacing 𝑙 × ℎ𝑠  are 
characterized on both sides 𝑣𝑠𝑖and on the intersection 𝑠𝑖 . These vertices 
are registered with the proviso that they are not inside a sphere with 
radius of ℎ𝑠 and center of previously saved vertices. These vertices are 
named 𝑣 𝑠𝑖

𝑘  and a coverage radius ℎ𝑠 is dedicated to them. The failure of 
the loop comes when the distance between two characterized vertices is 
larger than length of segment 𝑠𝑖 . This process goes on until all unique 
intersection vertices in (X, Y, Z) are determined  for all 𝑠𝑖 . 𝑖 = 1.⋯𝑁𝑠 . 
The set of these vertices is represented by 𝑉𝑠 = ⋃𝑖=1

𝑁𝑠 (⋃𝑘 𝑣𝑠𝑖
𝑘 ∪ 𝑣 𝑠𝑖

𝑘 ) ∪ 𝑣𝑠𝑖 . 
In the second part, the algorithm is focused on 𝑓𝑖.  𝑖 = 1.⋯𝑁𝑓 from 𝐹. 

All intersections (𝑠𝑗) of 𝑆 included in 𝑓𝑖, are identified. Then, the vertices 
of 𝑠𝑗  are selected from 𝑉𝑠  and placed in 𝑉𝑖

𝑗 . The coordinates of these 
vertices is transposed from (X, Y, Z) to (x, y) on the plane of the fracture 
using a transpose matrix. After that, the vertices 𝑣𝑏𝑖

𝑗  on the fracture 
boundaries  (𝛤𝑓𝑖) are characterized with the spacing ℎ𝑠 . These vertices 
are added to 𝑉𝑖

𝑗 and a ℎ𝑠 is dedicated to them if they are not inside a 
circle with the center and coverage the radius of previously registered 
vertices in 𝑉𝑖

𝑗 . At the end of this step, 𝑉𝑖
𝑗  is obtained with the total 

number of the vertices (𝑁𝑣𝑖
) on the fracture 𝑓𝑖 . 

A Delaunay-based triangulation can be generated with any arbitrary 
set of vertices [48]. Therefore, a Delaunay-based triangulation (𝑇𝑖) is 
generated with 𝑉𝑖

𝑗  in the third step. In a two-dimensional space, 𝑇𝑖  is 
Delaunay-based if and only if empty-circle criterion is satisfied for all 
elements of 𝑇𝑖 [39]. This criterion checks whether the circumcircle of 
the 𝑗𝑡ℎ  tringle (𝑡𝑖

𝑗 ) includes another vertex excludes 𝑡𝑖
𝑗  or not. Fig. 6 

displays a schematic plan of the empty-circle criterion and the 
Delaunay-based triangulation. As shown in this fig., no vertex is inside 
the circumcircle of triangles. Moreover, three independent vertices of 𝑉𝑖 
form a triangle, must have the visibility property, that is, these vertices 
must be on the same open surface of 𝑠𝑖  [48]. The visibility property 
causes independent meshing on each side of the intersections. 

The basis of these refinement algorithms is to preserve triangulation 
as Delaunay by adding some vertices to reach a high quality 
triangulation. The Ruppert algorithm is one of the first refinement 
algorithms to improve the quality of a two-dimensional triangulation 
which is theoretically validated and practically satisfying. This algorithm 
finds low-quality 𝑡𝑖

𝑗  values and removes them from 𝑇𝑖 during a forward 
searching process, and inserts a vertex in the circumcenter of removed 
𝑡𝑖
𝑗 . Then, the searching process continues to remove triangles that lose 

their Delaunay property due to inserting the new vertex. Finally, a new 
triangulation ( 𝑇 𝑖

𝑗 ) is generated with the new vertices whose 
corresponding triangle has been removed and 𝑇 𝑖

𝑗  is added to 𝑇𝑖  [49]. 
One of techniques to determine the quality of triangles is the ratio of 
the smallest edge to the radius of triangle’s circumcircle (𝜔). Therefore, 
the minimum internal angle of the triangle can be calculated using Eq. 
3 [48]. 

𝜃𝑚𝑖𝑛 = 𝑎𝑟𝑐𝑠𝑖𝑛 (
1

2𝜔
) (3) 

To ensure the termination of the Ruppert algorithm, the critical value 
of  𝜃𝑚𝑖𝑛 was theoretically calculated, 20.7°. If 𝜃𝑚𝑖𝑛 for each triangle is 
smaller than 20.7°, the triangle should be refined by the Ruppert 
algorithm. Refined triangulations for a single fracture with two 
orthogonal intersections, and a configuration of three orthogonal 
intersecting fractures are illustrated in Fig. 7. 
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Fig. 5. Flowchart of the presented meshing algorithm. 

 
Fig. 6. A Delaunay-based triangulation with representation of empty-circle 

criterion. 

The size and quality of triangles may still not be appropriate in the 
unstructured 𝑇𝑖 formed until the current step and may cause assembling 
ill-conditioned discretization matrices. Therefore, in the fourth step, 𝑇𝑖 
will be refined using an optimized refinement algorithm. The mesh 
refinement algorithms suggest mathematical guarantees in which the 
quality of initial mesh structure will be improved. 

 
(a)                                                       (b) 

Fig. 7. Refined Delaunay triangulation for (a) a single fracture with two 
orthogonal intersections, and (b) three intersecting fractures, generated by 

developed code in the present research. 

ℎ𝑠  is a key parameter in the present triangulation algorithm. This 
parameter represents the sensitivity of the algorithm to lower bounds of 
fractures intersections and determines the size of triangles according to 
the fractures length. As ℎ𝑠 increases, the intersections whose length is 

smaller than ℎ𝑠 are practically reduced to a single point, but they will 
never be removed. Therefore, not only the connectivity pattern of 
fractures is maintained, but also the mesh meets the challenges 
discussed before. However, ℎ𝑠 is chosen arbitrarily by user, and is in a 
direct relationship with the precision of the problem. With decreasing 
ℎ𝑠, the precision of the solution will increase but it is obvious that the 
computational costs will also increases due to the growth of the number 
of triangles. Thus, determination of the optimized ℎ𝑠is a critical issue. 

3. Discussion 

In this section, the validation of the presented meshing algorithm and 
a series of sensitivity analyses on meshing parameters are discussed. At 
first, a scheme of numerical solution of the flow is described and then, 
three different examples are provided. Regular and simple geometrical 
structures are investigated in examples I and II to compare the outcomes 
of numerical flow calculations with analytical results to validate the 
presented algorithm. In example III, a DFN is used to conduct the 
sensitivity analyses.  

3.1. Flow numerical solution scheme 

The following assumptions are considered in this research: 
● Rock matrix is impermeable. 
● The flow is in a steady state. 
● Two walls of each fracture are planar, smooth and parallel. 
● The flow model of fluid is Newtonian. 

The planar flow rate is calculated on each 𝑓𝑖 in (x, y) with a certain 
aperture 𝑎𝑓𝑖 . It is assumed that 𝑎𝑓𝑖 ≪ 𝐿𝑓𝑖, where 𝐿𝑓𝑖 is the length of 𝑓𝑖 . 
In this research, a uniform PDF has been used to determine 𝑎𝑓𝑖 . Being 
dependant on the Poiseuille law, the permeability of a fracture (𝐾𝑓𝑖) is 
obtained using Eq. 4 [50]. 

𝑘𝑓𝑖 =
𝑎𝑓𝑖

3

12
 (4) 

As given in Eq. 5, the classic equations of Darcy and conservation of 
mass govern the fluid flow through the fractured rock media [24].  

{
𝑞𝑓𝑖 = −

1

𝜇
𝐾𝑓𝑖 ∙ ∇𝑝

∇𝑞𝑓𝑖 = 0
 (5) 

∇𝑝 = 𝜌 ∙ 𝑔 ∙ ∇ℎ (6) 
In these equations, 𝑞𝑓 is the average flow rate through the fracture 

[𝑚2/𝑠 ], 𝐾𝑓  is the permeability matrix of the fracture [𝑚3 ], 𝛻𝑝  is 
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pressure gradient [𝑃𝑎/𝑚], 𝜌 is the fluid density [𝑘𝑔/𝑚3], 𝑔 is the the 
gravitational acceleration [𝑚/𝑠2] and 𝛻ℎ is the hydraulic head gradient.  

Any standard boundary condition can be applied to this system of 
equations. The boundary conditions can be either Dirichlet or 
Neumann. It is assumed that 𝛤𝐷 and 𝛤𝑁 are parts of boundaries of DFN 
model with Dirichlet and Neumann boundary conditions respectively; 
therefore, the boundary conditions are written as Eq. 7. 

{
ℎ = ℎ𝐷     𝑜𝑛 Γ𝐷
𝑞 = 𝑞𝑁     𝑜𝑛 Γ𝑁

 (7) 

where, ℎ𝐷 and 𝑞𝑁 are boundary conditions of the hydraulic head and 
flow rate. For each 𝑓𝑖 , the permeability matrix 𝐾𝑓𝑖 ∈ 𝑅𝑁𝑑𝑜𝑓𝑖

×𝑁𝑣𝑖 ×

𝑅𝑁𝑑𝑜𝑓𝑖
×𝑁𝑣𝑖 is assembled according to the number of degrees of freedom 

(𝑁𝑑𝑜𝑓𝑖
) and vertices (𝑁𝑣𝑖

) of fracture. Then, the vectors 𝑞𝑓𝑖 ∈ 𝑅𝑁𝑑𝑜𝑓𝑖
×𝑁𝑣𝑖 

and ℎ𝑓𝑖 ∈ 𝑅𝑁𝑑𝑜𝑓𝑖
×𝑁𝑣𝑖 are considered as the vectors of the flow rate and 

the hydraulic head respectively. As given in Eq. 8 to 10, the total 
permeability matrix (𝐾) and total vectors of flow rate (𝑞) and hydraulic 
head (ℎ) for a DFN model are derived from union of transposed local 
𝐾𝑓𝑖, 𝑞𝑓𝑖and ℎ𝑓𝑖 respectively.  

𝐾 = [

𝐾11 𝐾12 ⋯ 𝐾1�́�

𝐾21 𝐾22 ⋯ ⋮
⋮ ⋮ ⋱ ⋮

𝐾�́�1 ⋯ ⋯ 𝐾�́��́�

] (8) 

𝑞 = (

𝑞1
⋮
⋮
𝑞�́�

) (9) 

ℎ = (

ℎ1
⋮
⋮
ℎ�́�

) (10) 

Where, 𝑁 = 𝑁𝑣𝑡 ×𝑁𝑑𝑜𝑓𝑡  and, 𝑁𝑣𝑡  and 𝑁𝑑𝑜𝑓𝑡  are the total number of 
total vertices and degrees of freedom of the model respectively. The 
hydraulic head must be determined in all vertices of the model. 
Therefore, the total number of equations of the system is equal to 𝑁  
which is calculated based on the flow equilibrium conditions. To 
validate the presented meshing algorithm and performing the sensitivity 
analyses, a developed code was implemented in c# using FEM scheme 
with a visual three-dimensional graphical user interface to show the 
results. The results were calculated using the conjugate gradient (CG) 
method. 

3.2. Example I 

An example with a simple geometrical structure is provided in this 
section to investigate the accuracy of the linear flow calculations and to 
validate the meshing algorithm. The geometrical model 𝛺1  includes a 
circular fracture with the center located at the global origin of 
coordinates and the radius of 5 m which is enclosed with two parallel 
planar boundaries by spacing of 2 m. The hydraulic head on the first 
boundary 𝐻1 = 1 𝑚  and on the second boundary is 𝐻2 = 0 . The 
permeability of the fracture is 𝑘 = 1 𝑚2/𝑠. The analytical solution for a 
2 × 10 m rectangular slab is equal to 5 𝑚3/𝑠 [51]. In this numerical 
model, the summation of the flow rate of vertices located on one of the 
boundaries of the model is 4.942 𝑚3/𝑠. The calculations demonstrate 
that the numerical results are in a good agreement with the analytical 
results. The meshing structure and the diagram of hydraulic head 
distribution in the direction of Y-axis is shown in Fig. 8. 

3.3. Example II 

According to Fig. 9, an alternative geometrical model (𝛺2) with three 
orthogonal planar circular fractures and three intersections in a three-
dimensional space have been considered to validate the numerical 
solution of the fluid flow based on the presented meshing algorithm. 
The center of all three fractures are located at the origin of the 
coordinates and their radius is 71 m. Normal vectors of fractures are in 
the direction of X, Y and Z axes respectively. The permeability of 
fractures is homogeneously equal to 8.172×10-5  𝑚2/𝑠. 𝛺2 is a cube with 
an edge length of 100 m.  boundary conditions of the model have been 

demonstrated in Fig. 9-a. Constant hydraulic heads of  𝐻1 = 1 𝑚  and 
𝐻2 = 0 𝑚 are applied on the upper and lower facets of the model and 
lateral facets possess a constant gradient of hydraulic head. We 
compared the numerical solution based on the presented meshing 
algorithm in this example with those of Long et. al. [51]. Regarding the 
results, the numerical solution completely conforms to analytical results 
with the flow rate of 1.634×10-5 𝑚3/𝑠. The hydraulic head is constant 
across boundaries of the horizontal fracture and thus, no flow passes 
through that as the numerical solution well represents this fact. The 
hydraulic head in the direction of Z axis at internal vertices of fracture 
is equal to zero. In addition, according to the numerical solution, the 
resultant flow field at all whether boundary or intersection vertices of 
the model is equal to zero which describe the global and local 
conservation of mass respectively. The mesh structure and diagram of 
hydraulic head distribution in the Z direction is shown in Fig. 9-b and 9-
c. 

 
(a) 

 
(b) 

Fig. 8. (a) The meshing structure and, (b) the diagram of hydraulic head in the 
direction of Y axis for example I. 

3.4. Example III 

In this example, the numerical simulation of the fluid flow is 
performed for ten realizations of a DFN model (𝛺3

𝑖  , 𝑖 = 1,⋯ ,10). In 
general, to decrease the effect of uncertainty in flow modeling, the 
numerical results for different realizations are averaged and introduced 
as the representative of the DFN. In this example, 𝛺3

𝑖  is independently 
generated using the geometrical-statistical data given in Table 2, based 
on the technique illustrated in section 2-1. The number of fractures and 
intersections of 𝛺3

𝑖  have been listed in Table 3. The density and viscosity 
of the fluid considered in this example are equal to 1000 𝑘𝑔/𝑚3 and 
0.001 𝑃𝑎 ∙ 𝑠 respectively. To figure out the effects of the meshing size 
(ℎ𝑠 ) on the flow, it is changed in seven different levels. Therefore, 
seventy samples will be available to analyze the sensitivity of parameters. 
Fig. 1 shows one of the realizations for which the meshing structure and 
hydraulic head distribution in the Z-direction are illustrated in Fig. 10. 
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(a)                                                 (b) 

 
(c) 

Fig. 9. (a) Boundary conditions of the hydraulic head, (b) the mesh structure and, 
(c) the hydraulic head distribution in the direction of Z axis for example II. 

Table 2. Geometrical-statistical data of each joint set. 

Aperture 
[mm] 

Length 
[m] 

Density 
[1/m3] 

Dip Direction 
[Deg] 

Dip 
[Deg] 

Parameter 

Uniform Power-law Poisson Fisher Uniform  

Max Min Max Min α Average Average k Average 

12 4 10 1 1.78 0.2 45 40 70 1 

12 4 10 1 1.78 0.12 135 20 30 2 

12 4 10 1 1.78 0.1 135 40 80 3 

12 4 10 1 1.78 0.15 315 20 45 4 

Table 3. The number of fractures and their intersections for each realization. 

Realization 
number 

Joints 
number 

Intersections 
number 

1 125 313 
2 115 271 
3 119 331 
4 130 361 
5 114 324 
6 117 304 
7 109 269 
8 122 303 
9 114 270 
10 111 313 

In order to increase the sensitivity of the analyses, it is necessary to 
determine an optimized ℎ𝑠 . Here, the critical case is the evaluation of 
𝜃𝑚𝑖𝑛 for different values of ℎ𝑠 . A rudimental survey showed that if 𝜃𝑚𝑖𝑛 
is unchanged, the termination of the meshing algorithm strongly 
affected as ℎ𝑠  changes. A larger 𝜃𝑚𝑖𝑛  generate a higher quality 
triangulation, but choosing a very large 𝜃𝑚𝑖𝑛 for a small ℎ𝑠 can causes 
instability in the meshing algorithm (lack of termination) due to 
forming infinite loops to refine it. Therefore, it is important to select an 
optimized 𝜃𝑚𝑖𝑛 for any ℎ𝑠  to ensure the termination of the algorithm 
and to befit the precision of the solution. In fact, 𝜃𝑚𝑖𝑛 is described as the 
value by which the termination of the algorithm is guaranteed. These 
results are displayed in Fig. 11, where as ℎ𝑠 decreases, 𝜃𝑚𝑖𝑛 decreases as 

well. So, as a common result, choosing a larger ℎ𝑠 can generate a higher 
quality triangulation for 𝛺3

𝑖 . 

 
(a)                                                                (b) 

Fig. 10. (a) Mesh structure and, (b) the hydraulic head distribution in the Z-
direction for DFN in example III. 

 
Fig. 11. Diagram of the minimum internal angle of triangles (𝜃𝑚𝑖𝑛) versus the 

meshing size (ℎ𝑠). 

Diagrams of the total number of vertices (𝑁𝑣) and the total number 
of triangles (𝑁𝑡) of the meshing versus ℎ𝑠 have been depicted in Fig. 12. 
However, a decreasing trend seems obvious in this figure, achieving this 
power-law trend is indicative of success in triangulation process of 𝛺3

𝑖 . 
Also, with increasing ℎ𝑠, 𝑁𝑣 and 𝑁𝑡 are led to constant numbers. Earlier 
is the number of vertices from union of the intersection and the 
boundary vertices, and later is the number of Delaunay-based triangles 
generated by these vertices. Reducing ℎ𝑠 can significantly increase the 
number of 𝑁𝑣 and 𝑁𝑡 and consequently the computational cost. 

(a)   

(b)  
Fig. 12. (a) The total number of vertices (𝑁𝑣), and (b) the total number of 

triangles (𝑁𝑡) versus the meshing size (ℎ𝑠). 

Fig. 13 shows the diagram of 𝑁𝑣 versus 𝑁𝑡 . The relationship between 



76 S. Mohajerani et al. / Int. J. Min. & Geo-Eng. (IJMGE), 53-1 (2019) 69-78 

 

these two parameters approximately follows  Eq. 11 with a correlation 
factor of 0.95. Because of the discrepancy in the connectivity pattern of 
fractures in different 𝛺3

𝑖 , it is possible to generate a various number of 
triangles with a certain number of vertices. 
𝑁𝑣 = 0.7552 𝑁𝑡 + 145.53 (11) 
In this research, 𝑐 criterion is used to determine the precision of the 

solution (Eq. 12). 

𝑐 =
‖𝑞‖2

𝑁𝑑𝑜𝑓𝑡
×𝑁𝑣𝑡

 (12) 

 
Fig. 13. Diagram of the number of vertices (𝑁𝑣) versus the number of triangles 

(𝑁𝑡) of the meshing. 

Diagrams of 𝑐 against ℎ𝑠 for all realizations and for their average are 
demonstrated in Fig. 14. As Fig. 14-a shows, some values of ℎ𝑠  cause 
divergence of numerical solution in some of 𝛺3

𝑖 . These divergences 
approximately happens for ℎ𝑠 > 0.3. The diagram of Fig. 14-b has been 
drawn for averaged c versus ℎ𝑠  by ignoring the non-convergence 𝛺3

𝑖 . 
Due to the nearly constant trend of this diagram, it seems that the 
convergence of the numerical solution is guaranteed for ℎ𝑠 ≤ 0.3 for all 
the realizations. Therefore, as a secondary result, choosing a smaller ℎ𝑠 
can computationally be more convenient. 

(a)  

(b)  

Fig. 14. Diagram of c-criterion versus the meshing size ℎ𝑠 for (a) all the 
realizations (c) and (b) average of them (𝑐). 

In Fig. 15, diagrams of runtime of the meshing algorithm and the 
solution scheme against ℎ𝑠  are depicted, respectively. In fact, 𝑁𝑣 
represents the total number of variables and the consequently the 
number of equations of the model for each degree of freedom. All the 
calculations were carried out using the same hardware system. Since, 
both variations of the runtime of meshing and the runtime of the 
solution scheme have power-law trends relative to ℎ𝑠, the use of a small 

ℎ𝑠 can significantly increase the runtime of calculations. According to 
the conflicting results of Fig.s 11, 12 ,14 and 15, it seems that ℎ𝑠 = 0.3 is 
an optimized meshing size for all  𝛺3

𝑖 . In addition, diagram of the 
solution and triangulation runtimes versus 𝑁𝑣  is shown in Fig. 15-c. 
According to this figure, the trend of both the runtimes follow a power-
law and the triangulation runtime is dramatically less than the solution 
runtime for all cases. Here, the FEM solution scheme can be a standard 
benchmark to show how fast the present meshing algorithm is. 

 
(a) 

 
(b) 

 
(c) 

Fig. 15. Diagrams of the meshing size (ℎ𝑠) versus (a) the meshing runtime, (b) 
the numerical solution runtime and, (c) diagram of both the runtimes versus the 

number of the vertices of the model. 

4. Conclusions 

In this research, a new refined Delaunay-based meshing algorithm for 
triangulation of geometrical structure of three-dimensional discrete 
fracture network was developed. This algorithm benefits from a high 
precision and speed, and never changes  the geometrical structure and 
connectivity pattern of the fracture network. Also, the process of 
generating the discrete fractures and removing the isolated and dead-
end fractures were described beside the meshing algorithm. The present 
algorithm was validated compared to the analytical results. In addition, 
a series of sensitivity analyses was conducted to determine the effect of 
meshing parameters on the fluid flow and to illustrate the performance 
of the algorithm. The provided results well represent a high quality of 
the meshing algorithm. It is shown that the meshing size is a key 
parameter in the present algorithm, therefore, a sensitivity analysis 
shows how to evaluate an optimized meshing size to ensure the 
termination of the algorithm. The authors continue to generalize the 
algorithm to the structures with three-dimensional (tetrahedral) 
meshing elements. 
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