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A B S T R A C T 

 

Permeability is the ability of a porous rock to transmit fluids and is one of the most important properties of a reservoir rock because the oil 
production depends on reservoirs permeability. Permeability is determined using a variety of methods that are usually expensive and time 
consuming. Analyzing the properties of a reservoir rock with image analysis and intelligent systems saves time and money. This study presents 
an improved model based on the integration of petrographic data and intelligent systems to predict the permeability. Petrographic image 
analysis was employed to measure the types of porosity including intergranular, intragranular, moldic, micro and optical, as well as the amount 
of cement, limestone, dolomite and anhydrite, the types of texture and the mean geometrical shape coefficient of pores. Permeability was first 
predicted using the three individual intelligent systems including neural network (NN), fuzzy logic (FL), and neuro-fuzzy (NF) models, 
respectively. The mean squared error (MSE) of the NN, FL and NF methods are 0.0107, 0.0081 and 0.0080, which correspond with R2 values 
of 0.8830, 0.9193 and 0.9136, respectively. Afterward, two types of committee machines were used with intelligent systems (CMIS) to combine 
the predicted values of permeability from individual intelligent systems: simple averaging (SA) and weighted averaging (WA). In the WA, a 
particle swarm optimization (PSO) was employed to obtain the optimal contribution of each intelligent system. The MSE of the CMIS-SA 
and CMIS-WA were 0.0072 and 0.0066, which correspond with R2 values of 0.9262 and 0.9260, respectively. These show that the CMIS-WA 
performed better than the NN, FL, and NF models individually. In addition, a multiple linear regression (MLR) was used to compare the 
results with the other techniques. The R2 value between the core and MLR permeability is 0.8699. Therefore, the integration of petrographic 
data and intelligent systems provided more accurate results than the MLR model. 
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1. Introduction 

Permeability is one of the most significant petrophysical 
characteristics of reservoir rocks. There are many approaches to 
measure the permeability. Laboratory measurement and well-equipped 
testing approaches are not only time consuming, but also very expensive.  

Intelligent systems are suitable alternative approaches to assess the 
permeability with a high accuracy and without wasting time and money 
[1-5]. Employing the image analysis is another way to predict the 
permeability. Simple models such as Kozeny-Carman predicted the 
permeability using the extracted porosity and specific surface areas from 
image analysis. Several researchers have used this method for sandstone 
formations [6-10]. 

Koskun et al. (1993) proposed a simple method for estimating the 
permeability using the data derived from image analysis of thin sections 
[11]. Anselmetti et al. (1998) used an artificial neural network model to 
analysis the sensitivity of petrographic data in permeability assessment 
[12]. Ali and Chawathe (2000) used a neural net because of its ability to 
learn the non-linear relationships between multiple input and output 
variables [13]. Egmont-Peterson et al. (2000) reviewed more than 200 
applications of neural networks in image analysis [14]. Hatfield and 
Granham (2001) used image analysis to improve the permeability 
prediction. They obtained a stronger relationship in the permeability-
porosity plot where the image porosity was used rather than the plug 

porosity [15]. Lock et al. (2002) developed a model to predict the 
permeability based on image analysis of its pore structure [16]. 
Zimmerman et al. (2007) presented a model based on image analysis to 
predict the permeability from sedimentary core samples [17]. Wieling 
(2013) developed a routine to analyze the images. Image analysis was 
based on the RGB color data and its auto-covariance properties, to 
enable mapping the color and texture of a core. The results of this image 
analysis was used to classify the core, based on lithology and grain size, 
and produce a permeability model for the core [18]. Blunt et al. (2013) 
reviewed the pore-scale imaging and modeling, and presented a 
methodology to predict flow and transport properties including 
permeability. In addition, they compared the predicted relative 
permeability with core-scale measurements [19]. Saxena et al. (2017) 
presented a new approach for predicting the permeability using thin 
sections. Their approach involved two steps: computing the 
permeability of thin sections and application of new 2D-3D transforms 
that connect the permeability of a thin section to the 3D rock 
permeability using calibration parameters. They proposed to, first, 
calibrate the proposed models using the available 3D information on the 
rock microstructure, and then, predict the permeability of rock from the 
same geological formation for which only 2D thin sections are available 
[20]. 

A committee machine has a parallel structure that combines the 
obtained results from individual experts using an optimization 
technique and enhances the accuracy of final model [21, 22]. In recent 
years, committee machine with intelligent systems have been applied to 
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predict reservoir characteristics [23-28]. Ghiasi-Freez et al. (2012) used 
two committee machines to improve the accuracy of flow unit 
prediction [29]. 

Particle swarm optimization (PSO) is one of these optimization 
methods. Implementation of PSO is easy. This algorithm has been 
successfully applied in many areas, such as function optimization.  

PSO has used to solve various problems and analyses [30-33]. Shi and 
Eberhart (1999) empirically studied the performance of PSO. They 
illustrated that PSO always converged very quickly toward the optimal 
positions but might slow its convergence speed near the minimum [34]. 
Coello (2004) used PSO in order to handle the problems with several 
objective functions. The result indicates that PSO is highly competitive 
and can be considered as a viable alternative to solve multi objective 
optimization problems [35]. Poli et al. (2007) comprised a snapshot of 
PSO from the authors’ perspective, including variations in the 
algorithm, current researches, applications and ongoing problems [36]. 
Ahmadi et al. (2013) implemented a neural network model to forecast 
the permeability of a reservoir. Then, they used a hybrid genetic 
algorithm and the PSO method to optimize the neural network model. 
They compared the results from the hybrid method with that of the 
conventional neural network. The comparison demonstrated the 
usefulness of the developed hybrid genetic algorithm and PSO in 
predicting the  reservoir permeability [37].  

This methodology was applied to integrated different intelligent 
systems and petrographic image analysis with the committee machine 
for permeability prediction with an example from the South Pars Gas 
Field. In addition, the results were compared with the MLR model. 

2. Geology of the South Pars Gas Field 

In the South Pars Gas Field, the occurrence of gas is mostly limited to 
the Dalan and Kangan Formations. The Dalan and Kangan formations 
have four main beds K1, K2, K3 and K4 [38]. The Dalan Formation formed 
in the late Permian. This Formation is more than 680 meters thick and 
consists of limestone and dolomite. The Kangan Formation formed in 
early Triassic. In the South Pars Gas Field, this Formation is 193 meters 
thick. The Kangan Formation overlies the Dalan Formation [39]. In this 
study, the core data and thin sections of the Kangan and Dalan 
Formations were examined. 

3. Theory and methodology 

3.1. Image analysis 

Image analysis is an introduction to machine vision. Machine vision 
is a tool for pattern recognition. In image analysis, specified parameters 
are separated a particular object from the rest. Image analysis is 
conduced as follows: taking the images from saturated thin sections with 
a blue-dyed epoxy, segmentation, extracting the geometric and 
petrographic parameters, and pattern recognition. 

Segmentation is a process that partitions an image into multiple 
regions. The best results of segmentation are generally obtained using 
an RGB colored model. The objective is to segment the object of a 
specified color (blue) in an RGB color [40].To specify the pixels related 
to the pores, the intensity of red and green colors are below 203 and the 
intensity of the blue color trespasses 170. All pixels with the mentioned 
red, green and blue intensities are converted to a unique blue and the 
remaining pixels become white. This blue-white image is a three-
dimensional one in which every pixel includes three components of red, 
green and blue. The three-dimensional image is converted into a two-
dimensional or a binary image. In a binary image, pores are shown by 
black pixels (zero) and other parts of the image are defined by white 
pixels (one). 

3.2. Intelligent systems 

Intelligent systems have parameters that need to be optimized. Back 
propagation is a common method of supervised training artificial neural 
networks. It calculates the gradient of a loss function with respect to all 

weights in the network. Back propagation requires a desired output for 
each input value in order to calculate the gradient of loss function. 

Then, the error is back propagated through the net and the weights 
are adjusted during the iterations. The training stops when the best 
approximations of desired values are calculated [41]. 

Zadeh introduced the theory of fuzzy in 1965 [42]. This theory is an 
extension of traditional Boolean logic. Fuzzy logic explains the chance 
of an event occurrence. The main part of the fuzzy logic is the fuzzy 
interference system (FIS), which formulates inputs to an output. 
Mamdani and Assilian (1975) introduced the first type of FIS and Takagi 
and Sugeno (1985) initiated the second one [43, 44]. Both FISs attempt 
to control a system by integrating a set of linguistic control roles while 
the main difference between the methods is an output membership 
function, which is constant for the Takagi-Sugeno FIS (TS-FIS). In the 
TS-FIS, a clustering process defines membership functions. Each of the 
clusters refers to a membership function to generate the if-then rules. 
The fuzzy system makes a sum of all parts and uses a defuzzification 
method to find the final outputs.  

The Neuro-fuzzy system is one of the most powerful tools that utilizes 
the advantages of both an artificial neural network and the fuzzy logic. 
A curved relationship maps the input values on an internal of [0, 1], 
which is called fuzzification of input values through the membership 
function. Then, an algorithm such as back propagation or least squares 
is used to train the membership functions. In a similar way with the 
fuzzy logic, conditional (if-then) statements are determined in order to 
train the system, finally. 

3.3. Particle swarm optimization 

Particle swarm optimization (PSO) is a population-based stochastic 
optimization technique developed by Eberhart and Kennedy (1995), 
inspired by social behavior of bird flocking or fish schooling [45]. The 
system is initialized with a population of random solutions and searches 
for optima by updating the generations. In PSO, the potential solutions, 
called particles, fly through the problem space by following the current 
optimum particles.  

Each single solution is a "bird" in the search space. It is called "particle". 
All of particles have fitness values that are evaluated by the fitness 
function to be optimized, and have velocities which direct the flying of 
the particles. In every iteration, each particle is updated by the following 
two "best" values. The first one is the best ever achieved solution 
(fitness). The fitness value is stored, as well This value is called pbest. 
Another "best" value that is tracked by the particle swarm optimizer is 
the best value obtained so far by any particle in the population. This best 
value is a global best and called gbest. When a particle takes part of a 
population as its topological neighbors, the best value is a local best and 
is called lbest. After finding the two best values, the particle updates its 
velocity and positions with the following equation: 
V𝑖(t) = w × v𝑖(t − 1) + c1 × rand1 × (Pi.best − x𝑖(t − 1)) + c2 ×

rand2 × (Pg.best − x𝑖(t − 1)) (1) 

𝑥𝑖 = 𝑥𝑖(𝑡 − 1) + 𝑣𝑖(𝑡) (2) 
Vi(t)  is the particle velocity, x𝑖(t − 1)  is the current particle 

(solution). Pi.best  and Pg.best  are defined as stated before. rand1  and 
rand2 is a random number between (0,1). c1 and c2 are learning factors. 
Usually, c1 = c2 = 2. 

Particles' velocities on each dimension are clamped to a maximum 
velocity Vmax. If the sum of accelerations cause the velocity on that 
dimension to exceed Vmax, which is a parameter specified by the user, 
then, the velocity on that dimension would limit to Vmax. 

3.4. Committee machine 

A committee machine with intelligent systems (CMIS) was 
constructed to improve the performance of the intelligent systems. The 
inputs of a CMIS are the outputs of the individual intelligent systems. A 
CMIS combines the outputs of the individual models and thus reaps the 
advantage of all used intelligent systems. A CMIS is created, which has 
a better performance than the intelligent models. 
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A CMIS could be constructed in two ways: simple averaging and 
weighted averaging. In the simple averaging, each single expert has an 
equal contribution in constructing the CMIS. The weighted averaging 
method uses an optimization technique to determine the suitable 
contributions of the individual models in constructing the CMIS. 

3.5. Multiple linear regression 

Multiple linear regression (MLR) is the most common form of the 
linear regression analysis.  As a predictive analysis, MLR is used to 
explain the relationship between one continuous dependent variable 
and two or more independent variables. The population regression line 
for k explanatory variables [x1, x2, ..., xk] is defined to be equation (3).  
𝑌 = 0 + 1𝑋1 + 2𝑋2 +⋯+ 𝑘𝑋𝑘                                                                                                                                   

(3) 
MLR involves finding the best-fitting surface of a suitable functional 

form that connects the values of explanatory variables, [X1, …, Xk], and 
the mean value of a response variable, Y, given the values of [X1, …, Xk] 
[46]. The observed values for Y vary about their mean Y and are 
assumed to have the same standard deviation. The fitted values [b0, b1, 
..., bk] estimate the parameters 0, 1, ..., k of the population regression line. 

4. Data preparation and input selection 

Thin section analyses of one of the wells of the South Pars Gas Field 
were used for construction and evaluation of the intelligent systems. 
Data normalization could be done for better prediction of the outputs. 
In the training data, permeability ranges from 0.1 to 209 md; this wide 
range causes a low performance of the model in prediction of the 
permeability. Therefore, the normalized data were used to enhance the 
performance of prediction. To obtain the petrographic data, 115 thin 
sections were analyzed, of which, 85 and 30 samples were the training 
and test data, respectively. Through petrographic image analyses, 11 
petrographic elements were acquired for each sample. They include 

optical porosity, intergranular porosity, intragranular porosity, moldic 
porosity, and micro porosity, as well as the amount of cement, limestone, 
dolomite and anhydrite, the types of texture and the mean geometrical 
shape coefficient of pores.  

The obtained parameters from the petrographic image analysis were 
integrated with the measured permeability to provide the input-output 
pairs of intelligent models. 

For appropriate input selection, the correlation between the 
permeability versus petrographic results was studied. (Cross plots 
shown in fig. 1). 

The cross plots illustrated that more accurate predictions were 
obtained through the stronger relationship. Considering the correlation 
coefficients, the interparticle porosity, the mean geometrical shape 
coefficient and the types of texture show a stronger correlation with the 
cores permeability (Table 1). Reduction of the number of inputs to the 
most significant ones, improved the performance of intelligent systems. 

5. Case study 

5.1. Neural network 

A simple three-layered feed forward neural network was used. The 
NN model was trained using the Levenberg-Marquardt back 
propagation algorithm. The Levenberg-Marquardt optimization was 
used for updating the weights and bias values of the back propagation 
algorithm. The hidden layer included four neurons. The transfer 
function between layer 1 and layer 2 was Log-Sigmoid, while Purelin was 
employed between layer 2 and layer 3 (Table 2). Feedforward networks 
often have hidden layers of sigmoid neurons followed by an output layer 
of linear neurons. A layer of neurons with a nonlinear transfer function 
allows the network to learn nonlinear and linear relationships between 
the input and output. The linear output layer lets the network produce 
the values outside the range -1 to +1 [47].

 
Fig 1. Cross plots show the relationship between the permeability of core and the petrographic data 
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Fig 1. (Continues) 
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Table 1. The correlation matrix of petrographic features and permeability. F1: intergranular porosity, F2: intragranular porosity, F3: moldic porosity, F4: micro porosity, 
F5: optical porosity, F6: amount of cement, F7: amount of calcite, F8: amount of dolomite, F9: amount of anhydrite, F10: types of texture, F11: mean geometrical shape 

coefficient 

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 K 

F1 1            

F2 -0.1369 1           

F3 -0.4787 -0.2331 1          

F4 -0.3438 -0.3066 -0.4425 1         

F5 0.3185 0.1697 0.2037 -0.6283 1        

F6 -0.4018 -0.0528 0.3058 0.0927 -0.2110 1       

F7 -0.1792 0.2247 0.3569 -0.3499 0.0459 -0.0190 1      

F8 0.1863 -0.1733 -0.3719 0.3264 -0.0199 -0.0388 -0.9716 1     

F9 -0.1579 -0.0500 0.0170 0.1643 -0.1730 0.4678 -0.1819 0.0361 1    

F10 -0.7313 -0.0079 0.2575 0.4210 -0.4536 0.3390 0.1811 -0.1892 0.1667 1   

F11 0.7382 0.2435 -0.4645 -0.3736 0.3514 -0.3422 -0.0719 0.1067 -0.1913 -0.6595 1  

K 0.8796 -0.1346 -0.3990 -0.3217 0.3358 -0.3841 -0.1954 0.2076 -0.1858 -0.6605 0.6771 1 

Table 2. Characterization of an NN model 

Network architecture Feed forward 

Training function 
Levenberg-Marquardt 

backpropagation 

Number of layers 3 

Number of hidden layers 1 

Performance function MSE 

Transfer function between first 

and second layer 
Log sigmoid 

Transfer function between 

second and third layer 
Purelin 

After training the network, the test data was introduced to the model 
and the permeability was calculated. The mean squared error (MSE) for 
the training and test data is equal to 0.0078 and 0.0107, respectively. Fig. 
2 shows the relationship between the real and NN permeability values 
in the test data. 

 
Fig. 2. Cross plot showing the relationship between the measured and NN 

permeability values 

 

 

 
* Takagi Sugeno-Fuzzy inference system 

5.2. Fuzzy Logic 

A TS-FIS* was employed to predict the permeability. A subtractive 
clustering method was used for classifying the datasets. The main 
parameters of the subtractive clustering is determination of the optimal 
clustering radius. A large clustering radius yields a few large clusters in 
the data and generates a few rules. Searching for the optimal clustering 
radius was conducted by repeatedly performing a clustering process and 
gradually increasing the clustering radius from 0 to 1 (with 0.1 intervals). 
Therefore, 10 fuzzy models with different numbers of if-then rules were 
established (Table 3). Then, the fuzzy model with the highest overall 
accuracy was selected. By specifying the clustering radius of 0.3, the MSE 
of fuzzy logic (FL) the model becomes minimum. The results show that 
taking the clustering radius of 0.3 leads to the highest performance. The 
MSE of the FL for the training and test data is equal to 0.0069 and 0.0081, 
respectively. Fig. 3. Shows the relationship between the real and FL 
permeability value in the test data. 

 
Table 3. Clustering radius and MSE for each FL model 

o. FIS MSE of FL model Clustering radios 
1 0.2187 0.1 
2 2.71e+16 0.2 
3 0.0069 0.3 
4 0.0119 0.4 
5 0.0112 0.5 
6 0.0111 0.6 
7 0.0117 0.7 
8 0.0130 0.8 
9 0.0128 0.9 
10 0.0128 1 

5.3. Neuro-fuzzy 

Neuro-fuzzy (NF) hybrid systems possess the advantages of fuzzy and 
neural networks. The process of determining the optimum clustering 
radius is similar to that of the FL. By specifying the clustering radius of 
0.3, the MSE of the NF model becomes minimum (Table 4). The NF was 
trained by using the training data with 100 epoch. Then, the test data 
were introduced to the NF model. The MSE of the NF system for the 
training and test data is equal to 0.0050 and 0.0080, respectively. Fig. 4 
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shows the relationship between the real and NF permeability values in 
the test data. 

 
 

 
Fig. 3. Cross plot showing the relationship between measured and FL 

permeability 
 

Table 4. Clustering radius and MSE for each NF model 
No. FIS MSE of FL model Clustering radios 

1 0.0895 0.1 
2 2.33e+14 0.2 
3 0.0050 0.3 
4 0.0081 0.4 
5 0.0072 0.5 
6 0.0074 0.6 
7 0.0083 0.7 
8 0.0110 0.8 
9 0.0110 0.9 
10 0.0119 1 

 

 
Fig. 4. Cross plot showing the relationship between the measured and NF 

permeability  
 

5.4. Committee machine with intelligent systems 

 
The committee machine with intelligent systems (CMIS) was 

constructed in two ways: simple averaging (SA), weighted averaging 
(WA). 

In the CMIS-SA model, each single expert has an equal contribution 
in constructing the CMIS. A simple computation was carried out 
according to equation (4). 

KCMIS−SA =
1

3
(KNN + KFL +

KNF)                                                                                 
                                              (4) 

The MSE of the CMIS-SA model is 0.0072. Therefore, the 
performance of the predicted model was improved (fig. 5). 

 

 
Fig. 5. Cross plot showing the relationship between measured and CMIS-SA 

permeability 
In the CMIS-WA method, a CMIS was constructed using PSO to 

determine the optimal contribution of the individual intelligent systems. 
The fitness function should be optimized with PSO according to 
equation (5). 

MSE =
1

n
∑ (W1 × NNi +W2 × FLi +W3 × NFi)
n
i=1   (5) 

Equation (5) shows the MSE of the CMIS prediction where W1, W2 
and W3 weight factors correspond to the predicted permeability from 
NN, FL and NF, respectively. Ki is the measured permeability from the 
core plugs and n is the number of training data. 
KCMIS−WA = 0.2947 × 𝐾𝑁𝑁 + 0.3198 × 𝐾𝐹𝐿 + 0.4000 × 𝐾𝑁𝐹  (6) 
The MSE of the CMIS-WA model is 0.0066 that shows the minimum 

MSE with respect to other models. Fig. 6 shows the relationship between 
the measured and CMIS-WA permeability values in the test data. 

 
Fig. 6. Cross plot showing the relationship between the measured and CMIS-WA 

permeability values.  
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5.5. Multiple linear regression 

The MLR was used to explain the relationship between the core 
permeability as the response variable, and two or more predictor 
variables. The interparticle porosity (IP), mean geometrical shape 
coefficient (GSC) and types of texture (T) were considered as the 
predictor variables. Equation (7) shows the MLR model for permeability 
prediction. 
KMLR = 1.5450 × IP − 3.9641 × GSC + 3.5690 − 11.0384  (7) 
Fig. 7 shows the relationship between the measured and MLR results. 

The correlation coefficient between the measured and MLR 
permeability is 0.8699. 

 
Fig 7. Cross plot showing the relationship between the measured and MLR 

permeability values. 

6. Discussion and Conclusion 

Image analysis methods applied on thin sections of reservoir rocks, 
are fast and low cost techniques for predicting the physical properties 
such as permeability, from solely the knowledge of a porous 
microstructure of a reservoir rock [48]. 

A cross plot analysis was used to reduce the dimensionality of the 
inputs. Comparing the results revealed that the interparticle porosity, 
the mean geometrical shape coefficient, and the type of texture from the 
petrographic data have a stronger relationship with the permeability. 
Therefore, these parameters were selected as inputs of the intelligent 
models. Fig. 8 shows a graphical representation of the workflow.  

The selected petrographic features were used as inputs of the NN, FL 
and NF models. The MSE of the NN, FL and NF models for prediction 
of the permeability in the test data are 0.0107, 0.0081 and 0.0080, which 
correspond to R2 values of 0.8830, 0.9193 and 0.9136, respectively. 

The concept of CMIS was used to combine and improve the results 
of the NN, FL and NF models. Two kinds of CMISs were applied: CMIS-
SA and CMIS-WA. The CMIS-WA was carried out to obtain the optimal 
combination of the weights using a PSO algorithm. The derived weights 
from the PSO algorithm for the NN, FL and NF models are 0.2947, 
0.3198 and 0.4000, respectively. The MSE of CMIS-SA and CMIS-WA 
for the test data are 0.0072 and 0.0066, which correspond to R2 values of 
0.9262 and 0.9260, respectively. 

The models’ MSE values show accurate predictions of the 
permeability. In addition, the correlation coefficients between the 
predicted permeability from the models and the core permeability 
support this fact. Furthermore, it is clear that the CMIS-SA and CMIS-
WA perform better than the NN. FL and NF models. 

 
Fig. 8. Graphical representation of workflow 

 
The MLR analysis was used to predict the permeability. MLR 

attempts to model the relationship between the selected petrographic 
parameters as explanatory variables and the core permeability as the 
response variables by fitting a linear equation to the data. The R2 values 
between the core and MLR permeability are 0.8699. The comparison 
between the results shows that the intelligent systems have a better 
performance than the MLR. 

This study shows an acceptable prediction of permeability from the 
petrographic data using various intelligent systems and committee 
machines. 

Using the integration of intelligent systems and the petrographic data 
can be useful for estimation of permeability, especially in old fields 
where the cores may be unavailable or are not well preserved. On the 
other hand, this technique can be applied on the petrographic data 
collected from drill cutting. 
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