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The critical parameters in investigating the performance of designed support system of tunnels are the structural forcgmeak.values of
axial and shear forces, and moments. In this research, a complete database was firstly prepared using finite ehastéod. Using finite

element models, we modeled the segmental tunnel lining that was composed of 5+1 concrete segments in one ring. Then,ieialargtiral

network (ANN) model of multi -layer perceptron was developed to estimate the lining structurarfes. To do this, the number of neurons
and their arrangement were optimized based ae obtained minimum values from the root mean square error (RMSEJo prove the
efficiency of the developed ANN modelyve calculatedthe coefficient of efficiency (CE)determination coefficient (R), variance account for
(VAF), and RMSE values. The results demonstrated a promising precision and high efficiency of the presented ANN method for estigni
the structural forces of tunnel lining composed of concrete segmeiristead of alternative costly and tedious solutionSinally, the sensitivity

analysis showed that among the input variables, the tunnel cover is the most influencing variable on the lining structurakfoHowever,

other input variables, i.e. lateralagth pressure and key segment position were the second important variables affecting the induced stre
on tunnel lining.

Keywords: Artificial neural network, Lining, Multi -layer perceptron, Segment, Tunnel

However, the numerical solutions are often timeonsuming and need
1 Introduction more detailed data that could be unidentified during analysis. The
output results of numerical attempts should be verified byither

Support system of tunnels that are excavated by shield TBMs (Tunnel experimental or anal)_/tical solution_s or by_ i_ff_ield monitoring results,
Boring Machine) is generally composed of segments with reinforced In last years, innovative methods like Atrtificial Neural Network (ANN)

concrete (RC). Assembling these concrete segments inside the tunnel have been applied as a prediction tool to study_the comple)f problems.
excavation shield forms the tunnel support rings. Cotmaction of RC Such apprqaches ‘have‘ been extendeddaly in geotechnical and
segments is a crucial step in tunnel construction procedufe-4]. Due geomechanical engineering proplen{é; 5; 12, 14; 16; 1.7; 18.; 1.9;. 20; 23;
to the simplicity in installation and the assembling operation of a ring, 27; 28; 31 As te above mentioned defects of the tr‘|ple |nd|_\ndual
one segment has to be designed smaller than the others which is called app_roa(_:hes reveal, ANN meth_ods seem to hew alternatl\_/e_ solutions.

the key segment that isristalled at the end of the ring. Fig 1 shows the Estimation of structural forces in RC segments of tunnel lining structure

assembled ring of RC segments in segment manufacturing factfijy. using ANN has n_ot been S_tUd'ed in detail as of yet. In thimper, ANN .

Design methods of RC segments can be classified in three approaches:mmhw'_"\{as applied to estimate the structural fqrcgs of RC segments in

laboratory or experimental mehods, closed form solutions oanalyiical tunnel lining structure based on the results of finite element method.

methods. and numerical methods Sensitivity analysis of variables was performed to assess their influence
' ' on the output results. Finalf the applicability and efficiency of the

Analytical solutions have been extended from the beginning of . . )
underground openings designing until now1, 6-16]. Some analytical Cajﬁzl%nlze?ngsg model were evaluated using RMSE (%)7,R/AF (%),

solutions are restricted either to only elastibehavior of materials or
only to shallow tunnels. Some others, taking into consideration few
simple assumptions with reduced stiffness of segmental support ring 2. The Concept of artificial neural network

with respect to the continuous ring without longitudinal joints and do

not consider key segment shape and size in comparison with other Artificial neural networks are consisted of many data processing units

segments in the assembled ring. called neurons. By uBg neurons, the network are capable to simulate
Recently, some design and monitoring processes of RC segmental the operation of human brain nature on the basis of trial and error
tunnel lining behaviour were done through laboratorial experiment{$; method [34, 43]. In a common ANN model, there is a huge number of

21; 22; 26; 29; 30; 32The experimental approaches are very iatile interconnections among the neurons. Generally, an ANN model is
methods than analytical and numerical methods, but these methods are mostly conposed of three layers named: input layer, hidden layer(s) and
often expensive and tedious. output layer. Schematic view of a usual ANN is illustrated in Fig. 2.

To overcome the experimental and analytical defects, numerical

solutions have been extended widely in last decadés 2; 3; 7; 9; 13]
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3.Database
3.1Numerical analysis

Application of NN model of multi-layer perceptron for estimation of
structural forces of RC segments in tunnel lining, requires to supply a
comprehensive database. To do this, we used the resulted values from
finite element (FE) aralysis (ABAQUS 2014, Version 6.14baqus Inc.,
Pawtucket, Providence, R.1.). In the designed numerical model of tunnel
lining, the support structure in one ring consisted of 5+1 segments. The
engineering and geometrical characteristics of RC segments are
summarized in Table 1. From size pointf wiew, in one ring, five RC
segments (A2A6) were almost similar to each other. To decrease the

FibAssemb| e_l_i hrr Ia nng mfe rt or n;4 R? OS‘. eegcTe n thi nle Tota? T fdbh M8 "of fn&rﬁef’ic%lr h]gci%llil’lfg,a &dil °cienents are
P ! ' neglected in the FE model. Therefore, the beaspring method was
Hidden layer(s) is the important layer of one neural network model ~@pplied to model the structue of tunnel lining[1, 2]. In this method the
because the main calculation phase is performed in it. Neurons in each €ffects of soil body on the exterior side of tunnel lining and interaction
layer are linked to the neurons of nearby layer with a coefficient named Petween them were simulated using tangential and radial springs.
weight (w). Outputs of input layer is as inptisignal for the hidden ~ Because of their negligible effects with respect to radial springs,
layer(s) and the similar rule is governed between hidden layer(s) and fangential springs were neglected. Stiffness of soil radial springs is
output layer, respectively. Optimized number of neurons and hidden calculated using the following=q. (1) [49]:
layers are calculated based on the trial and error rule and the goal error
value[34]. K - _AE
R.(1+/7) (1)
@-\ Where, K is stiffness of radial spring£is Young modulus of soilg is
" v.@ poi sonés Rtunnel radids, andd is Effective area on the
exterior side of lining structure that is subjected to applied load because
@ 5 Y of the soil, and calculated b¥£q. (2):

w3 va A: Rq.b (2)
Where, [ is the angle in terms of radial between 2 successive radial
Input Hidden Output springs, and b is effective area of each spring in tunnel longitudinal
Units Units Units direction. Figs. 4(a)b) show the perspective and noiperspective views

of an assembled ring under soil radial springs. $tructural modelling,

load from surrounding ground was applied radially towards tunnel

lining, Fig. 5. Normal radial stresses applied on tunnel lining structure
FigAn il lustratiéinp of a usual arét’:‘hN:ulatedbyEq.(IS):

ANN is trained at first and consequentlytested and verified by other
different data. In training process, inputs are entered and outputs values
are determined. Then the error between the real and predicted values is
calculated. Base on calculated error value, the weights are adjusted byWhere, Ano is the normal stressAw is the vertical stressfno is the
starting from the last output layer towards the first input layer; this  horizontal stress, andl is radial angle measured from tunnel bottorfi] .
procedure is known as back propagation algorithm. Back propagation
algorithms are potent implements for models with prediction aimd.0].
Perceptron Neural network model was proposed by Rosenbla#4] .
Multi -layer perceptron NN, on the other hand, was improved and
proposed by Rumelhar{25] . In this model, the input layer normalizes
the input values. This type of data preparation and normalization
improves the néwork performances, because of more homogeneous
scattering of normalized data, as illustrated in Fig 3. This method of data
normalization has been utilized by many researchfkl; 15; 28] Multi-
layer perceptron (MLP) is an adjustment of the linear standard
perceptron which can seprate data without capability of linearly
separation[8] .
'z 'z
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(a) Neomspective view

It = Training Data 0 =Training Dnm'rliuml

Fig. 3Homogeneous distribution of data after normalization procegs$1].
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3.3 Data normalization

To increase the processing and convergence rate of ANN during
training process and to minimize the prediction error, raw data obtained

from numerical models must be normalize9] .

Before commencing the modelling, all data must be filtered and the
outliers should be deleted. Normalization of data proportionate all the

variables with respect to each other. Traditionally, to normalize the data,
the aforementioned approach means to fit the data within unity (1),

herein all data values will be in the range of zero to unity. Unity-based
normalization relation follows theEq. 4 [50]:

u-u,, )

l'INorm =
Unax = Umin

Where, u is any raw data, uNorm is the normalized data, umin is the
minimum value of data and umax is the maximum value of data.

4. Design of optimum and model

The data obtained from FE models were applied to make the multi-layer
perceptron model for prediction aim. In this study, all data were divided
in 3 parts: training data (70% of total data), testing data (20% of total
data) and validation data (10% of total data).

Optimized structure of NN model, i.e. arrangement of neurons in
hidden layers and the number of hidden layers, should be calculated on
the basis of trial and error rule.

At first, optimized number of neurons was calculated based on the
obtained values of root mean square error (RMSE). To do this, different
variety of neurons were embedded in hidden layers of the model and
RMSE value was calculated according . 5

®)

Where, U’k and Uk are the kth predicted and observed values of target,
respectively, and N is the number of observations for which the error
has been computed.
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The results are illustrated inFig. 9 It can be concluded that the
minimum value of RMSE was obtained by 6 number of neurons.
Thereafter, these neurons must be arranged in one or two hidden layers.
Flood et al.[47] stated that MLP model with two minimum hidden
layers provides more flexibility for modelling complex problems.

Table 2.Raw data resulted from the finite element method

nput variables Output parameters
= =
- € 3 5 - i i
dr 2 s Fl sl 28 E
I

1 04 5 0 2788 - 18060 - 43660 35000
2 (V23 5 30 2836 3203 14290 20600 435680 35240
3 074 5 60 2996 345 20850 1740 43060 35200
i é T?{‘jl i esn [ Nz.mﬁ ) 3@7% i 19299. 19820 44820 35030
5 [0/Z 12 2875 3@5 18890 21050 44010 35080
! Gn 8?4{1 a5 s SI% m DZ'ILBA? d 29}57| nlgEZO 15850 43040 34870
7 074 5 m 3031 3@0 80890 23370 44020 35@20
8 1 5 0 6869 3801 4408 2490 67840 46620
9 1 5 30 7086 6879 4688 54200 67820 47040
10 1 5 60 6886 589 380 35670 65510 45690
11 1 5 90 748 6463 46990 50810 67060 45870
12 1 5 12 6820 685 35030 49810 66930 45570
13 1 5 (03 6833 6682 4270 52650 67070 47Q20
14 1 5 m 6603 6@3 46060 28640 67050 46Q@50
15 04 15 0 1944 6286 86310 16880 13790 85040
16 04 15 30 1382 1431 86@40 10800 14430 89230
17 04 15 60 1628 16a0 10200 10000 149400 87070
18 074 15 90 1303 1688 10090 8GH70 1BMBO 8970
19 074 15 12 1498 10w1 10850 91630 18830 86960
20 074 15 (03 10837 @14 10P60 69490 18820 91030
21 (0723 15 m 1633 1879 10810 86Q40 18860 87670
22 1 15 0 a7 1836 44880 10870 16910 19170
23 1 15 30 7065 6906 4602 50460 16810 15080
24 1 15 60 6®4 6638 3ZBO0 38070 16890 15110
25 1 15 90 6893 6851 405610 53000 16840 18050
26 1 15 12 6965 7077 42030 55300 16880 186060
27 1 15 03 6769 7@9 43260 54810 16870 18090
28 1 15 m 7047 7011 50310 283920 16830 18080
29 04 25 0 1910 6®B0 10370 14880 170640 9TEOO
30 o4 25 30 062 180 720830 1210 10840 75850
31 04 25 60 1a60 1368 93710 9DB0 12860 79300
32 o4 25 90 1680 1355 12710 81440 18970 10910
33 o4 25 12 1407 1880 7%@00 1340 12000 74880
34 o4 25 03 1805 1243 13000 8%HWEO0 17840 10420
35 o4 25 m 1009 1099 12830 99890 10640 988BO
36 1 25 0 7009 1822 449010 10930 28010 23230
37 1 25 30 6909 7000 45830 53860 24W00 23®K0
38 1 25 60 6869 6918 31620 40Q20 24800 230
39 1 25 90 6838  7@86 42 55870 2480 28®RO0
40 1 25 12 6818 7468 4680 58480 24E80 28070
41 1 25 03] 67183 7886 4009 57990 24850 23@B0
42 1 25 o3} 75 7815 58040 28810 24020 230

0 0 7@06 0 14020 00 00

Then, different arrangement oB 6 neurons wgre considered in two
hidden layers. Based on two activation functions, i.e. TANSIG and
LOGSIG (tangential and logarithmic nonlinear sigmoid transform
functions generally used in ANN), the resulted RMSE values are
presented inTable 3
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Where, var represents the variance, and are the kth measured and
predicted values respectively, is the mean of predicted values, and N is
the number of data sets. The VAF index express the intensity of
variances discrepancy between the measured and predicted datasets.
The values of VAF close to 100 % mean low inconsistencies, and
therefore, better prediction capabilities. The lower RMSE, the better
net wor ké&s 5k 52] lo anndeail acordition, the RMSE value
must be zero and the CE value must be 1.0. The graphs of R2 for output
parameters are shown irFigs. 11(a)-(ffable 4 presents the obtained
values of performance indices.

|l ayer(s) based on

mini mum value

Maximum Moment (kKN.im)

It can be concluded that model has the best efficiency in 3-4-2-1 for 180 1 o
neurons arrangement based on the minimum RMSE value. Finally, 160 - o L168x - 1207
schematic architecture of optimized network is shown iRig. 10 140 - "o y= L bex - 12
120 - R?=10.962
: B 100 -
Tabl éOp3.i mum arrangement of neuronga80 i
£ 1
RMSE RMSE & ;
N Net wor k . . gg 1 — ® Seriesl
o T T g ; :
PP AEECD (Transfer (Transfer 2 ] e Linear (Series1)
TANSI G) LOGSI G) 0
1 3-6-1 0.04 0.10 0 50 100 150
2 3-1-5- 0.51 0.11 Output
3 3-2-4- 0.07 0.08 (@)maxMOut put
4 3-3-3- 0.02 0.04 Minimum Moment (kN.m)
- - - 0 ;= 364
5 3-4-2 0.01 0.01 = 150 100 50 200 }70'13?5439‘;55098
6 3-5-1- 0.05 0.03 A '
-60
O
Input layer Hidden layer I Hidden layer IT Output Layer ~ -80
3 neurons 4 neurons 2 neurons 1 neuron é‘b -100+ e Seriesl
= -120 | - Linear (Seriesl)
K * -140
Extreme Structural force 9.
: 160
H . -180
8 -200
Output
(b)miMutput
Fig. ArOchitecture of Optimized Ml Maximum Shear Force (kN)
1400000 -
. . %o
5.Results anddiscussion 1200000 - ¥=09091x - 14417
o R2=0.9247
. 1000000 -
5.1Model performance evaluation
5 800000 - ) o
Performance of artificial neural network should be assessed in & 600000 | o Seriesl
predicting the capability of outputs. Therefore, four performance . Linear (Seriesl)
indices including determination coefficient (R2), variance account for 400000 |
(VAF), coefficient of efficiency (CE) and root mean square error
(RMSE) were selected and calculated using testing data sets. These data 200000 1o
sets were selected randomly from the database and were not included in 0 ° i i .
training phase. VAF and CE values were calculated frams. (6)5(7): 0 500000 1000000 1500000
Output

VAF =100° -
¢

Va‘(”k - Gk)a
“vafy) 8

@)

(chaxOutput
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Z 1000000 .
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600000 - R Linear (Series1)
400000 o
200000
0
0 1000000 2000000
Output
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2500000
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= 1500000
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0 T
0 2000000
Output
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Fig.Cdrlr.el ation coefficient of
Tabl eee4.f ormance indices of t
Beromm Output parameters
ance
Index M(Mome M(Mome z(Shea z(Shea F(Axia F(Axia
nt) max Nt) min ) max 1) min 1) max 1) min
RMSE
%) 7 8 12 11 9 5
R? 0.962 0.95 0.92 0.95 0.84 0.98
VAR 94.21 9436 9154 893 889 984
(%)
CE 0.91 0.94 0.89 0.89 0.81 0.98

5.2.Sensitivity analysis

To determine the effect of each input parameter on output values,
sensitivity analysis was performed. A useful method is cosine amplitude
method (CAM) [53]. Data components form a data vector, X, are

defined as:

X ={x1,x2,x3,...xn}
Every component xi in the data vector X, is a vector with m dimension,

ie.,

Xj :{XileiZ’Xi31"'xim}
Hence, all data can be assumed as a point in m-dimensional space,
where each point has m coordinates for a full description. Each element
of a relation, rij, results from a mutual comparison of two data pairs, i.e.
xi and xj. The strength of the relationship between vector xi and vector
xj is defined byEq. (6).

an
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(6)

def i

.
a XXk
- k=1
am @m0
: 2 OB 2
A A g
Ck=1 Ck=1 +
Where, rij is strength of relations between input and output parameters,
d i j =1, 2, 4§, n. Egq.

(6)

the cosine function. When two vectors are collinear (most similar), dot
product will be unity; when orientation of 2 vectors have 90of angle

with respect to each other (most dissimilar), dot product will be zero.
Figs. 12(a)-(f)show the strength values of relations (rij) between input
(H, K, [') and output parameters.
As can be seen from th&igs. 11(a)-(f)the overburden of buried tunnel

or Height (H) input variable is the most efficient parameter on the

resulted outputs than the other parameters two, and K value (lateral
earth pressure) has the least influence on outputs except for Mmin and
Fmin outputs.

ou
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= 6.Conclusion
-
1.20 .
The peak values of structural forces were determined for the structure
.00 - 0.96 0.87 of segmental tunnel lining ring using the ANN method. Neural network
0.71 model of multi-layer perceptron was applied. At first, based on the
0.80 minimum obtained values of RMSE from the input data variables, the
number of neurons and their arrangement in hidden layers were
0.60 - determined and optimized. It was concluded that in 3-4-2-1 arrangement
0.40 of neurons in the network, the resulted value of RMSE was 0.01 both for
’ LOGSIG and TANSIG transfer functions. Then the NN model was
020 tested and validated using different data. The efficiency of presented NN
model was evaluated using the RMSE, R2, VAF and CE indices. The
- obtained results presented the high capability of the NN model in
K H 0 prediction and estimation of structural forces in segmental lining of
Input variables tunnel, and this prediction method can be employed to gain reliable
(CchaxOut put results for primary design of segmental tunnel lining instead of current
tedious and expensive methods.
P Finally, the sensitivity analyses were conducted to evaluate the effect of
0.92 each input variable on the output parameters. It was found that the
0.90 0.89 tunnel height or overburden parameter (H), among other input
088 0.85 variables, had the highest influence on outputs, and the K parameter
’ (lateral earth pressure) had the least effect on outputs. The reason is that
0.86 0.80 the tunnel height is the main source of induced stresses on tunnel lining.
0.84 - On the other hand, other input variables, i.e. the lateral earth pressure
0.82 and key segment position had the second order of importance on
0.80 induced stresses than the tunnel height value.
0.78
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0.74 T
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