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A B S T R A C T 

 

Various approached have been introduced to extract as much as information from seismic images for any specific reservoir or geological 
study. Faults and fractures modeling is among the most attracted objectives of geological studies on seismic images. Several strategies have 
been presented for this specific purpose. In this study, we have presented a modified approach of application concept of the principle 
components analysis to enhance faults and fractures from low quality seismic images. In the first step, relevant attributes considering imaging 
faults and fractures were drawn based on extensive studies on previous successful applications of different attributes. Subsequently, major 
informative components of each attribute were defined by performing principle component analysis. Since random noise in seismic images 
exhibits no correlation in seismic data, true reflectors and diffraction events show a high coherency value; thus, these objects are separated 
into different orthogonal components in principle component analysis. It makes it easy to remove irrelevant information considering faults 
and fractures from a seismic image, and thus, combining the attribute sections in principle component analysis produce a higher quality image. 
Afterwards, the selected components were stacked to enhance the fault position in final image. However, since there were other geological 
objects that might show a correlation with other orthogonal components, the refinement step should be applied on the final image to stack 
only the desired information. This approach was performed on a field land data example form northeast of Iran. Results of the proposed 
strategy show that this method is capable to image faults compared to conventional image analysis for fault detection. The method is also 
capable to image the accurate position of the body of mud volcanoes extracted from the image that could not be easily tracked by conventional 
seismic image analysis. 
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1. Introduction 

Seismic sections show an image of geological objects from subsurface 
containing layer boundaries, faults, and structural features. However, 
seismic data also exhibits some not geologically related information 
such as random or coherent noise and reflection from outside of the 
profile.  According to the aim of seismic study, different geological 
object from seismic data should be enhanced and geologically 
interpreted. Faults are among the most important geological events that 
have attracted much attention in subsurface geological studies. Accurate 
imaging of faults and fractures plays an important role in many 
geological studies such as drilling path identification, petroleum 
reservoir exploration and gas injection studies. In petroleum exploration 
drilling, faults should be identified preciously before designing drilling 
path and have to be avoided during drilling. In seismic reservoir studies, 
fractures show the zone of high productivity and faults show the top of 
the reservoir whether it is a sealed or a leaking zone. Leaking faults 
might also create a gas chimney in petroleum or gas reservoirs with gas 
cap, which is an identification of petroleum reservoir exploration. 
Accordingly, accurate interpretation of faults and fractures in seismic 
imaging (SI) is required for reservoir characterization studies, as well as 
static and dynamic reservoir modeling.  

There are various methods to automatically, or semi-automatically, 
image faults and fractures from seismic images. Principal component 
analysis (PCA) is a mathematical analytical approach that extracts the 

relevant information from any datasets based on the objectives of the 
study. The PCA analysis has found its major use in geoscience and in 
remote sensing (RS) image analysis. After successful application of PCA 
in RS and its fast development in RS image analysis, PCA was extended 
to be used in other geoscience studies such as SI analysis. Since the 
source of data, both in RS and SI, are in type of images, thus, same 
strategies could be used for same aim of studies. For example, fault and 
fracture analysis in SI could be used by approaches that conventionally 
have been applied on RS [1]. Due to the nature of seismic images, they 
contain variety of information of subsurface layers and structures in the 
form of wave propagation equations that cannot be illustrated in a single 
image and have to be extracted by any means from seismic data. Seismic 
attribute analysis is an interpretation tool that provides the related 
information of wave propagation equation in subsurface, and is used for 
any geological modeling. Seismic attribute analysis is widely used for 
any specific geological interpretation from 2D and 3D seismic data. 
Some attributes are designed for structural interpretation while some 
other are used only for stratigraphical studies. In addition, seismic 
attributes can be used for other various types of geological studies such 
as salt dome detection, gas chimney identification, gas hydrate 
exploration and fault and fracture analysis [2]. Since seismic attributes 
provides a large amount of seismic images, which show a specific 
character of the seismic images related to any properties of subsurface 
structures, thus, the PCA method can be used to classify the required 
information and remove unwanted images in seismic attribute analysis. 
Therefore, the PCA analysis is used to obtain the most related seismic 
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attributes according the objectives of the study, among the large number 
of related and unrelated attributes [3]. Based on geological 
characteristics of the target, several approaches in PCA can be used for 
attribute analysis. The PCA method was successfully applied on 
orthogonal decomposition of seismic surfaces (maps) for fault detection 
[4]. The PCA analysis was also used on 3D seismic attributes for 
petroleum reservoir characterization and for fault and fracture detection 
in other geophysical images such as geo-electric images [5], [6]. 
However, due to the large size of seismic data, fault and fracture 
detection in seismic images should be performed automatically with 
high accuracy. Therefore, various techniques with specific engine search 
and selection criteria were introduced for automatic fault detection [7]. 
Generalized earthmovers distance as a searching engine and classifier 
was used for automatic fault detection in seismic data [8]. In some cases, 
this automatic fault detection approach can interact with interpreter and 
should perform on graphical hardware for large seismic data. In this 
study, we introduce a PCA approach for semi-automatic fault detection 
on seismic attributes combined with RGB filters used in RS image 
analysis. The attributes were selected based on previous successful 
application of related attributes used for fault detection from seismic 
images. This approach was applied on a field example from northeast of 
Iran, containing mud volcanoes, fault zone and an unconformity that 
separate these two objects. Since the proposed approach is capable to 
identify truncations in seismic reflector known as layers, it can 
preciously image the boundary of mud volcanoes with other sediment 
layers, as well.  

2. Methodology 

Geological model building and identification of geological objects in 
seismic data is somehow difficult due to distortions that happens to 
seismic images through wave propagation in subsurface and seismic 
data processing steps to the final images. However, faults and fractures 
are known in seismic sections as a trend in truncation of reflectors or 
layers. Generally, faults produce diffractions that are used through 
seismic data processing to image the faults in the final seismic image [9].  
The first step in presenting the proposed approach in this study is to 
perform an attribute analysis step. Seismic attributes exhibit physical 
properties of wave propagating in the media containing the geological 
and the media information such as acoustic impedance contrast 
between layers, reflection coefficient of layer boundaries, seismic 
velocity and energy absorption of layers [10]. Thus, it is necessary to 
select the most relevant attribute and/or physical parameter that can be 
used to enhance fault and fractures in seismic images, and suppress 
other unwanted objects. This was performed by a survey on numerous 
published successful applications of attributes on fault analysis shown 
in Table 1. As Table 1 shows, usually chaos, first and second derivatives, 
variance, maximum and minimum curvatures and the most positive and 
negative curvatures are used as the main attributes for fault 
enhancement. Application of a single attribute might reveal an accepted 
level of information required for imaging specific fault in a seismic 
image, but it would be an advantage if we combine different relevant 
attributes to enhance more faults in a seismic image. 

Table 1. Attributes used for fault enhancement and geological boundary 
detection.  

Attribute Application Study 
Chaos Salt dome, river channel and mud volcano 

detection. 
[11], [12] 

First derivative Unconformity, fault enhancement 
geological boundary detection, 

{13}, [14], [15] 

Second derivative Unconformity, fault enhancement 
geological boundary detection, 

[16], [17] 

Variance Salt dome, channel and mud volcano, fault 
enhancement. 

[11], [18] 

Most minimum 
curvatures 

Unconformity, fault enhancement 
geological boundary detection, 

[19], [20] 

Most maximum 
curvatures 

Unconformity, fault enhancement 
geological boundary detection, 

[21], [22], [23] 

Most positive Salt dome, channel and mud volcano, [24], [25] 

curvatures Unconformity, fault enhancement,  
Most negative 

curvatures 
Salt dome, channel and mud volcano 

Unconformity, fault enhancement 
[13], [26], [27] 

Combination of attributes also results in reduction of coherent and 
non-coherent noise; increasing quality of the final image and removing 
artifacts that might exists in the attribute section [14]. Therefore, 
various studies have been performed in combination of seismic 
attributes for any specific study. Most of these methods use Artificial 
Intelligence (AI), Artificial Neural Network (ANN), fuzzy logic, geo-
statistical approaches, supervised and unsupervised clustering and PCA 
methods. The last method uses a converting function in the vector space 
of data and applies an orthogonal linear transform on them. This 
orthogonal transformation will transfer data to a new coordinate system 
from their previous position. The new coordinate system in PCA is 
designed based on distribution of data in different directions of 
coordinate space. To apply this transformation in PCA, it is required to 
perform some statistical analysis in the beginning, which starts with 
calculating variance of data in different directions. Afterwards, the new 
coordinate system is designed in a way that the first axis coincides with 
the direction of the largest value of calculated variance. Subsequently, 
the second axis coincides with the next largest variance value and it 
continues for other direction of the new coordinate system. Finally, the 
last axis is in the direction of the smallest value of the variance in data. 
Thus, the size of the dataset would be reduced according to the number 
of axes. The percentage of information in axes of new coordinate system, 
gives an idea of weighting for further combination of information 
related to any axis. Rationally, larger weights are allocated to the axis 
containing more information (called major axes or principal 
components) and less informative axes (called minor axes) are removed 
from the combining process through allocation of zero weights to them. 
Now, if one considers each axis as an attribute section, thus the PCA 
method makes new attribute by any arbitrary combination of desired 
attributes, which can be useful for any specific interpretation process. 
These new attributes are made by combination of major axes (principal 
components) that do not show any internal relationship and are linearly 
uncorrelated. In order to define the desired combination of these 
components, Eigen values and Eigenvectors of the covariance matrix of 
data should be calculated to define the number of linearly independent 
attributes.  Subsequently, eigenvalues are descending sorted and the 
highest eigenvalue shows the first main components of the dataset 
(PC1). The first main component represents the vector with highest 
variance in data and contains the highest percentage of information that 
can be used in deriving new attributes. Similarly, the second special 
vector with the second highest Eigenvalue is called the basic second 
component (PC2); it depicts a lower variance and is orthogonal to PC1. 
Likewise, the third principal component (PC3) is orthogonal to the two 
previous components and so on. After defining the principal 
components of the data, it is required to decide which attributes should 
be allocated to each component. In other words, it should be defined 
that which attributes contain the highest information regarding imaging 
the faults in seismic data [28]. Various studies have shown that seismic 
attributes such as dip, azimuth, and coherence were successfully used to 
define the orientation of faults in seismic data [13]. These attributes 
were common in showing higher values in faults position of seismic 
section and exhibit low values in other parts. According to Table 1 that 
shows application of various attributes in detection of faults, chaos, 
variance, most positive curvature, most negative curvature, minimum 
curvature, maximum curvature, the first and second derivatives were 
selected for this study. PCA for structural interpretation of seismic data 
expands reflections into orthogonal components, based on computation 
of eigenvalues and eigenvectors of two-dimensional autocorrelation 
function. The main idea of the proposed strategy for application of PCA 
for seismic data is to consider the seismic section as a surface, which 
could be decomposed to orthogonal components (principal 
components) from its two-dimensional auto correlation function. 
Obviously, each orthogonal component is a surface where stacking these 
surfaces yields the original surface. Moreover, orthogonality here means 
that the correlation coefficient between any two components or surfaces 
is close to zero. Thus, calculation of principal components reduces 
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calculation of eigenvectors and eigenvalues of two-dimensional 
autocorrelation function of the original surface. Subsequently, 
descending sorting of principal components was performed by their 
contribution to the total variance (amplitude) of the studied surface. 
Matrix of eigenvectors and diagonal matrix of eigenvalues are related to 
each other by covariance matrix of multidimensional vector as follows 
[3]: 

 CT  (1) 
where C is the covariance matrix for the multidimensional vector. φ 

is the matrix of eigenvectors that are orthogonal to each other, and Λ is 
the diagonal matrix of eigenvalues. It should be noted that the 
eigenvectors corresponding to principal components are uncorrelated, 
which is the principle of orthogonality. The eigenvector that is 
corresponding to the maximum eigenvalue of the covariance matrix can 
determine the first principal component. Usually, for fault detection 
purposes on seismic data, the first principal component contains most 
of the relevant information of the studied seismic section. The other 
major components are related to local peculiarities of the seismic section 
and their linear combination can explain other properties of fault in 
seismic section. Obviously, random noise in seismic data will exhibit no 
correlation with fault properties in attributes and other latent features 
that results to suppression of noise in the final stacked image of principal 
components.  

3. Application on the field land data 

3.1. Geology of the study area 

To investigate the efficiency of the proposed approach, the method 
was applied on a field seismic data from northeast of Iran. The study 
area is located in the eastern coast of the Caspian Sea, called the Gorgan 
plain (Fig. 1a). The region contains thick layers of sediments of Jurassic 
to Miocene age. The petrology of the sediment sequences in the region 
consists of shale, limestone, marl, sandstone, and partially 
conglomerates and evaporates (Fig. 1b). This sequence locates beneath 
an unconformity of Paleocene conglomerates. The aim of seismic 
investigation here was exploration of structures related to gas reservoirs. 
However, the area contains numerous mud volcanoes that some of them 
are related to gas reservoirs. It should be mentioned that young active 
mud volcanoes in the Gorgan plain are surficial. The old and inactive 
mud volcanoes, however, are in deeper parts, and they are believed to 
harden and dewater the shale unit with conical shape (called finger 
shape) like as mud volcanoes. Upcoming movement of mud also made 
an anticline shape in its upper sediments accompanied with normal 
faulting, which is a common phenomenon in such areas. Regardless of 
the nature of these finger-shape structures, enhancing seismic image of 
faults and boundary of these structures is the aim of applying the 
proposed approach on the dataset. The length of the seismic profile is 
35 km with 465 explosive sources and 96 active receiver channels 
recorded the data. The minimum and maximum offsets were 140 meters 
and 3458 meters, respectively. The group interval was 35 meters and the 
source interval was set to 70 meters. Table 2 represents the profile 
geometry of the seismic acquisition. 

Table 2. Acquisition parameters of the seismic line [30]. 
Source and receiver geometry 
 

Geometry of mid-point and offset 

465 Source number 1952 Number of CMP 

70 m Source interval 24 Fold 

997 Receiver number 17.5 m CMP distance  

35 m Receiver interval 140-3458 Offset 

Recording parameters Frequency parameters 

7 S Record Time 100 -8 Hz Frequency content 

4 ms Sampling interval 20 Hz Dominant frequency 

 
  

 
(a) 

 

 
(b) 

Fig. 1 (a). Location of the study area in SE of the Caspian Sea in the Gorgan 
Plain shown by dashed rectangle. (b) The geological map of the study area and 

the seismic profile shown by black line [29]. 

3.2. Fault detection by proposed PCA approach  

Fig. 2 shows the seismic section of the study area. As it is seen, the 
seismic image shows high quality and high signal to noise ratio in the 
upper part, and represents lower quality with more random noise in 
larger depths. Sedimentary layers in top of the section show thickening 
and dipping to right. An unconformity from older sequence in larger 
depths separates these thick sediments. The unconformity shows 
dipping to right of the section, as well. 

Three mud volcanoes resembling a finger shape are located beneath 
the unconformity and their effect on anticlinal shape of the upper 
sediments is obvious. All these geological objects were shown in seismic 
section of Fig. 2. The boundary of mud volcanoes and faults drawn in 
Fig. 2 are the result of primary interpretation on conventional seismic 
image. It is supposed that by applying the proposed method, more faults 
and accurate position and shape of the mud volcanoes could be imaged. 
Chaos seismic attributes is an interpretation tool that could differentiate 
various seismic pattern in seismic image. Based on the change of 
physical properties of the wave propagation media in subsurface, which 
is the result of change in lithology, seismic signals show different shape. 
This difference in seismic signal form is used to separate various 
lithologies or geological structures based on the seismic pattern. Usually, 
seismic signals in a sequence of sedimentary layers show high similarity 
from trace to trace, while in some geological objects the similarity is too 
low, such as salt dome or mud volcanoes, where no distinct reflector 
appears in that structure. Thus, the seismic pattern in latter examples 
shows a chaos and the former media shows a non-chaotic seismic 
pattern. The chaos attribute measures this similarity and separates 
chaotic pattern from non-chaotic seismic pattern in seismic image. Fig. 
3a shows the result of seismic chaos attribute on seismic image. As it is 
seen in Fig. 3a, areas that were indicated as possible mud volcano bodies 
show chaotic pattern, while other part of seismic image show layered 
and non-chaotic pattern. Faulted area above the mud volcano also show 
chaotic pattern due to complexity of wave propagation in the media and 
low similarity between the seismic signal shapes from trace to trace near 
faults. Thus, although this area with chaotic pattern indicates faulting in 
layer, the resolution of this attribute is not high enough to trace the 
faults based on this attribute only. Two other major attributes that are 
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used for fault imaging are the first and second derivatives of the seismic 
signals. These attributes are the results of advances in conventional 
curvature attributes. These attributes were introduced as amplitude 
curvature (as opposed to the structural curvature), which involves the 
first and second derivatives of only the seismic data [21]. 

 

Fig. 2. The seismic image shows three possible mud volcanoes beneath an 
unconformity with listric normal faults. 
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 (2) 
where S shows the seismic signal, aψ denotes the amplitude curvature 

at an azimuth angle ψ, and emean is the mean amplitude curvature. 
Arbitrary direction of derivation also is shown by y and x. The first 
derivative usually identifies sharp interfaces and discontinuities in 
seismic image. It also indicates the changes in reflectivity and interprets 
as an index for absorption of energy in different layers. The second 
derivative is conventionally used to identify sharp changes in lithologies  
as an estimate for sharpness of seismic events. It can also be used to show 
all reflecting interfaces visible within seismic band-width. Therefore, it 
is supposed that these attributes are used to enhance faults and 
boundary of mud volcanoes in seismic images. Fig 3b and 3c show the 
first and second attributes derivatives of the seismic image, respectively. 
As it is seen on derivative attribute images (Figs. 3b and 3c), faults were 
clearly imaged by the first derivative attributes, while the second 
derivative can better image sharp changes in sedimentary sequences and 
separate body of mud volcanoes from dipping sedimentary layers. The 
variance attribute, which is usually known as the opposite of coherency, 
represents the trace-to-trace variability over a particular sample interval, 
and therefore, produces interpretable lateral changes in seismic image. 
Obviously, similar traces in seismic image produce low variance 
coefficients, while discontinuities remain with high coefficients. Since 
faults may cause discontinuities in the neighboring lithologies, and 
subsequently in the trace-to-trace variability, therefore, they become 
detectable by variance seismic attributes. Fig. 3d shows seismic attribute 
image of variance of the study data. The variance image can clearly 

enhance faults, while it is not able to define accurately the boundary of 
mud volcanoes. The four other attributes were related to curvature of 
the reflector. The curvature attribute can be estimated from a time 
structure map by fitting the local quadratic surface given by [25]: 

     feydxcxybyaxyxt  22,  (3) 
where a, b and c are constant parameters related to dip of the 

structures in x and y direction related to an ellipsoid, while d and e are 
linear dips in x and y direction show a dipping plane. The parameter f is 
also a constant parameter related to a dipping plane that shows an 
estimation of the plane location. These parameters are fined by fitting a 
surface on seismic data. When a, b and c are zero, the structure shows 
only a dipping plane indicating the fault surface. For a curved surface, 
the following curvature attributes called minimum curvature Kmin and 
maximum curvature, Kmax could be extracted by [25]:  
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 (4) 
By combination of these curvature attributes, two other curvatures 

called the most positive curvature, K+, and the most negative curvature, 
K-, are extracted as follow [25]:  

2222 )()(,)()( cbabaKcbabaK    (5) 
Due to the large number of attributes images, these four attribute 

sections were not shown here, however, they were used to calculate the 
covariance matrix and contributed in attribute stacking procedure.  

 
Subsequently, the eight seismic attributes were used to detect faults 

in this image for the PCA procedure. It should be noted that prior to the 
PCA procedure on these eight attributes, it is required to perform a 
normalization step. Table 3 shows the result of PCA of seismic attributes 
with the percentages of variance for each attribute. According to the 
coefficients in Table 3, equations of the principal component were 
provided to present the variance. 

 
According to the coefficients in Table 3, only the first four components 
contain required relevant information for fault image enhancement, 
whose equations are:  

1 0.000115( ) 0.000504( 1) 0.000120( 2)

0.000596( ) 0.707903( max) 0.706309( min)

0.000760( ) 0.000747( )

PC chaos D D

Var k K

k k

  

  

   

 (6a) 

2 0.00045( ) 0.000567( 1) 0.000389( 2)

0.000296( ) 0.706309( max) 0.707903( min)

0.000208( ) 0.000027( )

PC chaos D D

Var k K

k k

  

  

   

 (6b) 

3 0.173627( ) 0.12866( 1) 0.2656( 2)

12816( ) 0.000430( max) 0.000823( min)

0.3859( ) 0.84699( )

PC chaos D D

Var k K

k k

  

  

   

 (6c) 

4 0.12964( ) 0.2428( 1) 0.06075( 2)

0.01927( ) 0.000087( max) 0.000394( min)

0.8626( ) 0.4194( )

PC chaos D D

Var k K

k k

  

  

   

 (6d) 

By stacking the information of components in each image related to 
equations (6a-d), the stacked images of the attributes could be extracted 
which could be used for primary structural interpretation. Fig. 4 shows 
a stacked image of the seismic data obtained from stacking the related 
attributes. As it is seen on the stacked image of Fig. 4, random noise was 
dramatically reduced in the final image. Not only the targets of imaging, 
being faults and mud volcano bodies, but also other geological 
structures such as layer boundaries and unconformity were also 
enhanced due to reduction of noise and stacking coherent signals. 
Primary interpretation of structures on Fig. 4 shows better and more 
accurate location of faults and mud volcano bodies compared to Fig. 2.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3. Illustrations of (a) the chaos, (b) the first derivative, (c) the second derivative and (d) the attributes variance on the seismic image.

3.3. The RGB representation 

The RGB representation is an interpretation tool in image processing 
literature that brings the information of three components in one image 
by false color composition of three images. The RGB colored image is 
an additive color model in which red, green and blue colors are added 
together in various ways to reproduce a broad array of colors. It is called 
false color composite (FCC), since it is a composition procedure of three 
images that are not represented by their true colors and the dedicated 
colors to each picture are false colors. In the procedure of creating the 
RGB image from principal components, the operator allocates each 
color, (red, green and blue) to each component image. Subsequently, the 

RGB image is illustrated by pixel by pixel mathematical stacking of each 
component. The result is a colored image that has a broad band of colors 
regarding the percentage of variance obtained in PCA for each image. 
The color of each pixel also depends on which color is dedicated to 
which components and which three components are added together by 
which sequence. Therefore, based on the target of interpretation, various 
number of RGB illustration can be obtained from several of 
components. To have a section of enhanced imaging of fault, the first 
four principal components images produced by equation 6a-d were 
selected for FCC procedure to produce a final RGB image. These four 
components image are shown in Figs. 5a-d. To create an RGB image with 
four components, 24 different composition states are possible based on 
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which color is allocated to which component. It depends on the 
interpreter’s choice and the analysis that which color composition 

would yield the highest contrast between the target of study in image 
and the rest of the image.

Table 3. Principal components analysis of eight seismic attributes. 
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29.12 -0.00075 -.00076 0.7063 0.7079 0.000596 -0.0001 0.0005 0.00012 PC1 

27.47 0.00003 -0.0002 0.7079 0.7063 0.000296 0.0004 0.0006 0.00005 PC2 

20.80 0.84699 0.3859 -0.0008 0.0004 0.128161 0.2656 -0.1287 0.17363 PC3 

19.06 0.41949 0.8627 -0.0004 -0.0001 0.019273 0.0608 -0.2428 0.12964 PC4 

1.04 -0.01664 0.0772 0.0005 -0.00006 -0.925642 -0.3035 -0.0739 -0.10947 PC5 

1.03 -0.13844 -0.2869 0.0003 -0.00090 -0.243177 -0.7230 -0.5655 -0.02845 PC6 

0.98 -0.09582 0.1348 0.00004 0.00032 0.244115 -0.5608 -0.7712 0.06165 PC7 

0.50 -0.22495 0.0206 0.00009 -0.00025 -0.087535 0.0197 -0.0668 -0.96771 PC8 

 
Fig. 4. illustration of stacking the fault enhancement related attributes according 

to PCA of eight analyzed attributes according to Table 3.   

According to the analysis that was performed on this study, the 
composition of FCC by PC1, PC2 and PC4 for red, green and blue, 
respectively, (easily could be written FCC-124), FCC-134 and FCC-234 
obtained the image with the highest enhancement on fault and 
boundary of mud volcanoes in the image with the highest quality. The 
RGB illustrations are shown in Figs. 6-8. 

Fig. 6 shows the RGB image obtained by FCC-124. As shown in the 
RGB image of Fig. 6, the faults were enhanced in comparison to 
conventional image. The yellow line on Fig. 6 shows the unconformity 
and the black lines show listric normal faults above the unconformity in 
the top of each mud volcano. Red lines also show the boundary of mud 
volcanoes that can be traced accurately in this FCC. A sample of layer 

boundary also were illustrated in this image by blue line that shows the 
ability of this approach in enhancing fault and sedimentary layer 
sequence boundary altogether.  

Fig. 7 shows the RGB image obtained by FCC-134. Based on the 
interpretation analysis of Fig. 7, this FCC is less sensitive to noise and 
can better enhance the fault position and the objects boundary 
compared to Fig. 6. Thus, it is supposed that more faults are imaged and 
the boundary of mud volcanoes might change. By more interpretation 
on Fig. 7, some faults were imaged in the left part of the section and the 
boundary of mud volcanoes in the center of the section was changed, as 
well. This image shows that the mud volcano has a narrower body 
compared to Fig. 6. Interpreter’s analysis determines the correct 
interpretation. However, the final evaluation of the interpretation model 
would be performed by borehole drilling data, which is not available in 
this study.  

Fig. 8 shows the RGB image obtained by FCC-234. This composition 
of colors would yield the image with the most enhanced fault. Thus, it is 
supposed that more faults can be traced in Fig. 8. Black line on Fig. 8 
shows the location of faults, which illustrates more faults on the section. 
However, since this FCC is adopted for fault enhancement, it cannot 
define accurate boundary of mud volcanoes. Therefore, in Fig. 8, the 
mud volcanoes were shown by dashed line, which depicts more 
uncertainty compared to Figs. 6 and 7, i.e. only for mud volcanoes 
boundary, while more faults were better enhanced. Finally, based on the 
interpretation target, the interpreter could make a trade-off between 
different RGB images obtained by various FCC or could build a hybrid 
geological model by integration of different results.  

4. Conclusion 

Enhancing faults and geological structures boundary is a 
controversial task in seismic image interpretation. There are various 
approaches to extract as much as possible relevant information for fault 
and reflector truncation imaging from seismic data. Seismic attributes 
are in extensive use for this task. However, there are also various types 
of data integration approaches to combine information from seismic 
attributes. The approach introduced here was to combine seismic 
attributes by PCA analysis. The PCA analysis used here showed that four 
seismic attributes, considering chaos, the first and second derivatives 
and variance, have the most relevant information for fault and 
geological object boundary enhancement in seismic imaging. 
Afterwards, stacking these images showed that not only random noises 
from data are reduced, but also the quality of seismic image is improved 
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and the faults were enhanced in final stacked seismic image. Primary 
interpretation on attribute-stacked image showed that this image is 
more appropriate for interpretation than the seismic one. Creating the 
matrix of covariance also showed the percentage of information that 
could be extracted from each image. Subsequently, an RGB 
representation of the first four PCA could also enhance more faults and 
geological structures boundary. The RGB illustrations were created by 
various integrations approaches of PCA images by false color 
composition of attributes. Here, we used PCA by deriving the equations 
that show the percentage of contribution of each attribute in a principal 
component image. Three RGB images were created by composing 
attributes by FCC-124, FCC-134 and FCC-234. Interpretation on FCC-
124 showed that it would be an appropriate image for imaging 
unconformity, faults and mud volcano bodies. However, the FCC-134 

could better enhance faults, while it shortens the width of geological 
structures. Afterwards, the FCC-234 revealed that this composition 
could better enhance faults than the other two FCC images. However, 
this composition failed to image the truncation of reflectors with mud 
volcano bodies. Thus, it would be a trade-off for interpreter to select 
which FCC image suits the target of interpretation. Results have shown 
that FCC-234 is appropriate for fault enhancement and FCC-134 can be 
used for imaging the boundary of geological objects. In this step, only 
the interpretation tools and the interpreter’s knowledge can evaluate 
these images. However, the final evaluation of these models can only be 
performed by the data obtained from borehole drilling, which is not 
available in most of seismic studies. Thus, it is necessary to perform an 
uncertainty analysis on models to define the uncertainty of each model 
and define the exact location of drilling targets.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5. Principal component illustration of images obtained by (a) equation (6a), (b) equation (6b), (c) by equation (6c) and (d) by equation (6d). 
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Fig. 6. Color Composite of the seismic image: Red: PC1; Green: PC2; Blue: PC4. 

 
Fig. 7. Color Composite of the seismic image: Red: PC1; Green: PC3; Blue: PC4. 

 
Fig. 8. Color Composite of the seismic image: Red: PC2; Green: PC3; Blue: PC4. 
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