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A B S T R A C T 

 

In an Open-Pit Production Scheduling (OPPS) problem, the goal is to determine the mining sequence of an orebody as a block model. In this 
paper, linear programing formulation is used to aim this goal. OPPS problem is known as an NP-hard problem, so an exact mathematical 
model cannot be applied to solve in the real state. Genetic Algorithm (GA) is a well-known member of evolutionary algorithms that widely 
are utilized to solve NP-hard problems. Herein, GA is implemented in a hypothetical Two-Dimensional (2D) copper orebody model. The 
orebody is featured as two-dimensional (2D) array of blocks. Likewise, counterpart 2D GA array was used to represent the solution space of 
an OPPS problem. Thereupon, the fitness function is defined according to the OPPS problem objective function to assess the solution domain. 
Also, new normalization method was used to handle the block sequencing constraint. A numerical study is performed to compare the solutions 
of the exact and GA-based methods. It is shown that the gap between GA and the optimal solution by the exact method is less than % 5; 
hereupon GA is found to be efficient in solving OPPS problem. 
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1. Introduction 

Open pit mine projects typically run for several decades and 
optimization of a strategic plans is a crucial element for successful 
planning of projects. A commonly used criterion for comparison of 
different strategic plans for extraction of valuable material from the 
ground is the net present value (NPV). The NPV optimization of 
strategic plans for open pit mines has a long history and has been 
approached from a number of different viewpoints. 

Production scheduling in open-pit is a complex mine planning 
problem. Several authors by inspiration of operation research problems 
such as knapsack have developed linear and integer programming 
model for solving this problem. The Precedence-Constrained Knapsack 
Problem (PCKP) is an extension of the classic knapsack problem. PCKP 
Extension is carried out where the knapsack can be filled in multiple 
periods, known in mining engineering as the OPPS problem. In mining 
application, items are blocks in open-pit that should be scheduled for 
extraction in time. The knapsack constraint represents production 
capacity constraints such as mining and processing capacity, and 
precedence restrictions represent operational block access 
considerations (blocks can be extracted only if all blocks above and 
within a prescribed cone have been extracted before in time); 
individually, it can be shown that these constraints do not pose 
computational challenges. In combination, however, they produce an 
NP-hard problem. 

In engineering applications, most of combinatorial problems are NP-
hard. Normally the optimal solution of such problems cannot be 
obtained within an acceptable computation time. Therefore, 
approximation methods have to be utilized in order to practically 
answer the large instances of the problem. Sometimes the 
approximation methods are colloquially called heuristics.  They 
normally act by building new solutions or improving the available  

solutions by using a set of problem-specific knowledge [2].  
Metaheuristic optimization methods are a higher class of heuristic 

searching algorithms that are widely used for solving many of NP-hard 
combinatorial optimization problems. Several books and survey papers 
have been published on the subject. A hung part of the literature on 
metaheuristics is experimental in nature, describing empirical results 
based on computer experiments with the algorithms. There are a wide 
variety of metaheuristics that can be classified in the search strategy type 
including the local and global searches. Another classification 
dimension is single solution vs. population-based searches. Notable 
examples of metaheuristics include Genetic Algorithm (GA), Particle 
Swarm Optimization (PSO), Ant Colony (AC), Artificial Bee Colony 
(ABC), Simulated Annealing (SA), Tabu Search (TS), Variable 
Neighborhood Search (VNS) [3]. GA is a well-known global search 
metaheuristic method that uses population-based characteristics to 
improve the multiple candidate solutions. 

 Some of the metaheuristics are used in open-pit mining production 
scheduling problem. First time Denby and Schofield is used GA in 
optimization of open pit mine production scheduling [4]. Kumral and 
Dowd proposed SA-based algorithm to solve this problem [5]. 
Application of ACO has been proposed by Sattarvand for long-term 
open-pit production planning [6]. Lamghari and Dimitrakopoulos used 
tabu search and variable neighborhood descent algorithm [7] and also 
PSO has been utilized by Khan Niemann-Delius [8]. Recently, 
imperialist competitive algorithm (ICA) is proposed by Mokhtarianm 
and Sattarvand for long-term production scheduling of open pit mines 
[9]. 

The real-life instances of the OPPS problem by using liner 
programing are intractable for exact solver such as CPLEX; indeed, the 
industry-scale instances of the problem cannot be solved by standard 
solvers in a reasonable time. In this paper, an efficient genetic algorithm 
is used to represent an adaptive solution domain and to solve this 
problem. Penalty and normalization methods is used for the handling 
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the capacity and sequencing constraints, respectively. Numerical study 
is performed to compare the solutions of exact mathematical method 
and GA-based method in a hypothetical open pit mine that is typically 
represented by 2-D blocks. 

2. Genetic algorithm 

In artificial intelligence field, a genetic algorithm (GA) is a heuristic 
search that mimics the process of natural evolution. This heuristic (also 
sometimes called a metaheuristic) is routinely used to generate useful 
solutions to optimize and search the problems [1]. Genetic algorithms 
belong to the larger class of evolutionary algorithms (EA), which 
generate solutions to optimization problems using techniques inspired 
by natural evolution, such as inheritance, mutation, selection, and 
crossover. In a genetic algorithm, a population of candidate solutions 
(called individuals, creatures, or phenotypes) to an optimization 
problem is evolved toward better solutions. Each candidate solution has 
a set of properties (its chromosomes or genotype) which can be mutated 
and altered; traditionally, solutions are represented in binary as strings 
of zeros and ones, but other encodings are also possible.  

The evolution usually starts from a population of randomly generated 
individuals and is an iterative process, with the population in each 
iteration called a generation. In each generation, the fitness of every 
individual in the population is evaluated; the fitness is usually the value 
of the objective function in the optimization problem being solved. The 
more fit individuals are stochastically selected from the current 
population, and each individual's genome is modified (recombined and 
possibly randomly mutated) to form a new generation. The new 
generation of candidate solutions is then used in the next iteration of 
the algorithm. Commonly, the algorithm terminates when either a 
maximum number of generations has been produced, or a satisfactory 
fitness level has been reached for the population. A typical genetic 
algorithm requires: 

 A genetic representation of the solution domain, 
 A fitness function to evaluate the solution domain. 

A standard representation of each candidate solution is as an array of 
bits. Arrays of other types and structures can be used in essentially the 
same way. The genetic representation and the fitness function are 
defined, a GA proceeds to initialize a population of solutions and then 
to improve it through repetitive application of the mutation, crossover, 
inversion and selection operators [10]. More detail about GA is 
presented in the following sections. 

2.1. Initialization 

Initially, many individual solutions are (usually) randomly generated 
to form an initial population. The population size depends on the nature 
of the problem, but typically contains several hundreds or thousands of 
possible solutions. Traditionally, the population is generated randomly, 
allowing the entire range of possible solutions (the search space). 
Occasionally, the solutions may be "seeded" in areas where optimal 
solutions are likely to be found. 

2.2. Selection 

During each successive generation, a proportion of the existing 
population is selected to breed a new generation. Individual solutions 
are selected through a fitness-based process, where fitter solutions (as 
measured by a fitness function) are typically more likely to be selected. 
Certain selection methods rate the fitness of each solution and 
preferentially select best solutions. Other methods rate only a random 
sample of the population, as the former the process may be very time-
consuming. The fitness function is defined over the genetic 
representation and measures the quality of the represented solution. 

2.3. Genetic operators 

The next step is to generate a second generation population of 
solutions from those selected through genetic operators: crossover (also 

called recombination), and/or mutation. For each new solution to be 
produced, a pair of "parent" solutions is selected for breeding from the 
pool that was selected previously. By producing a "child (also called 
offspring)" solution using the above methods of crossover and mutation, 
a new solution is created which typically shares many of its "parents" 
characteristics. These processes ultimately result in the next generation 
population of chromosomes that is different from the initial generation. 
Generally, the average fitness will increase by this procedure for the 
population. Although crossover and mutation are known as the main 
genetic operators, it is possible to use other operators such as 
regrouping, colonization-extinction, or migration in genetic algorithms 
[10]. 

2.4. Termination 

This generational process is repeated until a termination condition 
has been reached. Common terminating conditions are [10]: 

• A solution is found that satisfies minimum criteria 

• Fixed number of generations reached 

• Allocated budget (computation time/money) reached 

• The highest ranking solution's fitness is reaching  

• successive iterations no longer produce better results 

• Manual inspection 

3. Computational study for mine production scheduling 

Mine production scheduling concentrates on determining a block 
extraction sequence in such a way that maximize NPV of the venture 
under access and capacity constraints. Deterministic mine production 
scheduling problem can be formulated using the following notation 
[11]: 

Suppose, T  is the number of periods, N  is the number of blocks, 
ijV

is present value of block j  in period i , 
jd  is the ore  mass in block j , 

A,A  are the processing capacity, jv is the waste mass in block j and 

C,C  are the mining capacity. Where ijx  is a binary variable and 

1ijx   means that block j is extracted in period i . 

T N

ij ij

i 1 j 1

max V x   (1) 

Access constraint: In order to access a block to be extracted, overlying 
blocks should be extracted earlier or in the same period of the block 
under consideration. For example, in Figure 1 in order to extract the 
yellow blocks all the blue blocks should be extracted earlier or in the 
same period of the yellow blocks. The number of overlying blocks, 
which have to be extracted earlier, depends on upon slope angles 
ensuring the safety of walls. This constraint can be formulated by the 
following inequality, 

1 1

T T

ki ji
i i

x x
 

    (2) 

  j  Blocks overlying block k . 

Mining capacity: Depending on the selected equipment, financial 
power of the company, the stripping ratio, ore body characteristics and 
demand, a mining capacity is chosen. 

1

( ) , 1, ...,
N

j j ij
j

C d v x C i T


        (3) 

Processing capacity: In the mining operation, both ore and waste 
material are extracted because of the access constraint. While the waste 
material is sent to the dumps, the ore is sent to the processing plant. The 
amount of ore material should satisfy processing capacity.                                                               

   
1

, 1, ...,
N

j ij
j

A d x A i T


                                                                           (4) 

Block conservation constraint: This constraint ensures that a block can 
only be extracted once.  
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i 1

x 1, j 1,..., N                                                                                       (5) 

In this study, open pit mine is typically represented by 2-D blocks. 
Figure 2 illustrated the economical block model of hypothetical copper 

as a scenario. Mining operation was considered to run for 4 years, and 
the maximum/minimum mining capacity was assumed to be 25/18 
blocks a year and also maximum/minimum processing capacities was 
considered to be 15/9 ore blocks a year, respectively, and the discount 
rate was presumed to be 4%. 

 
Figure1. The access constraint implies that the blue block should be extracted earlier or in the same period of the yellow block. 

 
Figure2. Economical block model of the hypothetical copper mine as a scenario. 

4. A genetic solution representation for open-pit 
production scheduling 

4.1. Regularization 

The action of crossover and mutation operators normally deform the 
shape of the pits in generated mine schedules. This leads the resulting 
pits to violate access constraint and a regularization process is needed 
after each action. This method is known as normalization in research 
papers. First time Denby and co-authors [4] proposed their own 
normalization method, to ensure that the sequencing (access) 
constraints are satisfied. Thereafter, various normalization methods 
were applied to satisfy sequencing (access) constraint [5-6, 9]. 
Researchers have used exclusive styles with very few details given. 

4.2. Implementation and evaluation 

A genetic algorithm is used to solve the OPPS problem. Flowchart of 
the proposed procedure is demonstrated in figure 3. In the first step of 
algorithm, 20 random initial population is presented.  Indeed a genetic 
representation of the solution domain consists of 200 blocks is 
generated, therefore, each population is a 10 20 matrix 10 20P 

 such 

that ijP t  means that ijblock  should be extracted in period t. An 

example of the initial random population used in the proposed GA is 
shown in figure 4, obviously, the initial populations do not satisfy the 
constraints. So each of them are normalized. In the normalization 
method, first we set ijP 0  if the ijblock  cannot be extracted because of 

the access constraint (slope angle and block precedency, for example in 
Figure 1 the black blocks cannot be extracted in any way); If ijP 0  then, 

if i 1j 1P 0    then i 1j 1P 1    also the same is done for 1i jP  , and i 1j 1P . In 

the next step of normalization method, ij i 1j 1 i 1j i 1j 1P max(P ,P ,P ) . 

After this, we consider another constraint about the sum of the 
weights of blocks that can be extracted in each period. First, consider the 
blocks related to the first period ( ijP 1 ), if they satisfy the constraints 

then nothing is done. Else, if the weights sum of the blocks in the first 
round is greater than the maximum mining capacity, then some of them 
are switched to 2, ijP 2 , else if the the weights sum of blocks is less 

than the minimum mining capacity, then some of the other blocks are 
switched to 1 such that the above constraints remain satisfied. The same 
is done for other periods. 

For the processing capacity constraint, a penalty method is 
considered. The value of the penalty of each period is calculated. 
Obviously, a feasible solution is the one with penalty equals to zero.  

Next, crossover and mutation are done in 2000 iterations. In each 
iteration, one crossover and one mutation are done. In the crossover, 
two parents are chosen randomly from the population and crossed to 
generate two offspring. Then, these two offspring are normalized 
according to the normalization method. If these offspring were better 
than their parents, then they are substituted with the parents. Therefore, 
the population changes, but the number of population remains 20. In 
each mutation, a random population and some ijP  of that population 

are chosen randomly. Then, their values are changed with a random 
number between 0 and 4. Then this new offspring is normalized, if the 
new offspring is better than the initial one, it is substituted with the 
parent. 

Note that an offspring is better than a parent if the value of the goal 
function of offspring is better than the parent and its penalty is less than 
the parent. After the iterations, the best solution is chosen among the 
populations. Other new iterations are done on this solution. In each of 
the new iterations, a random ijP  is chosen and if it is possible its value 
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is changed to zero. In this approach, the penalty is reduced to zero. Then, 
the modified solution is reported. More details about proposed GA is 

presented in Table 1. 

Figure 3. The flowchart of GA for open-pit mine production scheduling. 

Figure 4. An example of initial random population used in the modified GA. 
Table 1:  Details of proposed GA for OPPS problem. 
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Table 1 :  Details of proposed GA for OPPS problem. 

Parameter Description 

Preparation method of Initial solution  
Proposed method has used random initial solution according to a 

uniform distribution between [0, 4] scheduling period. 

Selection method of generation 
Elitism mechanism is used, new generation/solution is selected through 

a fitness-based process. 

Population size 20 

Multiple -point  crossover rate 0.1   

Mutation rate 0.05 

Terminating criteria Successive iterations no longer produce better results. 

Optimum  iteration 2000 

Computational time 60 seconds 

The results of production scheduling of numerical example solutions 
used by GA and CPLEX solver are illustrated in table 2. NPV’s of CPLEX 
and GA solver were obtained 41565 and 39489 $, respectively in this 
research. The gap between the most solutions of GA and the exact solver 

is less than % 5. The number of calculated blocks for each period is listed 
in table 1. Mine block scheduling and sequencing by exact CPLEX solver 
and GA is demonstrated in Figure 5 and 6. 

Table 2: Results of production scheduling solutions used by GA and CPLEX solver. 

Calculated Item Modified GA CPLEX solver 

NPV ($) 39489 41565 

Number of blocks in ultimate pit limit 93 89 

Number of blocks in the first period 25 25 

Number of blocks in the second period 24 25 

Number of blocks in the third period 21 19 

Number of blocks in the fourth period 23 20 

Figure 5. Production scheduling solutions using by CPLEX solver. 

Figure 6. Production scheduling solutions using by GA. 

5. Conclusion 

The real-life instances of the OPPS problem are intractable for exact 
solvers such as CPLEX. In this paper, an efficient GA approach was 
presented for an OPPS problem. 

GA coding is used to represent an adaptive solution domain to solve 
this problem. Also, a new normalization method was used for handling 
the block sequencing constraint. The good efficiency of the new coding 
method and the applied normalization mechanism demonstrated it to 
be a satisfaction for sequencing constraint. 

To test the computational efficiency of the proposed GA, a 
hypothetical case study was run by the proposed heuristic and CPLEX 
exact solver. Numerical validation showed that the GA can obtain 
promising results. 

The CPU time for this efficient GA to derive optimal solutions was 
relatively short given to the complexity of the OPPS problem. In other 
words, the capability of GA in obtaining near-optimal scheduling 
solution with a relatively small gap (less than % 5) is evident. Therefore, 
the proposed framework would be more practically useful for solving 
OPPS problem in large scale mines. 
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