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A B S T R A C T 

 

Coal quality-tonnage curves are helpful tools in optimum mine planning and can be estimated using geostatistical simulation methods. In 
presence of spatially cross-correlated variables, traditional co-simulation methods are impractical and time-consuming. This paper investigates 
a factor simulation approach based on minimization of spatial cross-correlations with the objective of modeling spatial relations of coal quality 
data and estimating the quality-tonnage curves in a part of the Ömerler sector of Tunçbilek coalfield (Turkey). Data come from core samples 
analyzed for lower calorific value, ash content, and moisture content. Prior to simulation, composite data and coal seam are unfolded and the 
composites are also detrended . The simulations of the original data are obtained by adding the trend values to the simulated residuals and 
transforming the unfolded coordinates into the original ones. 100 realizations of the coal attributes are jointly generated by Minimum Spatial 
Cross-correlation (MSC) simulation method. The MSC-simulations are compared to the results of a widely used joint simulation method 
based on the minimum/maximum autocorrelation factors (MAF) technique. The comparison shows the advantage of the new proposed 
method over the MAF technique. MSC-simulations properly reproduce the original data based on the correlation coefficient, cumulative 
histograms, and auto / cross-variograms. This suggests that the MSC-simulation method can be used in simulation of spatially cross-correlated 
coal data. The quality-tonnage curve for each realization is calculated and uncertainty associated with tonnage is assessed by using a 95% 
confidence interval.  The assessments show that the tonnage uncertainty depends on the cutoff. 
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1. Introduction 

Coal quality–tonnage curves are graphical representations of 
recoverable coal resources, which plot the tonnage and mean coal 
quality values versus the cut-off grade. These curves are used in all 
phases of a mining project, including resource estimation, mine 
planning, and production scheduling. The quality–tonnage curves 
should be estimated from the available data at the stage of resource 
estimation. At this stage, the data are not dense enough to allow reliable 
predictions. Therefore, it is desirable to assess the uncertainty of the coal 
quality–tonnage curves. The aim of the present study is assessing the 
uncertainty associated with the coal quality-tonnage curves.  

Geostatistical simulation allows to model the uncertainty by 
generating equally probable realizations of the coal seam. For spatially 
cross-correlated variables such as the coal quality data, it is necessary to 
reproduce the cross dependencies and auto-correlations. Co-simulation, 
which considers auto and cross-variograms in its algorithm, has been the 
traditional method in multivariate studies [1-8]. However, co-simulation 
is impractical due to difficulties in modeling the auto and cross 
variograms for a large number of variables. Furthermore, to avoid facing 
with unsolvable equation systems, the auto/cross variograms should be 
fitted using the Linear Model of Coregionalization (LMC) regarding the 
Cauchy–Schwarz inequality [9]. It is a necessary but not a sufficient 
process, which may interfere with the actual spatial structure of the 
studied attributes.      

A practical alternative to the traditional co-simulation method is to 
use a factor-based approach that is based on transforming the spatially 
correlated variables into the orthogonal factors and then simulating 
each factor independently. For generating such factors, a number of 
methods are suggested in the literature. Some of these methods such as 
Principal component analysis [10], minimum/maximum 
autocorrelation factors (MAF) [11-15], stepwise conditional 
transformation [16-17], simultaneous diagonalization [18-20], 
independent components analysis [21-23] are able to remove the linear 
correlation, and some others, for example, non-linear PCA and non-
linear MAF have the ability to deal with nonlinear dependencies [24-
27].  

Another method is the MSC method, which is appealing due to its 
ability to minimize several variogram matrices [28]. This method deals 
with removing the linear correlations and lacks the potential to deal 
with much more complicated nonlinear relationships.  

The present study suggests using the MSC method in assessing the 
uncertainty of the coal quality-tonnage curves. This method converts the 
multivariate problem into a series of single-variable equations, which 
can be easily solved applying the gradient descent algorithm. In contrast 
to the traditional co-simulation methods, the multivariate simulation 
uses the minimum spatial cross-correlation (MSC) factors that removes 
the need for cross-variogram modeling and interfering with data’s actual 
spatial structures. Moreover, the MSC simulation is practical and 
convenient and it provides reliable results [29].    

In this paper, the MSC method is applied to the joint simulation of 
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multivariate coal quality data for a part of the Ömerler lignite seam of 
the Tunçbilek coal field (Turkey) for generating the coal quality-
tonnage curves. The data comes from core samples of 115 boreholes that 
are analyzed for Lower Calorific Value (LCV), Ash Content (AC), and 
Moisture Content (MC). In the area of interest, the coal seam is 
separated into 7 zones due to faulting. The coal seam is folded and all 
attributes show significant trends in the vertical direction so that before 
the application of the MSC approach, the space is unwrinkled and the 
data is detrended. Then, the MSC is applied to transform the 
intercorrelated variables into the spatially uncorrelated factors. The 
factors are simulated independently through the Direct Sequential 
Simulation (DSS) method. In order to compare the MSC-simulation 
method with a more widely used multivariate technique, the same 
process is implemented using the MAF approach. The MSC-simulation  
shows a better performance than the MAF-simulations in reproducing 
the statistical properties of data. After adding the trends to the back-
transformed simulations, the MSC-simulation results are used to 
estimate the quality-tonnage curves and to assess the associated 
uncertainty. The case study shows that the MSC method can be used in 
constructing the coal quality-tonnage curves. On the other hand, the 
uncertainty of simulated tonnage curves depends on the cutoff.  

The outline of the paper is as follows: the second section gives a brief 
summary of the joint simulation based on the MSC factors including the 
concepts and the notations. In the third section, a case study including 
field and geological setting descriptions, properties of coal variables, 
data detrending, seam unfolding, joint simulation using the MSC 
factors, and a comparison to the MAF-simulations are presented. The 
final section provides the conclusions. 

2. Methodology 

This section provides a brief theory of the MSC-simulation. More 
details are presented in [29]. 

2.1. Multivariate Simulation using Factors 

Suppose Let 𝒁(𝒙) = [𝑍1(𝒙), 𝑍2(𝒙),… , 𝑍𝑝(𝒙)]  is a  𝑃  dimensional 
secondorder stationary random function where 𝑥  represents the 
location within a region 𝐷 . Under the second-order stationary 
assumption, 𝒁(𝒙) has a constant mean 𝝁 = 𝐸[𝒁(𝒙)]  and a variogram 
matrix 
2𝜞𝒁(𝒉𝑙) = 𝐸{[𝒁(𝒙) − 𝒁(𝒙 + 𝒉𝑙)][𝒁(𝒙) − 𝒁(𝒙 + 𝒉𝑙)]

𝑇} = 

= [
𝛾11

𝒁 (𝒉𝑙) ⋯ 𝛾1𝑃
𝒁 (𝒉𝑙)

⋮ ⋱ ⋮
𝛾𝑃1

𝒁 (𝒉𝑙) ⋯ 𝛾𝑃𝑃
𝒁 (𝒉𝑙)

] , 𝑙 = 1,… , 𝐿 

where L is the number of lags. 𝐸 and superscript 𝑇 are the expectation 
and transposition, respectively, and  𝛾𝑖𝑗

𝑍(𝒉𝑙)is cross-variogram between 
𝑍𝑖(𝒙) and 𝑍𝑗(𝒙) at lag distance 𝒉𝑙 .  

Consider a 𝑃 × 𝑃  full rank matrix 𝑾  that linearly transforms the 
random function 𝒁(𝒙) into factors Y(𝒙) = [𝑌1(𝒙), 𝑌2(𝒙),… , 𝑌𝑃(𝒙)] with 
𝒀(𝒙) = 𝒁(𝒙)𝑾  such that 2𝜞𝑌(𝒉)  is approximately diagonal for all 

distances 𝒉. Then the problem is to find the transformation matrix 𝑾 
such that geostatistical simulation is performed independently on each 
of 𝑌1(𝒙),… , 𝑌𝑃(𝒙) and the simulated factors 𝒀𝑺(𝒙) are back transformed 
into the original simulations by 𝒁𝑺(𝒙) = 𝒀𝑺(𝒙)𝑾−1. To guarantee the 
orthogonality of the transformation matrix, one can assume that the 
original data are whitened through principal component analysis before 
running the MSC method and the results are restricted to a unit circle 
[30]. In the rest of the paper, the white components will be denoted by 
𝒁(𝒙) for simplicity.  

2.2. Minimum Spatial Cross-correlation Method 

Consider 𝜏(𝒉) =
𝜑(𝒉)

𝜉(𝒉) 
 , |𝒉| > 0  

with 𝜑(ℎ) = ∑ ∑ |𝛾𝑖𝑗
𝑌(𝒉)|

𝑝
𝑗≠𝑖

𝑝
𝑖=1  and 𝜉(𝒉) =∑ 𝛾𝑖𝑖

𝑌(𝒉)
𝑝
𝑖=1  as a measure of 

orthogonality. This measure is proposed by Tercan (1999) and is used 
by several researchers such as Mueller and Ferreira (2012) and 
Boluwade and Madramootoo (2015). This is also a measure considered 
in MSC method as the function to be minimized.  𝜏(𝒉)  basically 
compares the sum of off-diagonal elements of factor variogram matrix 
to the sum of its diagonal elements at each lag distance. Efficient 
orthogonalization methods give factors with 𝜏(𝒉) values close to zero at 
all distances. Sohrabian and Tercan (2014a) prove that under a linear 
transformation of the variables with the same variance, 𝜉(𝒉) is constant 
at each lag distance. Then the problem of minimizing 𝜏(𝒉) is reduced to 
minimizing  

𝜑 = ∑∑∑|𝛾𝑖𝑗
𝒀(𝒉𝑙)|,             |𝒉| > 0

𝑝

𝑖<𝑗

𝑝−1

𝑖=1

𝐿

𝑙=1

                                                     (1) 

Where 𝐿  is the number of lags considered in the minimization 
process. Cross variogram functions of factors lay between 1 and -1 due 
to whitening the input data and absolute values of these functions are 
not differentiable at some points in their domains so that  |𝛾𝑖𝑗

𝑌(ℎ𝑙)| can 
be replaced by (𝛾𝑖𝑗

𝑌(ℎ𝑙))
2  without changing in the directions. This 

translates Eq. 1 into the following one: 

𝜑 = ∑∑∑(𝛾𝑖𝑗
𝒀(𝒉𝑙))

2
 ,             |𝒉| > 0                                                  (2)

𝑝

𝑖<𝑗

𝑝−1

𝑖=1

𝐿

𝑙=1

 

Sohrabian and Tercan (2014a) show that such a complicated problem 
can be solved as a sequence of simplified 2-D problems with one 
parameter. For this purpose, we first minimize Eq. (2) in the plane, 
which consists of the first and second variables, and then proceeds in 
the other planes one by one. For illustration, the minimization problem 
is solved in 2-D space with one parameter 𝜃12  for the following 
variogram matrix: 

𝜞𝒁(𝒉𝑙) = [
𝛾11

𝒁 (𝒉𝑙) 𝛾12
𝒁 (𝒉𝑙)

𝛾21
𝒁 (𝒉𝑙) 𝛾22

𝒁 (𝒉𝑙)
]                                                                        (3) 

The aim is to find a 2 × 2 transformation matrix 𝑾 

𝑾 = [
𝑐𝑜𝑠𝜃12 −𝑠𝑖𝑛𝜃12

𝑠𝑖𝑛𝜃12    𝑐𝑜𝑠𝜃12
]                                                                                (4) 

to generate  the factors using the following semi-variogram matrix: 

𝜞𝒀(𝒉𝑙) = 𝑾(𝜃12)
𝑇𝜞𝒁(𝒉𝑙)𝑾(𝜃12) = [

𝑐𝑜𝑠𝜃12 𝑠𝑖𝑛𝜃12

−𝑠𝑖𝑛𝜃12 𝑐𝑜𝑠𝜃12
] [

𝛾11
𝒁 (𝒉𝑙) 𝛾12

𝒁 (𝒉𝑙)

𝛾21
𝒁 (𝒉𝑙) 𝛾22

𝒁 (𝒉𝑙)
] [

𝑐𝑜𝑠𝜃12 −𝑠𝑖𝑛𝜃12

𝑠𝑖𝑛𝜃12    𝑐𝑜𝑠𝜃12
]

= [
𝑐𝑜𝑠2𝜃12 𝛾11

𝒁 (𝒉𝑙) + 𝑠𝑖𝑛2𝜃12 𝛾22
𝒁 (𝒉𝑙) + 2𝑐𝑜𝑠𝜃12𝑠𝑖𝑛𝜃12 𝛾12

𝒁 (𝒉𝑙) 𝑐𝑜𝑠𝜃12𝑠𝑖𝑛𝜃12(𝛾22
𝒁 (𝒉𝑙) − 𝛾11

𝒁 (𝒉𝑙)) + (𝑐𝑜𝑠2𝜃12 − 𝑠𝑖𝑛2𝜃12)𝛾12
𝒁 (𝒉𝑙)

𝑐𝑜𝑠𝜃12𝑠𝑖𝑛𝜃12(𝛾22
𝒁 (𝒉𝑙) − 𝛾11

𝒁 (𝒉𝑙)) + (𝑐𝑜𝑠2𝜃12 − 𝑠𝑖𝑛2𝜃12)𝛾12
𝒁 (𝒉𝑙) 𝑐𝑜𝑠2𝜃12 𝛾22

𝒁 (𝒉𝑙) + 𝑠𝑖𝑛2𝜃12 𝛾11
𝒁 (𝒉𝑙) − 2𝑐𝑜𝑠𝜃12𝑠𝑖𝑛𝜃12 𝛾12

𝒁 (𝒉𝑙)
]                 (5)

 
Then the objective function to be minimized is: 

𝜑(𝜃12) = ∑[𝛾12
𝒀 (𝒉𝑙)]

2
𝑙

𝑖=1

= ∑[𝑐𝑜𝑠𝜃12𝑠𝑖𝑛𝜃12(𝛾22
𝒁 (𝒉𝑙) − 𝛾11

𝒁 (𝒉𝑙)) + (𝑐𝑜𝑠2𝜃12

𝑙

𝑖=1

− 𝑠𝑖𝑛2𝜃12)𝛾12
𝒁 (𝒉𝑙)]

2
                                                   (6)  

Eq. (6) has only one parameter, 𝜃12, which can be easily found by 
gradient descent algorithm that is based on iteration (7). The big 
disadvantage of gradient descent algorithm is the possibility of finding 
a local minimum rather than the global one. Sohrabian (2013) shows 

that  [𝛾12
𝒀 (𝒉𝑙)]

2 has global minimum points repeated every 1.57 radians, 
removing the possibility that the function is trapped in a local optimum 
point.  

 
Then consider the following iteration: 

𝜃12
𝑡 = 𝜃12

𝑡−1 − 𝜁
𝜕𝜑(𝜃12)

𝜕𝜃12

|
𝜃12=𝜃12

𝑡−1

                                                                  (7) 

Where 𝑡 is the currently calculated value of 𝜃12, 𝑡 − 1 is the value of 
𝜃12 found at the previous step and 𝜁 is the length of step in the negative 



 B. Sohrabian et al. / Int. J. Min. & Geo-Eng. (IJMGE), 52-1 (2018) 75-86 77 

 

gradient direction. 
𝜕𝜑(𝜃12)

𝜕𝜃12

=
𝜕 ∑ (𝛾12

𝒀 (𝒉𝑙))
2𝐿

𝑙=1

𝜕𝜃12

=

= ∑[(𝑐𝑜𝑠3𝜃12𝑠𝑖𝑛𝜃12 − 𝑠𝑖𝑛3𝜃12𝑐𝑜𝑠𝜃12)(2𝐾𝑙
2 − 8(𝛾12

𝒁 (𝒉𝑙))
2)

𝐿

𝑙=1

+ 2𝐾𝑙(𝑐𝑜𝑠
4𝜃12 + 𝑠𝑖𝑛4𝜃12 − 6

× 𝑐𝑜𝑠2𝜃12𝑠𝑖𝑛
2𝜃12)𝛾12

𝒁 (𝒉𝑙)]                                                                              (8) 

Where 𝐾𝑙 = 𝛾22
𝒁 (𝒉𝑙) − 𝛾11

𝒁 (𝒉𝑙) (See [28] for the proof). Iteration (7) 
stops when |𝜃12

𝑡 − 𝜃12
𝑡−1 | falls below a tolerance level.  After finding 𝜃12, 

𝜃13 , …, 𝜃1𝑝 , 𝜃23 , 𝜃24 , …, 𝜃2𝑝 , … and 𝜃𝑝𝑝 , the final orthogonal 
transformation matrix that transforms 𝑝 stationary variables into the 
MSC factors is calculated as the multiplication of 𝑝 × (𝑝 − 1)/2 distinct 
matrices 𝑨𝑝×𝒑(𝛳𝑖𝑗), 𝑖 = 1,… , 𝑝 − 1 and 𝑗 = 𝑖 + 1,… , 𝑝 as shown in Eq. 
9. 

𝑾𝑝×𝒑 = ∏∏ 𝑨𝑝×𝒑

𝑝

𝑗=𝑖+1
(𝛳𝑖𝑗)

𝑝−1

𝑖=1

= 𝑨𝑝×𝒑(𝛳12) × 𝑨𝑝×𝒑(𝛳13) × …× 𝑨𝑝×𝒑(𝛳(𝑝−1)𝑝)

=

[
 
 
 
 
 
𝑐𝑜𝑠𝛳12

𝑠𝑖𝑛𝛳12

−𝑠𝑖𝑛𝛳12

𝑐𝑜𝑠𝛳12

0
0

⋯
⋯

0 0
0 0

0         0 1 ⋯ 0 0
⋮
0
0

        ⋮

        
0
0

⋮
0
0

⋱
⋯
⋯

⋮ ⋮
1
0

0
1]
 
 
 
 
 

×

[
 
 
 
 
 
𝑐𝑜𝑠𝛳13

0
 
0
1

−𝑠𝑖𝑛𝛳13

0
0
0

⋯ 0
⋯ 0

𝑠𝑖𝑛𝛳13   0    𝑐𝑜𝑠𝛳13 0 ⋯ 0

      
0
⋮
0

       0

       
⋮
0

       
0
⋮
0

       
1
⋮
0

⋯ 0
⋱
⋯

⋮
1]
 
 
 
 
 

× ⋯

×

[
 
 
 
 
 
1
0

        
0
1

⋯
⋯

0
0

0                 0
0                0

⋮         ⋮ ⋱  ⋮ ⋮                 ⋮
0
0
0

        0

        
0
0

  
⋯
⋯
⋯

1
0
0

0                0
𝑐𝑜𝑠𝛳(𝑝−1)𝑝

𝑠𝑖𝑛𝛳(𝑝−1)𝑝

−𝑠𝑖𝑛𝛳(𝑝−1)𝑝

𝑐𝑜𝑠𝛳(𝑝−1)𝑝 ]
 
 
 
 
 

                            (9) 

After producing the MSC factors in this way, their variograms are 
analyzed and the resulting variogram parameters are used to run the 
univariate geostatistical simulation method.  Then the simulated factors 
are transformed back into the original data space. The main steps of the 
joint simulation of inter-correlated variables using the MSC factors are 
presented by the flowchart illustrated in Fig. 1. 

3. Case Study 

3.1. Field and geological setting description 

The data used in this study come from a part of the Ömerler sector of 
the Tunçbilek coalfield located in the western part of Turkey. Tunçbilek 
is a district of Tavşanlı–Kütahya and the Ömerler coal field is located in 
the northern part of Tunçbilek (Fig. 2). Tercan et al., (2013) carried out 
a complete seam modeling and resource estimation study in this field. 
Ertunç et al., (2013) estimated the coal quality means of the blocks by 
covariance matched constrained kriging and compared the results with 
the ordinary kriging estimates and geostatistical simulations. 

Fig. 3 shows the generalized stratigraphic section of the coal basin. 
The following description of the Tunçbilek basin is largely based on 
Karayigit and Celik (2003). The Tunçbilek Neogene basin is situated 
between Tunçbilek and Domaniç (Kütahya) in the northeastern part of 
a horst–graben system in western Turkey. The metamorphic and 
ophiolitic rocks and granites of the Pre-Neogene age form the basement 
of the basin. The coal-bearing Tunçbilek Formation in the basin was 
conformably underlain by fluvial deposits of the Miocene Beke 
Formation and conformably overlain by sandstone–tuffite of the 
Miocene Besiktepe Formation and Pliocene volcanic rocks, fluvial–
lacustrine deposits. The coal-bearing Tunçbilek Formation was 
developed in lacustrine facies (mudstone, claystone, coal, and marl), 
continental deltaic conglomerate–sandstone, continental fan deltaic 
conglomerate– sandstone–mudstone, and lacustrine limestone. The 
overall thickness of the Miocene–Pliocene formations in the basin is 
above 1 km. 

 
Fig. 1. Flowchart of the joint simulation using the MSC factors.
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An average 7 m thick coal bed lies at the base of the Tuncbilek 
Formation. The coal bed lies between marl and conglomerate–
sandstone units and includes dirt bands as claystone with coal traces, 
marl, and alternations of coal and claystone [34]. The coal seam dips 
with 7° in North-East direction. 

 
Fig. 2. Location map of the Ömerler coal field. The mine site is shown by the 

yellow cross. 

 
Fig. 3. Stratigraphic section of the basin. 

3.2. Data, detrending and unfolding procedures 

The study area contains 7 coal zones separated by NW-SE and N-S 
trending faults (Fig. 4). The data includes 115 bore-holes with samples 
analyzed for lower calorific value (LCV), ash content (AC) and moisture 
content (MC). The holes were drilled by the General Directorate of 
Turkish Coal Mining Administration (TKI) and the samples were 
collected from zones in which the drill-holes make intersect the coal bed 
and the coal samples were analyzed in the coal laboratory of Garp 
Lignite Operations (GLI). The laboratory uses ASTM D 5865-13 code 
(2016) for calorific value of coal and ASTM D 7582-15 code (2016) for 
proximate analysis. The drill-hole samples consist of only pure coal and 
do not include any parting so that the calorific value, ash content and 
moisture content of the partings are not known. In the Tunçbilek coal 
field LCV, AC and MC of the partings are assumed to be 1 kCal/kg, 75%, 
and 25% respectively as a standard application. We adopt this industry 
practice in our present study. These assumptions seem to be reasonable 
when we consider linear regression between the lower calorific value, 
and the ash content (not shown here) of all samples were analyzed if 1 
kCal/kg is assumed as standard value for LCV of non-flammable 
substances.  

The raw data are composed of 1 m intervals. While composting, the 
minimum rock parting is accepted to be 0.50 m and the previously 
assumed values of LCV, AC, and MC are used for the partings. Table 1 
shows the summary statistics of the composites. 

 
Fig. 4. Drill hole locations and the coal seam. 

Table 1. The summary statistics of composite data. 

Variable 
Number of 
composites 

Min Max Mean Variance 

LCV(kCal/kg) 620 925 5248 3239 1240183 

AC(%) 620 9 64.52 35.95 187.88 
MC(%) 620 11.50 25.11 18.46 8.30 

The lignite seam of this study is faulted with throws of up to 20 m 
and strikes N500 W and dips 90 NE. Prior to the practical implementation 
of the MSC simulation, the seam and the composite data are unfolded 
to maintain the correct spatial relationships. For unfolding, the method 
suggested in Ertunç et al., (2013) is used. In addition, the lignite seam 
shows a vertical trend (Fig. 5) for coal quality variables due to decreasing 
the quality from the top of the seam to its bottom. To model the trend, 
the coal seam is divided into 2 m slices in the vertical direction and each 
slice is presented with a bar (Fig. 6). Then, the middle points of these 
bars are considered in the detrending process to obtain the second order 
stationary residuals to be used in generating the orthogonal factors 
through the MSC and the MAF approaches. The simulations are 
achieved in unfolded space using the detrending data. The simulations 
of the original data are obtained by adding the trend to the simulated 
residuals and transforming the unfolded coordinates into the original 
ones. 

3.3. Joint simulation using the MSC factors and comparison to the 
MAF 

After finding the residuals in the unfolded space, the principal 
component analysis and whitening process were implemented as pre-
steps in generating the MSC factors. The maximum range of the cross-
variograms (1000m) divided by the average distance of the adjacent drill 
holes (100m) was considered as the number of lags in the minimization 
process. The data-driven MAF method [14] was also implemented for 
comparison of the MSC-simulation to a more widely used technique. 
Two variogram matrices calculated at 200 m and 1000 m lag distances, 
which seem to be the ranges of the first and the second spatial structures 
were chosen for decorrelation. These matrices were checked to provide 
the requirements of the Cauchy–Schwarz inequality. After producing 
the factors using both methods, their orthogonality degree was tested 
regarding 𝜏(ℎ) measure [19]. 
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Fig. 5. Down-hole (left) and horizontal omnidirectional variograms (right) of; a) LCV, b) AC and c) MC.

 

 

 
Fig. 6. Trend analysis of the coal attributes considering 2m seam slices from the 
bottom (#1) to the top (#7). Each slice is presented by a bar with the lowest and 

the highest values shown by green and purple lines. The middle points of the 
bars (Red line) are used in trend analysis. 

Fig. 7 shows the cross-variograms and 𝜏(ℎ) values of the MSC and the 
MAF factors. Cross-variograms of the MAF factors are exactly equal to 
zero at decorrelation lag distances of 200m and 1000m and show a lower 
spatial correlation at short and long lags. But, for middle distances of 
300m to 800m, where a large number of conditioning data is located, 
the MSC method demonstrates a better performance, which is 
confirmed by 𝜏  value. It can be said that all cross-variograms have 
negligible values such that the factors are practically orthogonal. This 
allows us to use any univariate geostatistical simulation method to 
generate the equiprobable realizations of the factors. Considering the 
histograms of the MSC and the MAF factors (Fig. 8) as well as running 
the Jarque–Bera test of normality at 5% significance level, it can be said 
that except for MSC1 and MAF3, the other factors possess non-Gaussian 
distributions. Then, Direct Sequential Simulation (DSS), through 
Soares approach [37], was implemented to generate 100 realizations for 
each factor on a grid of 120864 nodes within the boundaries of the coal 
seam. 

The model variogram parameters fitted to the experimental 
variograms of factors (Fig. 9 and 10) are used in the simulations. Factors’ 
vertical variogram ranges are less than their horizontal ranges, showing 
a geometrical anisotropy. Horizontal variograms of the MSC factors 
have sill values equal to their variances, but in down-hole direction, sill 
values of the variograms remain below the factor variances, indicating a 
zonal anisotropy. Therefore, they are fitted with nested models 
composed of a nugget effect and two spherical structures with very high 
ranges of the second structure (Table 2). Variograms of MAF1 and 
MAF3 are fitted with the same nested models, but using different ranges, 
nuggets, and contributions. Variograms of MAF2 are modeled with a 
nugget effect, and an exponential structure (Table 2). Simulations are 
carried out using 17 maximum conditioning data and applying search 
ellipsoids with axes 20% greater than the variogram ranges.  

After simulating the MSC and MAF factors, the results are back-
transformed into the original data space. Point support realizations are 
re-blocked to 3777 with block sizes of  50𝑚 × 50𝑚 × 1𝑚, and then, the 
MSC and the MAF-simulations are verified by comparing their 
cumulative density functions (cdf) (Fig. 11), correlation coefficients 
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(Fig.12), and auto/cross-variograms to those of the original data (Figs. 13 
and 14). Fig. 11 shows that the MSC-simulations of variables could 
produce realizations with acceptable minimum and maximum values 
and reasonable cdf’s. But, cdf reproduction of variables is poor for the 
MAF-simulations. Correlation coefficient reproduction of the MSC-
simulations is better than the MAF-simulations and much closer to that 
of the data (Fig. 12).  Figs. 13 and 14 show that the reproduction of 
variograms using the MAF-simulation is poor: auto-variograms of AC 
and LCV have respectively lower and higher nugget effects and sills. AC-
MC and LCV-MC cross-variograms of MAF-simulations are 
consequently over and under those of the original data. On the other 
hand, the MSC-simulations show a good performance in variogram 
reproduction. 

Table 2. Model variogram parameters of the MSC factors. 
Variable MSC1 MSC2 MSC3 MAF1 MAF2 MAF3 

Nugget 0.45 0.15 0.22 0.2 0.1 0.4 

First structure 0.35 0.25 0.38 0.5 0.9 0.35 

Second structure 0.25 0.61 0.40 0.3 - 0.25 

Horizontal range 1 110 m 200 m 140 m 130m 230m 100m 

Horizontal range 2 400 m 480 m 300 m 2500m - 400m 

Vertical range 1 4.7 m 6 m 3.3 m 12m 13m 4m 

Vertical range 2 49 m 200 m 35 m 500m - 150m 

First structure’s model 

Second structure’s model 

Sph 

Sph 

Sph 

Sph 

Sph 

Sph 

Sph 

Sph 

Exp 

- 

Sph 

Sph 

 
(a) 

 
(b) 
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Fig. 7. Cross-variograms of; a) the MSC factors, b) the MAF factors, c) The 
measure of spatial orthogonality. 

During this study, the MSC method was implemented by a MATLAB 
code written by the corresponding author, and the Stanford Geological 
Modeling Software (SGeMS) was used for variogram analysis and 
running the Direct Sequential Simulation. 

3.4. Quality-tonnage curves and assessing uncertainty 

The Quality-tonnage curves were calculated using the MSC-
simulations of variables and considering 9 different quantiles of the 
original data as the cutoff values (Fig. 15). Blocks with simulated values 
higher than each cutoff were considered in the tonnage and the average 
quality calculation.  At each cutoff, the tonnages of 100 simulations were 
ranked from the smallest to largest values and the simulated tonnages 
falling at 95% symmetric confidence interval were used for the 
uncertainty quantification. In Fig. 14, the secondary axis shows the 
averages of the quality variables for blocks whose simulated values are 
considered above the cutoff. As the cutoff increases, the lignite tonnage 
decreases steadily. For example, a tonnage with LCV values equals to or 
above 2000 (kCal/kg) and 3000 (kCal/kg) lie in 10.5-12.1 and 7.7-9.8 
million ton intervals respectively. There are similar relationships 
between the tonnage and cutoff values for AC and MC. For all variables, 
95% confidence intervals are tighter for low and high cutoffs than the 
intermediate ones. LCV and AC have the lowest and the highest 
uncertainties in their quality- tonnage curves. This has important 
consequences in coal resource estimation, particularly in resource 
classification. By a simple change in the cut-off value, part of the 
resources might shift from one category to another. For example, the 
confidence in resource estimation at median cutoffs will be relatively 
low due to increasing the variability of simulated tonnages while it will 
be high at low and high cutoffs. This also affects mine planning, based 
on classified resources.  

4.   Conclusions 

Uncertainty assessment for coal quality-tonnage curves is significant 
in all stages of a mining operation. For spatially inter-correlated 
variables, these curves can be calculated using the results of multivariate 
Geostatistical simulations. In this paper, an efficient joint simulation 
through the MSC factors was used to simulate the multivariate coal 
quality data of the Ömerler sector of the Tunçbilek coal field. This 
method shows several advantages over the joint simulation using the 
MAF factors and simplifies the multivariate simulation by producing 
spatially uncorrelated factors that are simulated independently.  

As it was theoretically expected, the generated MSC factors are 
approximately orthogonal at all lag distances, so that the tedious 
procedure of cross-variograms modeling is removed. In comparison to 
the MAF factors, cross-variograms of the MSC factors lie in a tighter 
interval than those of MAFs. Moreover, as for the MAF approach, the 
MSC produces factors that are spatially autocorrelated and can be easily 
modeled. The generated factors are not necessarily normally distributed 
and their variograms show both geometrical and zonal anisotropies. The 
MSC-simulation method outperforms a joint simulation using the MAF 
factors by better reproduction of data’s auto/cross-variograms, 
correlation coefficients and cumulative density functions so that their 
quality-tonnage curves are reliable. Due to lower variations in the 
generated realizations of LCV, LCV-tonnage curves show lower risk 
than AC-tonnage and MC-tonnage curves and fall in tighter intervals.  

For being convenient, user-friendly as well as giving reliable results, 
we suggest implementing the joint simulation using the MSC factors 
regarding the following issue: this method is proposed for equally 
sampled data where variables are analyzed at all sample locations. For 
partial heteropy cases where multivariate data share some sample 
locations, it is necessary to either discard the incomplete samples or take 
advantages of imputation methods to obtain a complete isotopic data. 
Moreover, a vector of weights can be multiplied into the equations as 
some lags might have more importance to us because of some geological 
reasons or simply having more pair of points. 
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Fig. 8. Histograms of the MSC and the MAF factors. 
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Fig. 9. Experimental variograms of the MSC factors (blue dots) together with the fitted models (black solid line). 
 

  

  

  
Fig. 10. Experimental variograms of the MAF factors (blue dots) together with the fitted models (black solid line). 
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Fig. 11. Cumulative density functions of the MSC (left) and the MAF (right) simulations. The red and the black solid lines are consequently for the coal quality data and 

the simulations. 

 
Fig. 12. Correlation coefficients of the simulations. Dot and Plus marks are for MSC-simulations and MAF-simulations respectively: LCV-AC (green), LCV-MC (blue) 

and AC-MC (brown). The targeted values are shown by solid lines. 
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Fig. 13. Auto-variograms of the MSC (left) and MAF (right) simulations (Solid black lines) together with that of data (Red dots). 

 

 

 
 

 
 

Fig. 14. Cross-variograms of the MSC (left) and the MAF (right) simulations (Solid black lines) together with that of data (Red dots). 
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Fig. 15. Quality-tonnage curves of coal quality attributes. Symmetric 95% 

confidence interval (Solid Lines); median (dotted line); average quality (dashed 
line). 
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