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A B S T R A C T 

 

The performance of any finite element (FE) structural analysis is directly related to the global number of nodes and degrees of freedom (DOF) 
of the discretized structure and mesh distribution attributes. It is obvious that the appropriate numerical analysis needs finer elements in the 
zone of interest, e.g. zone of high stress concentration and intensity, and coarser elements for farther portion of the structure. The transition 
element concept achieves this aim and with variable number of nodes of each element in the transition zone, it creates coarser elements in 
the outward zones of the discretized structure. These elements have larger size with variable number of nodes per element and their number 
of nodes is between the number of nodes per elements of the inner and outer zones. Despite the fact that the concept of transition element is 
not that new and dates back to the last few decades, but to the best knowledge of authors, an obvious and clear programming strategy and the 
method of implementation in a FE program have not been depicted in particular in the related literature. In this study, the main concept of 
transition element is completely presented with clear instances and the computational methodology of accounting for this subject is covered. 
Afterward, the programming strategy of the transition elements in a three-dimensional computer program of finite element method, together 
with the related computer program parts in FORTRAN programming language, are brought. Finally, a validating example is considered and 
the analogy between the results of the finite element program and analytical anticipation is made. 
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1. Introduction 

One of the main concepts of computational solid mechanics, 
especially Finite Element Method (FEM), is the mesh properties. Due to 
the computational cost related directly to the number of nodes per 
element, one is interested in having larger elements moving farther from 
the influence zone to decrease the global number of nodes and 
computational cost. Influence zone is the location over the model where 
the mechanical issues, e.g. stress concentration, are interested and 
finding out its stress magnitude is very important [1, 2]. 

Mesh characteristics include the size and aspect ratio of elements, the 
number of nodes per element and globally for the whole model 
(structure) and the way its nodes positioned relative to each other 
(connectivity). The less the number of nodes of the model, the less the 
computational cost will be. Therefore, experts seek for larger elements 
whenever they are moving farther from the influence zone [1, 2]. 

There are two main different approaches for enlarging elements 
throughout the model: (1) enlarging an element individually (if the 
configuration of neighboring element allows), and or (2) creating 
transition elements. The first approach means one makes bigger 
elements as far as the shape of element and its adjacent elements 
configuration make it possible and this approach is the elementary one 
to think. The second approach lets the experts to have different element 
size with different nodes, which is related to the mesh of neighboring 
elements and helps them to pass from the fine elements to coarse 
elements when they move farther from the interested location [1-6].  

1.1. Example I 

As the first describing example, see Fig. 1 which is schematically 
showing a two-dimensional Bossinesq problem [8] in the elasticity 
theory. As it is seen, the elements near to the point load are finer and are 
getting coarser moving far from the point load. The shaded elements are 
transition elements, sometimes called "variable-number-nodes 
elements", because the number of the nodes per element in transition 
elements is variable [7, 9-11]. 

 
Fig. 1. Fine and coarse elements in finite element solution of Bossinesq’s problem 

in a two-dimensional analysis (Example I). 

1.2. Example II 

The second example is shown in Fig. 2 which depicts the capability of 
remeshing of elements near the zone of interest, crack tip. It is a two-

 

 

 

 

 

 

The shaded elements are 5-noded transitional finite elements.  
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dimensional example for showing more clearly and easily the concept of 
transition elements [12-17].  

 
Fig. 2. Refinement of elements with variable nodes near to crack tip. 

Fig. 2 shows the connectivity of elements with variable nodes for 
elements at different location relating to the crack tip. Elements number 
1, 2, 4, 11, 12, and 13 as well as elements number 6, and 9 are 
isoparametric elements with four nodes per each element (corner 
nodes). Elements number 3, 7, and 10 are transition elements and the 
first layer of transition elements with 5 nodes per each element. These 
three elements have a middle-side nodes and each element totally has 5 
nodes. Again, elements number 5, and 8 are isoparametric elements with 
5 nodes per element.  

In this study, after an introduction to the concept of transition or 
variable-number –nodes elements, the subject is clarified qualitatively 
using the discretization of Bossinesq problem and the second example 
of crack tip (fracture mechanics) using the modeling of transition 
elements. Afterward, the formulation of three-dimensional transition 
finite elements is developed, and finally, the finite element analysis of 
the 3D structure introduced in Section 2 is performed and the results 
show logical and reasonable values.  

2. Example of three-dimensional transition finite elements  

The examples I and II mentioned in the preceding Section were 
qualitative two-dimensional problems. Since our developed in-house 
finite element program is a three-dimensional one, we introduce a new 
example (Example III) designed for the three-dimensional mesh 
illustration and finite element analysis (Fig. 3). It is a 5*1*1 m3 horizontal 
block, which is under 1MPa pressure on the upper side. The mesh 
consists of 3D hexagonal elements and it forms 8-noded, 20-noded and 
8-20 variable node elements while the last one is referred to as the 
transition element [7, 10]. The block was discretized into five 1*1*1 m3 
adjacent cubic elements with different number of nodes per elements 
(Fig. 4). In this section, we describe the problem qualitatively, and in 
Appendix III, we will have an analogy between the results of its three-
dimensional analysis by our in-house finite element program with 
anticipated rational values of the global end force vector for the sake of 
validation. 

 
Fig. 3. Schematic diagram of Example II. 

 
Fig. 4. Nodes and element connectivity of Example II. 

To show more clearly the connectivity of the elements of this example 
we separated elements and their nodes and showed number of nodes 
(Fig. 5). There are two types of nodes: a corner node and an intermediate 
node located in the middle of each edge [1, 2]. We showed the corner 
nodes by black filled circles and intermediate nodes by white filled 
circles in these figures. 

 
Fig. 5. Elements showed separately with node numbers. 

3. Shape function formulation of three-dimensional 
transition element 

Nodes 1-8 in the three-dimensional isoparametric hexagonal element 
essentially should exist; however, in this study, we focus on the three-
dimensional hexagonal element with variable-number-nodes from 8 to 
20 nodes per brick (hexagonal) element.  

As a simple and basic example, suppose a cubic element where the 
corner nodes fundamentally exist and does the 9th node, as well (Fig. 6). 
The 9th node is an intermediate node and is located in the middle of 
nodes 1 and 2. 

 
Fig. 6. Transition hexagonal element with one intermediate node (9th node). 

Let us consider the intermediate ninth node in Fig. 6. If we use the 
shape function of the ninth node of 20-noded hexagonal element then 
it is zero at all nodes whether they exist or not except the ninth node 
where it is equal to unity. Since we used the corner node shape functions 
from an 8-noded source element, especially nodes 1 and 2, these shape 
automatically functions equal to zero at all other nodes; third to eighth.  
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Element number 

e2 and e4 are 3D transitional elements. 
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Albeit shape functions of two corner adjacent nodes (nodes 1 and 2) 
have non-zero values, (but equal ½) at the location of the ninth node, 
and should be modified and corrected to be zero (Fig. 7), it is an intrinsic 
property of any shape function that should be zero in all other nodes 
except the considered node itself. Therefore, the shape function of the 
ninth node of a 20-noded source hexagonal element is helpful. 

 
Fig. 7. Shape functions (FN) value modification while the ninth intermediate 

node exists. 

4. Programming strategy 

The concept of input file for the structures thath have transition 
elements needs modification rather than those elements that have 
constant numbers of nodes per element all over the model. We will 
consider a three-dimensional 8-20 hexagonal element henceforth. In 
such three-dimensional hexagonal elements, there are two types of 
nodes as mentioned before: 1) corner nodes and 2) intermediate nodes. 

The first aim is determining the intermediate nodes of each element 
where their local positions in different elements vary and are not 
predefined.  In our study, we put 20 empty positions and filled them 
with the global number of the nodes considering the relative local 
position in the element. If any node did not exist (nodes 9th to 20th), then 
a zero would be assigned for its position in this 20-positioned list. If 
there was any, an intermediate node at any location in the global node 
number would be given to the appropriate position in the list. It is clear 
that the first eight positions of each element would be filled necessarily 
because all elements in this in-house finite element (FE) program have 
at least eight different corner nodes. As an example, note the 9-noded 
element of Fig. 8. Intermediate 2017th global node fills the 18th position 
of the element configuration numbering list (Table 1).  With the aim of 
this rearranging local nodes numbering for each element, the new 
subroutine, Subroutine MODIFY, was designed, developed and has 
been brought completely in APPENDIX I. 

  
Fig. 8. A 20-noded 3D source element and variable-nodes-element (9-noded). 

Table 1. List of local positions of nodes in sample element. 

1 2 3 4 5 6 7 8 9 10 

* * * * * * * * 0 0 

11 12 13 14 15 16 17 18 19 20 

0 0 0 0 0 0 0 2017 0 0 

5. Conclusion 

In this paper, the concept of transition element in a finite element 
analysis of a continuum was considered and the computational 
methodology as well as programing strategy were comprehensively 
discussed, and finally, a verification example was described (Appendix 
II). It was shown that the transition element   enables experts to have a 
discretized structure with a lower size of global number of nodes with 
larger elements going farther of the influenced zone. Despite the fact 
that the concept of transition element is not that new and dates back to 
the late 1970s [1, 2], but to the best knowledge of authors, an obvious 

and clear programming strategy and the method of implementation in 
a FE program have not been depicted in particular in the related 
literature yet. The algorithm and the related part of the program for 
analyzing of a structure having variable-number-of-nodes per element 
were comprehensively brought in this manuscript. Finally, the validating 
example proved the right and proper capability of the programming 
strategy and the analogy between the program results and a rational 
anticipation showed a complete agreement. 

REFRENCES 

[1] Bathe, K. J. (2006). Finite Element Procedures. Prentice Hall, 
Pearson Education, Inc. 1037 P. 

[2] Hughes, T. J. R (2000). The Finite Element Method: Linear Static 
and Dynamic Finite Element Analysis. Dover Publication. 682 P. 

[3] Ergatoudis, I., Irons, B.M. and Zienkiewicz, O.C. (1968). Curved, 
Isoparametric, Quadrilateral Elements for Finite Element 
Analysis. International Journal of Solids and Structures, 4, 31-42. 

[4] Irons and Zienkiewicz, (1968). The Isoparametric Finite Element 
System: A New Concept in Finite Element Analysis. Royal 
Aeronautical Society. 3-35. 

[5] Irons. (1969). Economical computer techniques for numerically 
integrated finite elements. International Journal for Numerical 
Methods in Engineering. 1, 201-203. 

[6] Irons B. M.. (2005) Quadrature rules for brick based finite 
elements, International Journal for Numerical Methods in 
Engineering, 3, 2, 293-294 

[7] M. Calvin Mosher, (1985). A variable node finite element method. 
Journal of Computational Physics, Vol. 57, Issue 2, 157-187. 

[8] Sadd, M. (2005). Elasticity: Theory, Applications, and Numerics. 
Elsevier Inc. 473 P. 

[9] Gupta, A., & Mohraz, B. (1972). A method of computing 
numerically integrated stiffness matrices. International Journal 
for Numerical Methods in Engineering, Vol. 5, 83-89 

[10] Gupta, A. K. (1978). A finite element for transition from a fine to 
a coarse grid. International Journal for Numerical Methods in 
Engineering, Vol. 12. 35-45 

[11] Somervaille I. J. (1973). A technique for mesh grading applied to 
conforming plate bending finite elements. International Journal 
for Numerical Methods in Engineering. Vol. 6, Issue 2, 310-312.  

[12] Belytschko T, Black T. 1999. Elastic crack growth in finite 
elements with minimal remeshing. International Journal for 
Numerical Methods in Engineering 45(5):601-620. 

[13] Shih C, Asaro R 1988. Elastic-plastic analysis of cracks on 
bimaterial interfaces: part I—small scale yielding. Journal of 
Applied Mechanics 55:299-316. 

[14] Ewalds H, Wanhill R. 1989, Fracture Mechanics. Edward Arnold: 
New York.  

[15] Benzley S, 1974, Representation of singularities with 
isoparametric finite elements. International Journal for 
Numerical Methods in Engineering 8:537-545. 

[16] Moesy N. Dolboz J. Belytschko T., 1999, A finite element method 
for crack growth without remeshing, Int. J. Numer. Meth. Engng. 
46, 131-150 

[17] Geralf Hutter and Lutz Zybell, 2016, Recent Trends in Fracture 
and Damage Mechanics, pp. 434. 

 
If node 9th exists: 

FN(1)8-20=FN(1)8- (1/2)FN(9)20  

FN(2)8-20=FN(2)8- (1/2)FN(9)20 
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APPENDIX  I 

In this appendix, we show the part of the code, named SUBROUTINE 
MODIFY, whose task is rearranging the element's nodes global number 
considering the non-existing or existing nodes.  
C      

C     >> 

C     A ROUTINE FOR MODIFICATION OF CONNECTIVITY MATRIX 

 

      SUBROUTINE MODIFY(NEL,NNODET,NOC,NON,MD) 

      DIMENSION NOC(NEL,NNODET),NON(NEL),MD(NEL,12) 

 

      DO 01 IE=1,NEL 

      K=8 

      K1=0 

      DO 02 J=9,20 

      IF(NOC(IE,J).GT.0)THEN 

      K=K+1 

      K1=K1+1 

      NOC(IE,K)=NOC(IE,J) 

      MD(IE,K1)=J 

      ENDIF 

02    CONTINUE 

      NON(IE)=K 

01    CONTINUE 

 

      END SUBROUTINE  

 

APPENDIX  II 

Here two subroutines are brought which determine the shape 
functions of the element with variable number of nodes.  This part is the 
heart of any finite element analysis of continuum. 
C      

C     >> 

C       A ROUTINE FOR SHAPE FUNCTIONS AND THEIR DERIVATIVES  

C       RESPECT TO LOCAL COORDINATES (EXI) CALCULATION 

C       X1-> EXI, X2 -> ETA, X3 -> SAI 

 

      SUBROUTINE 

SHAP(X1,X2,X3,NNODE,IE,NEL,NDOF,MD,FN,DFXI) 

 

      REAL (KIND=8) 

GFN(20),GDFXI(20,3),FN(NNODE),DFXI(NNODE,NDOF) 

      REAL (KIND=8) X1,X2,X3 

 

      DIMENSION MD(NEL,12) 

      DIMENSION NGH(20,2) 

 

      FN(1)=(1+X1)*(1-X2)*(1-X3)/8 

      DFXI(1,1)=(+1-X2)*(1-X3)/8  

      DFXI(1,2)=(-1-X1)*(1-X3)/8 

      DFXI(1,3)=(-1-X1)*(1-X2)/8 

 

      FN(5)=(1+X1)*(1-X2)*(1+X3)/8 

      DFXI(5,1)=(+1-X2)*(1+X3)/8 

      DFXI(5,2)=(-1-X1)*(1+X3)/8 

      DFXI(5,3)=(+1+X1)*(1-X2)/8 

 

      FN(2)=(1+X1)*(1+X2)*(1-X3)/8 

      DFXI(2,1)=(+1+X2)*(1-X3)/8 

      DFXI(2,2)=(+1+X1)*(1-X3)/8 

      DFXI(2,3)=(-1-X1)*(1+X2)/8   

 

      FN(6)=(1+X1)*(1+X2)*(1+X3)/8 

      DFXI(6,1)=(+1+X2)*(1+X3)/8 

      DFXI(6,2)=(+1+X1)*(1+X3)/8 

      DFXI(6,3)=(+1+X1)*(1+X2)/8 

 

      FN(3)=(1-X1)*(1+X2)*(1-X3)/8 

      DFXI(3,1)=(-1-X2)*(1-X3)/8 

      DFXI(3,2)=(+1-X1)*(1-X3)/8 

      DFXI(3,3)=(-1+X1)*(1+X2)/8  

 

      FN(7)=(1-X1)*(1+X2)*(1+X3)/8 

      DFXI(7,1)=(-1-X2)*(1+X3)/8 

      DFXI(7,2)=(+1-X1)*(1+X3)/8 

      DFXI(7,3)=(+1-X1)*(1+X2)/8 

 

      FN(4)=(1-X1)*(1-X2)*(1-X3)/8 

      DFXI(4,1)=(-1+X2)*(1-X3)/8 

      DFXI(4,2)=(-1+X1)*(1-X3)/8 

      DFXI(4,3)=(-1+X1)*(1-X2)/8 

 

      FN(8)=(1-X1)*(1-X2)*(1+X3)/8 

      DFXI(8,1)=(-1+X2)*(1+X3)/8 

      DFXI(8,2)=(-1+X1)*(1+X3)/8 

      DFXI(8,3)=(+1-X1)*(1-X2)/8   

 

      GFN(10)=(1-(X1**2))*(1+X2)*(1-X3)/4 

      GDFXI(10,1)=(-2*X1)*(1+X2)*(1-X3)/4 

      GDFXI(10,2)=(+1)*(1-(X1**2))*(1-X3)/4 

      GDFXI(10,3)=(-1)*(1-(X1**2))*(1+X2)/4 

 

      GFN(12)=(1-(X1**2))*(1-X2)*(1-X3)/4 

      GDFXI(12,1)=(-2*X1)*(1-X2)*(1-X3)/4 

      GDFXI(12,2)=(-1)*(1-(X1**2))*(1-X3)/4 

      GDFXI(12,3)=(-1)*(1-(X1**2))*(1-X2)/4 

 

      GFN(18)=(1-(X1**2))*(1+X2)*(1+X3)/4 

      GDFXI(18,1)=(-2*X1)*(1+X2)*(1+X3)/4 

      GDFXI(18,2)=(+1)*(1-(X1**2))*(1+X3)/4 

      GDFXI(18,3)=(+1)*(1-(X1**2))*(1+X2)/4 

 

      GFN(20)=(1-(X1**2))*(1-X2)*(1+X3)/4 

      GDFXI(20,1)=(-2*X1)*(1-X2)*(1+X3)/4 

      GDFXI(20,2)=(-1)*(1-(X1**2))*(1+X3)/4 

      GDFXI(20,3)=(+1)*(1-(X1**2))*(1-X2)/4 

 

      GFN(9) =(1-(X2**2))*(1+X1)*(1-X3)/4 

      GDFXI(9,1)=(+1)*(1-(X2**2))*(1-X3)/4 

      GDFXI(9,2)=(-2*X2)*(1+X1)*(1-X3)/4 

      GDFXI(9,3)=(-1)*(1-(X2**2))*(1+X1)/4 

 

      GFN(17)=(1-(X2**2))*(1+X1)*(1+X3)/4 

      GDFXI(17,1)=(+1)*(1-(X2**2))*(1+X3)/4 

      GDFXI(17,2)=(-2*X2)*(1+X1)*(1+X3)/4 

      GDFXI(17,3)=(+1)*(1-(X2**2))*(1+X1)/4 

 

      GFN(19)=(1-(X2**2))*(1-X1)*(1+X3)/4 

      GDFXI(19,1)=(-1)*(1-(X2**2))*(1+X3)/4 

      GDFXI(19,2)=(-2*X2)*(1-X1)*(1+X3)/4 

      GDFXI(19,3)=(+1)*(1-(X2**2))*(1-X1)/4 

 

      GFN(11)=(1-(X2**2))*(1-X1)*(1-X3)/4 

      GDFXI(11,1)=(-1)*(1-(X2**2))*(1-X3)/4 

      GDFXI(11,2)=(-2*X2)*(1-X1)*(1-X3)/4 

      GDFXI(11,3)=(-1)*(1-(X2**2))*(1-X1)/4 

 

      GFN(13)=(1-(X3**2))*(1+X1)*(1-X2)/4 

      GDFXI(13,1)=(+1)*(1-(X3**2))*(1-X2)/4 

      GDFXI(13,2)=(-1)*(1-(X3**2))*(1+X1)/4 

      GDFXI(13,3)=(-2*X3)*(1+X1)*(1-X2)/4 

 

      GFN(14)=(1-(X3**2))*(1+X1)*(1+X2)/4 

      GDFXI(14,1)=(+1)*(1-(X3**2))*(1+X2)/4 

      GDFXI(14,2)=(+1)*(1-(X3**2))*(1+X1)/4 

      GDFXI(14,3)=(-2*X3)*(1+X1)*(1+X2)/4 

 

      GFN(15)=(1-(X3**2))*(1-X1)*(1+X2)/4 

      GDFXI(15,1)=(-1)*(1-(X3**2))*(1+X2)/4 

      GDFXI(15,2)=(+1)*(1-(X3**2))*(1-X1)/4 

      GDFXI(15,3)=(-2*X3)*(1-X1)*(1+X2)/4 

 

      GFN(16)=(1-(X3**2))*(1-X1)*(1-X2)/4 

      GDFXI(16,1)=(-1)*(1-(X3**2))*(1-X2)/4 

      GDFXI(16,2)=(-1)*(1-(X3**2))*(1-X1)/4 

      GDFXI(16,3)=(-2*X3)*(1-X1)*(1-X2)/4 

 

      CALL NEIGHBOR(NGH) 

      IF(NNODE.GT.8)THEN 

      J1=0 

      DO 01 IN=9,NNODE 

      J1=J1+1 

      IOR=MD(IE,J1) 

      FN(IN)=GFN(IOR) 

      DO 04 J5=1,3 

04    DFXI(IN,J5)=GDFXI(IOR,J5) 

      DO 02 J2=1,2 

      J3=NGH(IOR,J2) 

      FN(J3)=FN(J3)-(GFN(IOR)/2) 

      DO 03 J4=1,3 

03    DFXI(J3,J4)=DFXI(J3,J4)-(GDFXI(IOR,J4)/2) 

02    CONTINUE 
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01    CONTINUE 

      ENDIF 

 

      END SUBROUTINE 

 

 

C      

C     >> 

C       A ROUTINE FOR NEIGHBOR NODE DETERMINATION 

 

      SUBROUTINE NEIGHBOR(NGH) 

      DIMENSION NGH(20,2) 

 

      NGH(9,1)=1 

      NGH(9,2)=2  

      NGH(10,1)=2 

      NGH(10,2)=3  

      NGH(11,1)=3 

      NGH(11,2)=4  

      NGH(12,1)=1 

      NGH(12,2)=4 

      NGH(13,1)=1 

      NGH(13,2)=5  

      NGH(14,1)=2 

      NGH(14,2)=6 

      NGH(15,1)=3 

      NGH(15,2)=7 

      NGH(16,1)=4 

      NGH(16,2)=8 

      NGH(17,1)=5 

      NGH(17,2)=6 

      NGH(18,1)=6 

      NGH(18,2)=7 

      NGH(19,1)=7 

      NGH(19,2)=8 

      NGH(20,1)=5 

      NGH(20,2)=8 

 

      END SUBROUTINE 

 

APPENDIX  III 

The values of end force vectors for nodes of the discretized block 
(Example III); the values of upward supports totally equal to the 

multiplication of surface pressure (1.0 MPa) by the upper area (5*1 m2). 
The results (bolded and underlined number in the Table 2.) are in 
complete agreement with the analytical anticipation.  

 
Table 2. The end force vectors of the structure's nodes. 

NODE #       END FORCE VECTORS FOR ALL NODES 

X             Y             Z 

1     -0.2443E+02    0.3537E+05    0.1250E+07 

2      0.2092E+00   -0.3537E+05    0.1250E+07 

3     -0.2455E+00    0.6678E+00   -0.2500E+06 

4      0.8079E+00    0.7137E+00   -0.2500E+06 

5      0.1438E+01    0.8828E+00    0.2906E+01 

6      0.2938E+01   -0.2508E+01   -0.8750E+00 

7      0.3375E+01   -0.1938E+01   -0.5000E+06 

8      0.3938E+01    0.2133E+01   -0.5000E+06 

9      0.2688E+01    0.3508E+01    0.2653E+02 

10     -0.4500E+01    0.3311E+01   -0.2298E+02 

11     -0.8438E+00   -0.4031E+01   -0.1075E+02 

12      0.7461E+01   -0.4295E+01   -0.3066E+02 

13     -0.1906E+01   -0.3281E+01    0.1291E+02 

14      0.9625E+01    0.2938E+00   -0.6667E+06 

15     -0.1191E+02    0.5344E+01    0.2362E+02 

16     -0.8100E+01   -0.7795E+01   -0.3734E+02 

17     -0.6354E+01   -0.1185E+00    0.5724E+01 

18     -0.1279E+01    0.5648E+01    0.1447E+02 

19      0.6766E+01   -0.3209E+01   -0.3333E+06 

20      0.4661E+01   -0.5030E+01   -0.3333E+06 

21     -0.2438E+01   -0.1026E+02   -0.1238E+02 

22     -0.8375E+01    0.2397E+01    0.1209E+02 

23     -0.2438E+01   -0.5469E+00    0.3164E+02 

24     -0.1869E+01   -0.1122E+02   -0.1106E+02 

25     -0.3656E+01    0.2320E+01    0.1602E+02 

26      0.3000E+01    0.6993E+01   -0.6667E+06 

27     -0.6250E-01   -0.7348E+01    0.1418E+02 

28      0.3770E+00    0.1633E+02    0.3862E+02 

29     -0.4375E+00   -0.1031E+01   -0.6375E+01 

30     -0.2812E+01    0.2906E+01   -0.1875E+00 

31     -0.1688E+01    0.4008E+01   -0.5000E+06 

32      0.2312E+01    0.1086E+01   -0.5000E+06 

33      0.3216E-01    0.7278E+01    0.1250E+07 

34     -0.1991E+01   -0.4653E+00    0.1250E+07 

35     -0.6340E+00    0.1538E+00   -0.2500E+06 

36      0.3742E+00   -0.6833E+00   -0.2500E+06 

 

 


