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A B S T R A C T 

 

Nowadays, kriging has been accepted as the most common method of grade estimation in a mineral resource evaluation stage. Access to the 
crisp assay data and a variogram model are necessary tools of utilizing this method. Since fitting a crisp variogram model is generally difficult, 
if not impossible, the fitted theoretical model is usually tainted with uncertainty due to various reasons especially limitation in the number of 
drill holes. Although the geostatistical kriging model is incapable of taking into account the uncertainties, the fuzzy kriging method (presented 
based on the fuzzy concept) is capable of calculating the effects of uncertainties on the fitted model (and even on the assay data). To evaluate 
the Zu II Jajarm mineral resource, effort was made to use Bardossy’s fuzzy kriging method (proposed based on the extension principle) instead 
of ordinary kriging because of high uncertainties tainted with the fitted variogram model. Since no comprehensive software existed to be used 
for this method, the “FuzzyKrig” was developed for the required calculations. A key advantage of the fuzzy kriging method compared with 
the general, simple, ordinary, and log- kriging is that it presents, as a parameter, the width of the fuzzy number of every block as a criterion 
for the evaluation of uncertainties in the estimation process. The advantage of this parameter is that, unlike the estimation variance, it depends 
not only on the data arrangement, but also on the grade data, and therefore, can play a key role in risk management studies. 
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1. Introduction 

Grade estimation is a method to calculate the grade of an unsampled 
point with the weighted values of surrounding samples. Kriging, also 
known as the best linear unbiased estimator, is one of the common 
methods to find the weight of surrounding samples and the grade is 
estimated based on the spatial structure of data. Kriging calculates the 
sample weights in a way that estimation variance would be minimum 
[1]. Despite the fact that all methods that use a linear weighting 
approach are unbiased, the kriging method also calculates the 
estimation variance as a parameter for measuring the quality of 
estimation. 

In the feasibility study, mine planning and operation stage, most of 
the important decisions are taken based on the results of grade 
estimation. Therefore, the quality of the model and its reliability is very 
important. Various factors such as the sampling size, precision in the 
sampling stage, preparing and analysis, structural analysis, etc. are 
effective on the reliability of model. It is not possible to change the 
number and weight of samples and the sampling method during the 
grade estimation step; therefore, it is essential to consider these 
imprecise parameters. Geostatistians treat the imprecision issue in 
several ways: 1) Imprecision is neglected, 2) a unique uncertainty 
function is defined for each parameter then they use Bayesian Kriging 
approaches[2], and 3) defining the imprecise parameters as a fuzzy 
number and then using fuzzy-kriging methods[3-6]. In most 
geostatistical studies, the first method is used because epistemic 
uncertainty of the variogram model parameters and data are insufficient. 
In Bayesian kriging methods, presence of epistemic uncertainty is 

assessed through relating the primary subjective probabilities to every 
possible model [7, 8]. Despite all the advantages, it has two general 
objections: 1) it presents much more subjective probability information 
than what really exists and 2) since it presents the subjective and 
objective probability information related to two very different natures, 
their product (like what happens in the Bayes rule) is inconsistent [9]. 
The third way is using the fuzzy kriging method as a combination of 
geostatistics and fuzzy logic principles. The fuzzy kriging method is used 
in some geoscience and environmental fields such as mining [10-12], 
reservoir characterization [13, 14], hydrogeology [10, 15] and 
Environmental Management [16-18]. Until recently, there was no 
available software to be able to carry out the required computations of 
fuzzy kriging based on the Bardossy methods. Soltani-Mohammadi 
(2015) solved this problem by developing the Fuzzykrig toolbox in the 
MATLAB software [19]. Previous Fuzzy kriging applications are limited 
to two dimensional spaces (2D mesh grids and sample points), but the 
elevation of samples and estimation points (blocks) should be 
considered in mineral resource evaluation, therefore application of 
fuzzy kriging in this field should be carried out in a 3D space. This paper 
tries to expand the method based on the imprecision of variogram 
model parameters for 3D applications (3D block models and drill holes 
data) by the Fuzzykrig toolbox. 

2. Materials and Methods 

2.1. Kriging 

In General, estimation of a random variable Z in a block v based on 
data S={z1,z2,…,zn}[8, 14] gathered at points X={x1,x2, …, xn}s are defined 
as[1]: 
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*( )Z v zi i  (1) 

Where, Z*(v) is the estimated grade, is the weight of the quantity 
for sample i and zi is the grade in sample i. Among different methods, 

the kriging method of determining  is more popular because, in 
addition to estimating the required parameter in each block, it can also 
present the factor of uncertainty related to each estimation using a 
parameter called “kriging variance”, which is defined as [1]: 
𝜎𝑒
2 = 2∑ �̅�(𝐵, 𝑠𝑖) − ∑∑𝜆𝑖𝜆𝑗 �̅�(𝑠𝑖 , 𝑠𝑗) − �̅�(𝐵, 𝐵) (2) 

where∑ �̅�(𝐵, 𝑠𝑖) is the weighted average of variogram values between 
the whole set of information points and the block being 
estimated,,∑∑𝜆𝑖𝜆𝑗 �̅�(𝑠𝑖 , 𝑠𝑗) is the weighted average of variogram values 
between all possible paired points, and �̅�(𝐵, 𝐵))  is the average of 
variogram values of all possible paired points within the block being 
estimated[20].  

2.2. Bardossy Fuzzy Kriging method 

Generally, due to the lack of enough data or the behavior of 
experimented variogram, it is impossible to fit a variogram model with 
a complete precision. Therefore, the effects of imprecision in the results 
should be measured using the fuzzy kriging method. Two main fuzzy 
kriging methods have been presented: the Diamond method, which is 
based on a statistical basis, and the Bardossy method, which is based on 
the extension principle. Studies of Liquin and Dubois (2010) on Fuzzy 
kriging show that using imprecision in the Diamond method is not 
convincing and the Bardossy method is more fulfilling [9]. Bardossy et 
al. (1990a) modeled the parameters of an imprecise variogram model 
with fuzzy set numbers, and then based on the extension principle, the 
kriging equations were rearranged using  the fuzzy kriging principles. 

𝑧∗(𝑣) = 𝑓(𝑧(𝑥1),… , 𝑧(𝑥𝑛), 𝑎1̂, … , 𝑎�̂�, 𝑣) (3) 

where, 𝑎1̂,… , 𝑎�̂�  are fuzzy parameters of the semi-variogram model. 
Therefore, if the variogram model parameters are defined in a fuzzy set 
values, for transferring the imprecision into p variogram parameters �̂� =

{�̂�𝑗،𝑗 = 1،… ،𝑝}, the membership value for any real number Z* resulting 
from the kriging equation (1) is defined as [3, 4]: 

𝜇�̂�0(𝑧
∗(𝑣)) = sup

𝑧،𝑎:𝑧∗(𝑣)=𝑓0(𝑎،𝑧)

(𝜇�̂�𝑖(𝑎𝑖)) (4) 

where  𝜇�̂�𝑖(𝑎𝑖)is the membership function for the fuzzy subset of 
variogram parameters.The kriging variance is defined as follows: 
𝜎2 = 2∑ 𝜆𝑖�̅�(𝑥𝑖 , 𝐵)

𝑛
𝑖=1 − �̅�(𝐵, 𝐵) − ∑ ∑ 𝜆𝑗𝜆𝑖𝛾(𝑠𝑖 , 𝑠𝑗)

𝑛
𝑖=1

𝑛
𝑗=1 = 𝑔0(𝑎, 𝑧) (5) 

The membership value of any real number 𝜎2   for the kriging 
variance is defined as [3, 4]: 

𝜇�̂�0(𝜎
2) = sup

𝑧،𝑎:𝜎2=𝑔0(𝑎,𝑧)

(𝜇�̂�𝑖(𝑎𝑖)) (6) 

2.3. Defuzzification 

In order to compare the fuzzy numbers, one should decrease the size 
of calculations and make a conclusion out of fuzzy outputs, and finally 
defuzzify the results. The center of area is the most common 
defuzzification method. In this method, the center of the area of output 
surface is located and projected on a horizontal axis[21]. Suppose a 
fuzzy number �̂� = (𝑎, 𝑏, 𝑐)  in which a, b and c are minimum, most 
probable and maximum values of �̂� , respectively. �̂�  could be 
defuzzified to the crisp value M as: 

𝑀 = 𝑎 +
(𝑐−𝑎)+(𝑏−𝑎)

3
 (7) 

3. Case Study 

3.1. Study area and data 

The Jajarm bauxite mine complex is located on 56.25 - 56.45 E 
longitude and 37.2 - 37.3 N latitude, 19km north of Jajarm in Northern 

Khorasan Province. The most dominant geological formations are the 
Mobarak, Elika and Shemshak Formations. The bauxite layers are 
located in the border between the Mobarak-Elika, and Elika-Shemshak 
Formations. The shape of ore suggests that it is haa a Karst-
Mediterranean style and the bauxite reserves are layered-lens shaped 
with an east-west direction. The Jajarm deposit is divided into 4 zones 
based on the Al2O3 anomalies: Lower Kaolin, Shale Bauxite (SB), Hard 
Bauxite (HB) and Top Kaolin (KB). The Hard Bauxite zone is the most 
important economic zone.Due to multiple faulting events in the area, 
the ore is divided into several blocks and the “Zu” block is the eastern 
part of the deposit. Zu is also divided into four subgroups (fig.1). 
Exploration project of Zu II includes 72 exploration boreholes, 4439 
meters of total drilling and 574 meters of assay and core logging. 

 
Figure 1- Geographic location of the Zu II deposit in the Jarajm Bauxite Complex 

The Hard bauxite zone is very thin, so the composite samples are 
defined based on geological properties. Table 1 shows the statistical 
parameters of the ore and figure 2 shows the histogram of SiO2 and 
Al2O3 in HB zone of the Zu II deposit. The grade variables of SiO2 and 
Al2O3 are assumed to be Gaussian, based on the shape of their histogram 
(fig.2). 

Table 1 – Statistical parameters of SiO2 and Al2O3 in composite samples 

Al2O3% SiO2% Statistic Parameters 

91 91 Sample No. 

41.62 14.86 Median 

42.06 15.15 Mean 

26.54 5.75 Min 

63.15 26.89 Max 
5.13 3.7 Standard 

Deviation 
26.34 13.72 Variance 
0.12 0.24 CV 

0.84 0.61 Skewness 

4.65 1.57 Kurtosis 

One of the issues which makes problem in geostatistical studies is the 
presence of trend in the sample values.Different geometric tests toward 
X, Y and Z axis (Fig. 3) indicates that SiO2 and Al2O3 values are free of 
trend. 

3.2. Fitting a fuzzy model to the experimental semivariogram 

For structural analysis of variables SiO2 and Al2O3, the directional and 
non-directional experimental semi-variograms were calculated. Due to 
the small size of dataset, it was not possible to fit the model on the 
directional semi-variograms. Therefore, the deposit was considered 
isotropic and the fuzzy model was only fitted on the non-directional 
ones. Since selecting an appropriate theoretical model is quite difficult, 
we first fitted different models (Gaussian, exponential, and spherical) 
on the experimental variogram. Table 2 shows the parameters of the best 
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fitted variogram models. Afterward, by comparing the different fitted 
models based on the correlation coefficient and the mean squared error 
ratio (MSER) parameters (found from cross validation), the spherical 
theoretical model was found to be the most desirable case. Figure 4 
shows the spherical fitted model on non-directional experimental 
variograms of Al2O3 and SiO2. 

 
(a) 

  
(b) 

Figure 2 – histogram of composite samples a) SiO2 b) Al2O3 

 

 
(a) 

 
(b) 

Figure 3-Vertical variation of a) SiO2 and b) Al2O3. 

Table 2. Model parameters with mean squared error ratio for ordinary kriging of 
Al2O3 with spherical, Gaussian and Exponential variogram models. 

 Model Parameters Cross validation results 

Model C0 Sill Range 
Mean 

square error ratio 
R2 

Spherical 5.494 20.882 244.7 2.58 0.492 

Gaussian 5.494 20.882 95 2.63 0.476 

Exponential 5.494 20.882 133 2.59  
 

 
(a) 

 
(b) 

Figure 4 – Experimental variogram and its fitted model . a) Al2O3b) SiO2 
As seen in figure 4, fitting a variogram model has a high epistemic 

uncertainty especially on parameters of the variogram model . 
Therefore, the fuzzy variogram models could be very useful in this 
matter. Instead of one fitted crisp model, three models were fitted on 
the lower limit, the mean, and the higher limit of the experimental 
semivariogram (Fig.5). Next, the variogram model parameters (nugget 
effect, sill and range) were determined for each of them (table 3). The 
higher and lower limits were spherically fitted to simplify the 
calculations of fuzzy kriging. 

3.3. Fuzzy kriging grade estimation 

The Fuzzykrig MATLAB toolbox was developed at University of 
Kashan for estimations of the Fuzzy kriging grade [19]. The input data 
are assays, the geological block model, parameters of fuzzy variogram 
model, the search volume, and the type of fuzzy kriging method. Only 
the variogram model parameters are tainted with uncertainty; therefore,  
Bardossy method was used. 

The outputs of the program is the fuzzy grade block model, the fuzzy 
kriging variance and the width of fuzzy number. Although the program 
can draw the plots of a block model, in order to draw high quality maps 
and further processing, another software such as Datamine studio was 
used. Figure 6 shows the grade block model of the Al2O3/SiO2 ratio, for 
level 1300m of the lower 0, 1 and the upper 0 membership level.  
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(a) 

 
(b) 

Figure 5- The upper bound, mode, and lower bounds of a fuzzy spherical 
variogram model for the experimental variogram for AL2O3 and SiO2 grades.  

 
Table 3– Values of semivariogram parameters 

 
 

Al2O3 SiO2 

Sill Range Nugget 
effect 

Sill Range Nugget 
effect 

Lowest limit 11.287 186.995 2.281 6.197 113.54 1.945 
Precise value 20.882 244.709 5.494 10.003 175.189 3.712 
Highest limit 36.12 378.5 8.489 14.053 242.086 5.947 

 

 
Figure 6- Estimated lower (a), mode (b) and upper (c) bounds for Al2O3/SiO2 

module at the height of 1300 m  

3.4. Defuzzification of results 

In order to interpret the fuzzy estimates and compare them with crisp 

estimates, SiO2 and Al2O3 fuzzy results were defuzzified by the center 
gravity method. They were converted into real numbers and the block 
models were drawn in Datamine studio. 

 
(a) 

 
(b) 

Figure7- 3D plot of block models of Al2O3 kriging variance a) ordinary kriging b) 
defuzzified fuzzy kriging 

Comparing the estimations of ordinary kriging and fuzzy kriging 
shows that most difference between the two methods which occurs in 
the area with more imprecise input data. Fig 7 shows an example of fuzzy 
values for kriging variance of Al2O3. Deviation of kriging variance is 
sharper than the deviation of grade estimation, because in the fuzz 
kriging method, imprecision in the variogram model parameters effects 
the kriging variance. 

To check the effects of fuzzy kriging on smoothing, the cross 
validation tool can be used. Figure 8 shows a comparison between the 
fuzzy kriging and the measurement results of Alumina grades . As 
shown, the smoothing effect in the results is quite obvious; MSER = 
2.51% shows the presence of smoothing effects of the fuzzy kriging 
estimators. In this case study, since the fuzzy numbers were  selected as 
triangular and symmetrical values, there was not any considerable 
difference between the validation results (after defuzzification) and 
those of ordinary kriging. However, the smoothing effect in the results 
of the ordinary kriging (MSER = 2.58%) is more than that of the fuzzy 
kriging. 

 
Figure 8. Comparison of the measured Alumina grade and the fuzzy mean of 

estimated grades in the samples. 
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4. Conclusion 

Parameters and input data participating in grade estimation methods 
always have uncertainty. In order to consider these uncertainties in the 
output of an estimation procedure, the combination of fuzzy logic and 
kriging estimation was used. In estimation of ore reserves, sampling and 
assay stages have a low imprecision in these steps that can be neglected, 
but usually the imprecision of the variogram model parameters is more 
effective and important. Therefore, in a fuzzy kriging method, the 
variogram model parameters are defined as a fuzzy subsets and are used 
instead of the crisp ones. In this study, after defining the fuzzy semi-
variograms, the grade of each block was estimated as a fuzzy number by 
the Fuzzykrig software based on Barossy’s algorithm. Then, the 
imprecision of each block was determined based on their fuzzy width 
number. In fact, this ambiguity is directly related to the degree of 
asymmetry of samples’ locations,w= the grade variance of samples 
falling within a specified search volume, and inversely to the number of 
the samples. What results from a fuzzy estimation of a grade is that it is 
possible, based on the width of the fuzzy number, to increase the 
number of the samples at more ambiguous points to reduce the 
ambiguity. In addition, smoothing studies of the ordinary and fuzzy 
kriging results have revealed that smoothing is more common in 
ordinary kriging than the fuzzy one. 

The results of this study can be used in grade estimation, mineral 
resource evaluation, and risk analysis. Furthermore, the fuzzy results 
were transformed into crisp number results by the center gravity 
method and were compared with estimated grades resulted from the 
ordinary kriging method. 

Despite the fact that the fuzzy-kriging method increases the accuracy 
and considers the uncertainty in parameters, it needs a too many 
calculations and is very time consuming. Processing the Zu II sample 
values with 72 boreholes and 62214 blocks with 5*5*5 meters in size 
took 45 hours with a decent home PC (Core i5, 2.1 GH, 4GB RAM). 
Therefore, this caused difficulties in handling big datasets. It is strongly 
recommended that the algorithm should be reviewed in the future. 
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