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A B S T R A C T 

 

Tires are of critical spare parts in mines. There is a shortage of medium and large tires. In addition, since the mining activities and opening 
new mines has increased, the demand for tires has increased significantly as well. Thus, it is very important for mining engineers to identify 
the tire characteristics and properly manage the spare part inventory. Spare parts management is critical from an operational perspective, 
especially in intensive industries assets, such as mining, as well as in organizations that own and operate costly assets. A knowledge of the 
tires’ behavior (historical data) must be taken into account along with the operating environment conditions (covariates). This study uses 
Cox multiple regression model to incorporate machine operating environment information into systems reliability analysis for estimation of 
spare parts. It considers a proportional hazard model and a stratified Cox regression model for time independent and dependent covariates. 
Based on the results, the study develops a mathematical model for spare parts estimation at the component level for non-repairable parts 
(tires). It validates the outcomes using a case study of loader tires in the Sungun mine in Iran. There is a significant difference in the results 
of spare parts forecasting and inventory management when considering and dismissing the covariates. 
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1. Introduction  

However, it is not possible to design a system without failures. Poor 
reliability and maintainability characteristics, combined with poor 
maintenance and inadequate product support strategy, often lead to 
unscheduled operation suspensions. For most of highly mechanized 
companies, maintenance costs account for a significant part of the 
operating budget (reaching 15–70% of production costs), but logistics 
and spare parts provisioning (SPP) are often considered less essential in 
strategic thinking. Maintenance of the type of machinery that was 
described above is expensive not only because of high repair costs, but 
also more importantly because of the cost of lost products [1–3]. SPP 
strategy is dependent upon component characteristics such as reliability 
and the environment in which the system/product is used [1, 4, 5]. 
Reliability-Based Spare Parts Provision (RSPP), a derivation of SPP, is 
an effective way to incorporate reliability and operating conditions into 
the design process.  

In 2003, Kumar proposed a service delivery strategy for industrial 
products with a special reference to mining systems. He studied some of 

the factors influencing the service delivery strategy and suggested 
several approaches to reduce these gaps, thereby satisfying customers 
and meeting operational demands [2]. A year later, Kumar studied 
spares and service management from maintenance, repair and 
operations points of view [6]. Markeset and Kumar addressed 
approaches to the development of product support strategy to enhance 
the performance of industrial products. They argued that the product 
support could be considered as a source of income for the manufacturer 
in the conventional product paradigm, and as a cost and an obligation 
in the delivery of performance paradigm [7]. For their part, Chen et al. 
proposed a multi-echelon spare parts model involving suppliers, 
distribution centers and equipment users. The model considers both the 
age-based preventive replacement policy and priority demand classes 
[8]. Finally, Ghodrati produced comprehensive studies in the spare 
parts area, including the differences between the Weibull model and 
exponential model in SPP, the risk of ignoring covariates in spare parts 
planning, and SPP for the following: brake systems, the lifting cylinder 
(jack) of loaders, the hydraulic seal of jacks, brake pads (brake lining 
kit) of a mining loader and an electricity meter in the power distribution 
system in Jajarm of Iran [1, 3, 4, 9–13]. 

None of the surveyed literature on spare parts provisioning deals with 
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tires on loaders in the mining industry. The loader tire database used in 
this study was created over 11 years at Sungun copper mine in Iran. Data 
gathering is more complicated when it has to be combined with a 
database of operating environment factors, but spare parts consumption 
can only reliably be predicted if the covariates of the system, such as the 
operating environment, are considered along with its reliability 
characteristics. The absence of coherent algorithm for spare part 
provision based on the reliability and operating environment 
complicated the issue as well.  

In this paper, the RSPP was used for spare parts estimation. The first 
step is to identify the reliability performance and the failure rate of the 
tires based on the operating environment. The next step is to derive the 
reliability function and consider the time-independent and time-
dependent covariates using the proportional hazard model (PHM) and 
the stratification approach. Then, based on the reliability performance 
of the component, the required number of spare parts can be estimated. 
In this case, the SPP considering tire performance and any influencing 
factors on the reliability performance (i.e., covariates) was successfully 
done. Discounting covariates such as the operating environment may 
lead to erroneous results in reliability performance analysis, and 
consequently in SPP. Therefore, the main objectives of the paper are to 
define the coherent algorithms for RSPP, conduct a comprehensive 
study of the reliability, spare part estimation of the tire component of a 
loader system and propose an analytical goodness of fit test for the 
proportionality assumption as an extension of the statistical process.  

This paper is organized into three main parts. Part one introduces the 
theoretical background and definitions of RSPP. In part two, the 
findings are validated using a case study in the Iranian mining industry. 
Part three provides the conclusion. 

2. The proposed methodology 

This section presents the suggested methodology for estimation of 
spare parts by modeling the effect of covariates on the reliability of a 
component. Components are defined as the level at which the failure 
rate data need to be collected or estimated considering the effect of 
influencing factors. The basic methodology is illustrated in  Figure 1. The 
methodology comprises four main steps: 

1. Boundary definitions, assumptions, identification and 
formulation of covariates, and data collection (time data and 
covariate data). 

2. Explanation of covariate analysis approach and identification of 
the degree of influence of each covariate on the hazard function 
(estimation of regression coefficients). 

3. Identification of baseline/baselines reliability function/functions 
and distribution of failure data considering the covariate effects. 

Spare parts estimation and inventory management. 

2.1. Boundaries, assumptions, identification of covariates and data 
collection 

The first step of the methodology is to set boundaries at different 
levels, such as component, subsystem, and system. A system boundary 
defines internal components of a system in order to prevent overlaps 
with adjoining systems. The component boundary clearly defines all 
boundaries of a specific component with other components in the 
system through which it interfaces via hardware or software. The exact 
definitions of component and system restrictions are necessary to apply 
the equipment reliability parameters in the analysis. It must be noted 
that only events occurring inside the component boundaries are 
accounted for analysis [14]. The following basic assumptions and 
boundaries govern this paper: 

 Systems (loaders) consist of s-independent components 
(tires). 

 Only non-repairable components / parts in repairable systems 
are studied, in other words, one system with special attention 
to one component. 

 Each component and the larger system is in one of two 
possible states: operating or failed. 

 The failure properties of the component are considered. 
 Maintenance leads to as good as new condition. 
 Only the operation and maintenance phases are considered. 

Research is restricted to a mining working environment (Sungun 
copper mine). 

Data collection is an essential element of reliability analysis. Basic 
data in reliability analysis for a non-repairable component are the time 
to failure (TTF) data. Of these fundamental data, all factors influencing 
the reliability of the component (such as temperature, dust, humanity, 
etc.), as well as its failure mode and mechanism must be considered 
during data collection. In addition, the influencing factors must be 
identified and formulated as covariates. The relevant covariates can have 
different origins, including the operating environment (e.g. temperature, 
pressure, humidity, or dust), operating history of a machine (e.g. 
overhauls, effects of repairs, or type of maintenance), or the type of 
design or material [4]. Based on the effect of the covariates on reliability, 
they can be divided into two main groups: 

 Categorical covariates: these are qualitative variables. They 
can be binary or have multiple categories. A binary covariate 
can be handled in the model by the use of a dummy variable, 
coded as zero or one. For example, Ghodrati and Kumar 
assigned the hydraulic oil quality in the brake system −1 for 
non-standard and non-manufacturer/supplier-recommended 
brake oil and +1 for standard and manufacturer 
recommended hydraulic brake oil [4]. 

 Continuous covariates: these have a defined scale, and can be 
quantified. They can change linearly or nonlinearly. For 
example, to study the influence of operating temperature in a 
mine crushing site, Barabadi and et al. considered average 
temperature on the day of the maintenance as a covariate 
value [16]. 

A frequently occurring problem in the analysis of datasets has been 
that the data were not collected under the same conditions. Covariates 
are used to address this problem [17]. The boundary selection also has a 
direct effect on data collection. The boundary definition has to be 
compatible with the generated data. Data on reliability characteristics 
can be obtained directly from the field or sample testing in laboratories 
[18]. 

2.2. Covariate analysis 

Covariates affect the failure behavior of a system but are usually 
ignored in reliability analysis. The operating environment influences the 
system reliability characteristics and must be considered as a covariate 
in reliability and hazard rate analysis. The reliability of a system can be 
defined based on its intended function, the operating lifetime, and the 
environment of interest. One way to analyze the effects of covariates on 
the hazard rate (reliability) is to use semi-parametric regression models 
[5]. This study uses the proportional hazard model (PHM) and the 
stratified Cox regression method (SCRM). These are the two most 
common models for covariate analysis based on the proportional hazard 
(PH) assumption. The PH assumption refers to the proportionality 
assumption, namely that the hazard ratio for two observations with 
different z-values is independent of time [14]. As shown in  Figure 1, if 
the PH assumption is accepted, the PHM is selected; if the assumption 
is violated, the PHM can no longer be used. Based on different values of 
the time-dependent covariates, when the covariate is time-dependent, 
the component will have different failure rates. In this situation, the 
SCRM method can be used for data analysis [5]. These methods are 
briefly described below. 
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 Figure 1. Methodology for provisioning required spare parts considering covariates [4, 14, 15]. 
 

2.2.1. Proportional-hazard model (PHM) 

The proportional hazard model is a nonparametric regression model 
that uses a semi-parametric method. The model incorporates a 
parametric model of the relationship between the failure rate and the 

specified covariates. It was used in the present research to calculate the 
component failure rates [14, 16]. PHM was initially applied in medical 
analysis before being used in engineering reliability analysis. In general, 
The PHM is influenced not only by time but also by the covariates under 
which it operates. This model represents a distribution-free approach to 
the set of tools used in reliability analysis. It assumes that the hazard rate 
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of a system/component is a product of an arbitrary and unspecified 
baseline hazard rate, 𝜆0(𝑡) , dependent on time only, and a positive 
functional term (linear form 1 + 𝛼𝑧  , the log‐linear exp(𝑧𝛼)  and a 
logistic form log(1 + exp(𝛼𝑧) ), basically independent of time, 
incorporating the effect of a number of explanatory variables or 
covariates. The common form of the PHM is log‐linear, expressed as 
Eq.(1) [4, 11]: 

𝜆(𝑡. 𝑧) = 𝜆0(𝑡)𝜓(𝑧𝛼) = 𝜆0(𝑡)𝑒𝑥𝑝(∑𝑧𝑖𝛼𝑖

𝑛

𝑖=1

) (1) 

The reliability influenced by the covariates  is given as [1]:  

𝑅(𝑡. 𝑧) = (𝑅0(𝑡))
𝑒𝑥𝑝(∑ 𝑧𝑖𝛼𝑖

𝑛
𝑖=1 )

 (2) 

where 𝜆(𝑡. 𝑧)  and 𝑅(𝑡. 𝑧)  are the hazard and reliability functions, 
respectively; 𝑧𝛼 = ∑ 𝑧𝑖𝛼𝑖

𝑛
𝑖=1 ; 𝛼  (column vector) is the unknown 

parameter of the model or regression coefficient of the corresponding n 
covariates (z) (row vector consisting of the covariate parameters) 
indicating the degree of influence of each covariate on the hazard 
function; and 𝜆0(𝑡) and 𝑅0(𝑡) are the baseline failure rate and  baseline 
reliability, respectively. As mentioned earlier, in the PHM, the 
proportional assumption (PH assumption) is that the covariates are 
time-independent variables, so the ratio of each two hazard rates is 
constant versus time [16]. Various approaches are used to determine 
whether the (PH) assumption fits a given data set. The graphical 
procedure, a goodness-of-fit testing procedure, and a procedure 
involving the use of time-dependent variables are used most widely in 
PH assumption evaluations [19]. 

2.2.2.  Stratified Cox regression method (SCRM) 

 
The PH assumption may be violated in some cases. In such cases, the 

stratified Cox regression model (SCRM) can be used to build the model. 
The stratified Cox model is an extension of the PHM that allows 
controlling a predictor by “stratification” that does not satisfy the PH 
assumption. In this model, when there are n levels for the time-
dependent covariates, each level is defined as a stratum. Under this 
circumstance, historical data will be grouped in different strata. Separate 
baseline hazard rates are computed for each stratum, and the regression 
coefficients are equal for all strata. The hazard rate in the 𝑠𝑡ℎ stratum is 
written as [4, 16]: 

𝜆𝑠(𝑡. 𝑧) = 𝜆0𝑠(𝑡)𝑒𝑥𝑝(∑𝑧𝑖𝛼𝑖

𝑛

𝑖=1

) 𝑠 = 1.2.… . 𝑟 (3) 

As with the original SCRM, there are two unknown components in 
the model: the regression parameter 𝛼 and the baseline failure function 
𝜆0𝑠(𝑡)  for each stratum. The baseline failure functions for r remain 
completely unrelated in the different strata. 

2.3. Identification of baseline/baselines reliability function/functions 

The baseline hazard rate is assumed to be equal to the total hazard 
rate when the covariates have no influence on the failure pattern. The 
shape of the baseline repair rate and the regression coefficients for the 
covariates may be estimated by using the historical data or by using the 
input from experts [16]. Here, the baseline hazard rate is modeled using 
parametric models and stochastic processes. Two main stochastic 
processes are generally used for reliability analysis: renewal process (RP) 
and nonhomogeneous Poisson process (NHPP).  

As shown in  Figure 1, in order to determine the best analytical 
method for available data, the trend and serial correlation tests must be 
performed to determine whether the data are independent and 
identically distributed (iid). The trend test can be done analytically or 
graphically [15, 20, 21]. There are three analytical methods for testing 
the presence of trends: Military Handbook test, Laplace test, and 
Anderson-Darling. If the null hypothesis for the P-value of these tests is 
rejected at the 5% level of significance, it means that the TBF data show 

a trend and, therefore, are not identically distributed. In graphical 
methods, the trend test involves plotting the scaled cumulative failure 
numbers against the scaled cumulative time to failure. If the plotted 
points lie (or approximately lie) on a straight horizontal line, the data 
are trend-free [22]. For the results of the trend test, if the assumption 
that the data are identically distributed is rejected, a non-stationary 
model must be fitted, such as the power low process (PLP).. The power 
law process (PLP), a form of the nonhomogeneous Poisson process 
(NHPP), has proved to be a useful tool for analyzing the systems that 
are deteriorating or improving through time passage. The PLP model 
was found to be very suitable for modeling the reliability of systems [23]. 
A graphical test for serial correlation can also be done by plotting the 
ith TBF against the (i-1)th TBF, i = 1; 2; ...; n. If the plotted points are 
randomly scattered without any pattern, there is no correlation among 
the TBFs, and the data are independent. The presence of no trend and 
no serial correlation in the data means that the data are iid, and the two-
parameter Weibull distribution, a classical statistical technique, is the 
best choice for baseline hazard rate modeling [15, 20, 21]. The Weibull 
distribution is widely used for reliability data, particularly the data on 
strengths of materials and failure times [24]. The two-parameter 
Weibull distribution can represent decreasing (shape parameter < 1), 
constant (shape parameter = 1), or increasing failure rates (shape 
parameter >1). These correspond to the three periods of the "bathtub 
curve" of engineering system reliability, also called "burn-in," "useful 
life," and "wear-out" phases of life [25]. 

2.4. Spare parts estimation 

Production and manufacturing companies are under great pressure 
to decrease their production costs to stay cost effective. Industrial 
operation cost analysis shows that, in general, maintenance comprises a 
significant proportion of the overall operating cost. Spare parts 
availability is a major issue in the maintenance process; increased 
availability of spare parts leads to increased availability of equipment 
and minimized total production costs [3]. “Spare parts” refer to the parts 
needed to keep equipment in a healthy operating condition by meeting 
repair and replacement needs caused by failures or preventive and 
corrective maintenance. Spare parts management, as a form of product 
support, can be defined as a trade-off between managing inventory and 
meeting service levels. This translates into a need for accuracy and high 
analytical capabilities [6]. Identifying the right type of inventory 
management system for a manufacturing firm can be a difficult and 
complex task. As spare parts for machinery are regularly of a very high 
quality, the problem cannot be solved simply by increasing the 
warehouse stock [3]. 

RSPP is a popular mathematical model used in spare parts 
provisioning based on renewal theory. The renewal process can be used 
whenever the failure rate is not constant. If the failure rate is constant, 
the homogeneous Poisson process is used as a special case of a renewal 
process to forecast demands for spares. It is important to note that the 
above statement is valid only for non-repairable spares (components) 
[4]. In this case, the renewal theory was used to analyze the replacement 
of the component upon failure (the time to failure or time between 
replacements), to find the distribution of the number of replacements, 
and to determine the mean number of replacements. In short, the 
reliability measure of a component is used to estimate the required 
number of spares [3]. 

If the operation time (and planning horizon) t of the machine in 
which the part (component) is installed is too long and several 
replacements must be made during this period, the average number of 
failures in time t, E[N(t)] = M(t), will stabilize to the asymptotic value 
of the function as [3, 18]: 

𝑀(𝑡) = 𝐸[𝑁(𝑡)] =
𝑡

�̅�
+
𝜁2 − 1

2
 (4) 

where 𝜁  denotes the coefficient of variation of the time to failure, 
defined as [3]: 
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 𝜁 = 𝜎(𝑇)

�̅�
 (5) 

where �̅� is the average time to failure for replacements of a part, and 
𝜎(𝑇) is the standard deviation of the time to failure [3, 18]. 

If the time of planning horizon (t) is large, then N(t) in Eq.(4) has 
approximately a normal distribution (based on a central limit theorem) 
with mean = 𝑁(𝑡)̅̅ ̅̅ ̅̅ . The approximate number of spares (𝑁𝑡 ) needed 
during the period of a planning horizon with a probability of shortage = 
1 − 𝑝 is given by [3, 18]: 

𝑁𝑡 =
𝑡

�̅�
+
𝜁2 − 1

2
+ 𝜁√

𝑡

�̅�
Φ−1(𝑝) (6) 

where Φ−1(𝑝) is the inverse normal distribution function. 
As shown in  Figure 1, the two-parameter Weibull reliability model 

and power low process (PLP) are versatile models for characterizing the 
case of iid (no trend and no serial correlation) and trend-bearing data of 
mechanical parts, respectively. The appearance and format of the hazard 
occurrence of the PLP model is the equivalent of the two-parameter 
Weibull distribution [4, 23, 26]. Thus, integrating the effect of covariates 
into the PHM and SCRM can be respectively defined by the following 
equations [3, 18]: 

𝜆𝑠(𝑡. 𝑧) = [
𝛽0𝑠
𝜂0𝑠

(
𝑡

𝜂0𝑠
)
𝛽0𝑠−1

] × [𝑒𝑥𝑝(∑𝑧𝑖𝛼𝑖

𝑛

𝑖=1

)]

= [
𝛽0𝑠 × 𝑡

𝛽0𝑠−1

𝜂0𝑠
𝛽0𝑠

] × [𝑒𝑥𝑝(∑𝑧𝑖𝛼𝑖

𝑛

𝑖=1

)] 

(7) 

𝜆𝑠(𝑡. 𝑧) =
𝛽0𝑠 × 𝑡

𝛽0𝑠−1

[𝜂0𝑠 × 𝑒𝑥𝑝(−
1
𝛽0𝑠

∑ 𝑧𝑖𝛼𝑖
𝑛
𝑖=1 )]

𝛽0𝑠
 (8) 

where 𝛽0𝑠  and 𝜂0𝑠  are the initial (baseline) shape and scale 
parameters, respectively, for each stratum in SCRM ("s" subscript suffix 
is limited for PHM). This equation indicates the Weibull distribution or 
PLP with the shape parameter (𝛽𝑠) and scale parameter (𝜂𝑠), written as 
[3, 4, 18]: 

{
 

 
𝛽𝑠 = 𝛽0𝑠

𝜂𝑠 = 𝜂0𝑠 [𝑒𝑥𝑝(∑𝑧𝑖𝛼𝑖

𝑛

𝑖=1

)]

−
1
𝛽0𝑠 (9) 

Therefore, the influencing covariates in the Weibull distribution and 
the PLP change the scale parameter, while the shape parameter remains 
unchanged [3]. 

The �̅�𝑠  and 𝜎𝑠(𝑇)  of the Weibull distribution and the PLP can be 
calculated based on the shape and scale parameter, expressed as [3, 4, 
18]: 

�̅�𝑠 = 𝜂𝑠Γ (1 +
1

𝛽𝑠
) (10) 

𝜎𝑠(𝑇) = 𝜂𝑠√Γ(1 +
2

𝛽𝑠
) − Γ2 (1 +

1

𝛽𝑠
) (11) 

2.5. Spare parts inventory management 

Inventory control of spare parts is playing an increasingly crucial role 
in modern operations management. The exchange is clear: on one hand, 
a large number of spare parts conditions the capital, while on the other 
hand, too little inventory may result in poor customer service or 
extremely costly emergency actions [18]. 

The economic order quantity (EOQ) can be used to reach a balance. 
EOQ refers to the size through which the total inventory cost is 
minimized; it considers aspects of holding and ordering with a 
perspective of eliminating shortages and can be calculated as [18]. 

 

𝐸𝑂𝑄 = √
2𝐷𝑆

𝐻
 (12) 

where "D" is the annual demand (units/year)[equals 𝑁𝑡 in one year], 
"S" is the cost of ordering or setting up one lot ($/lot), and "H" is the cost 
of holding one unit in the inventory for a year (often calculated as a 
proportion of the item’s value). 

To use a “continuous review system” in inventory control and 
management, the “reorder point (ReP)” need to be calculated that 
expressed as [1] 

𝑅𝑒𝑃 = 𝑑 × 𝐿 + 𝜎𝐷 × √𝐿Φ(
𝑝
2⁄ )

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (13) 

where d is the average demand, L is the lead time, Φ(
𝑝
2⁄ )  is the 

confidence level of cycle service, and 𝜎𝐷  is the number of standard 
deviations from the mean, calculated as [1] 

𝜎𝐷 = √
𝑡

�̅�
. (14) 

3. Case study 

All industries rely on productivity to generate profits. If the vital 
productivity equipment fails, the production is lost. In mining 
industries, the loader machine is pivotal to production; the loader loads 
the ore or waste rocks from the mining fronts into the trucks. When a 
loader breaks, the profit is lost. Loss of profit does not stop the mining 
loader alone. A maintenance crew must be summoned to inspect and 
solve the problem. A disabled loader may also delay or block other 
machines in the extraction cycle. Thus, maintaining a fleet of haul trucks 
and loading equipment is crucial for maintaining the productivity.  

An investigation of a fleet of loaders at Sungun copper mine in Iran 
shows that the rock moving systems are critical subsystems, and the tire 
is the most important part of this subsystem.  

Sungun copper deposit is the second largest copper mine in Iran. The 
geological reserve of the deposit is estimated to have a reserve of up to 
828 million tons, with an average copper grade of 0.62%. During the time 
of investigation, the mine operation was managed by a fleet of 12-wheel 
loaders belonging to a contracting company. 

3.1. Data collection and covariate formulation 

Appropriate data collection is one of the most important steps in 
reliability analysis. A data collection system must be designed to 
facilitate correct and effective reliability analysis. The data in this 
research were obtained from the field observations. Although it is an 
expensive and time-consuming procedure, field data are the most 
representative part of a tire reliability and maintainability characteristics 
[18]. The failure data were not collected for reliability study purposes. 
The company had compiled the operation data, maintenance cards, 
inventory lists, tire department data, and meteorological data sheets for 
a fleet of loader machines over 11 years, from 2003 to 2014. It was not 
easy to sort the required information, so searching the data lasted two 
years. For preliminary investigation of the statistical nature of the data, 
the critical component of these machines and the influencing covariates, 
and several interviews were held with machine operators, maintenance 
crews, and management.  

Ultimately, the data operating environment conditions (including 
meteorological data), parameters of the machine, tire characteristics and 
the tires tiresworking hours (machine working hours) was compiled. 
Data were classified in chronological order and were avoided reordering. 
Then the historical lifetime data were refined; this involved finding and 
analyzing the censored and uncensored data (status). At this point, the 
total time to failure (TTF) of the tires was calculated and classified. 
Table 1 shows the datasets used to demonstrate the concept and the 
covariates. The TTF column shows time to failure of the tires under 
different kinds of environments. A cell in the status column with zero 
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value indicates the tires censored failure, and a cell with the value unity 
indicates tire failure. The last column of the table shows the total time 
to failure. 

Table 1. Sample TTF data for loader tire. 
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1 12870 1 C F 1 1 0.987 5.539 12870 

2 6050 1 C F 0 3 1.080 6.984 18920 

3 7700 1 C F 1 3 1.066 6.131 26620 

4 9000 1 C F 1 1 1.003 6.187 35620 

5 9000 1 C F 1 1 1.003 6.187 44620 

6 6543 1 B B 1 3 0.991 6.191 51163 

7 10736 1 D B 1 3 0.939 6.042 61899 

8 11893 1 C B 1 3 1.015 6.645 73792 

9 13103 1 D B 1 3 1.153 5.874 86895 

10 10816 1 D F 1 3 1.060 5.902 97711 

… … … … … … … … … … 

To formulate the tire covariates, we used observation, repair shop 
cards and reports, and the experience of managers, operators, and 
maintenance crews, along with field data. The covariates are shown in 
Table 1 and include the following items: 
 Loader model (

11 12,z z and 13z ): Three different model loaders 

are used by the contracting company. A tire in Sungun mine could 
work on one specific model of loader in its whole lifetime or can 
be changed between two models. Table 2 shows the codified 
covariate; three dummy variables, 

11 12,z z and 
13z , are assigned to 

formulate it. 
Table 2. Codified loader model covariate. 

Model Code 11z  
12z  

13z  

Komatsu wheel loader WA470-3  A 1 0 0 

Komatsu wheel loader WA600-3 B 0 1 0 

Caterpillar wheel loader 988B C 0 0 1 

Komatsu WA600-3 & Caterpillar 988B D 0 0 0 

 Axle (
2z ): The tires are installed in the front (F) and the back (B) 

axle of the loader. A dummy variable, 
2z , is assigned to denote 

the axle position. Table 3 shows the codified covariate by a 
dummy variable. 

Table 3 - Codified loader axle covariate 

Axle Code 2z  
Back  B 1 

Front A 0 

 Tread depth (
3z ): The tread depth has a direct effect on the 

lifetime of the tire. The tread depth is denoted by covariate 
3z , 

and its value is divided by two, the depth of each tire tread (to 
avoid a small regression factor for covariates). The covariates are 
assigned the value 1 for a depth less than or equal to 10 mm and 
zero for a depth greater than 10 mm. 

 Tire Brand ( 4z ): Three main tire brands are used in Sungun 

mine. The covariate 
4z  is assigned to show the brand type; 1 

represents Bridgestone, 2 represents Triangle or Goodyear and 3 
represents all other brands. 

 Climatic conditions, including rain (
5z ) and temperature (

6z ): 

Temperature in the mine site ranges from -2.69 ºC in the winter 
to +16.37 ºC in the summer. Rain ranges from 0.26 mm to 1.97 mm. 
During the winter or on a rainy day, maintenance crews wear 

thick gloves, warm jackets, and rain jackets. The covariates 
5z and 

6z  are assigned to the rain and temperature, respectively. The 

average temperature and average rain in the month of the 
maintenance activity are used for the covariate values. 

3.2. Reliability analysis of tires 

 
In Cox regression analysis, when there is a little theoretical reason to 

prefer one model type to another, stepwise methods of covariate 
selection can be useful. The estimation of the effect of a covariate in the 
Cox model may be biased if significant influential covariates are not 
considered; therefore, the covariates with no significant value are 
eliminated in subsequent calculations.  

Several methods are available for selecting independent variables; 
stepwise methods (forward and backward) is a common approach. 
Stepwise methods can use the Wald statistic, the likelihood ratio, or a 
conditional algorithm. In stepwise methods, the score statistic is used to 
select variables for the model. In this study, corresponding estimates of 
α are obtained by a backward stepwise method and tested for their 
significance based on the Wald statistic (P-value). IBM SPSS Statistics 
software, version 22, was used to estimate the value of the regression 
vector. The asymptotic distribution of the Wald statistic is chi-square 
with degrees of freedom equal to the number of parameters estimated.  

The stepwise variable selection process using the backward stepwise 
procedure (BSTEP) can be defined as follows [27]: 

1. Estimate the parameters for the full model, using the final 
model from the previous procedure and all eligible variables. 
Only variables listed on the BSTEP variable list are eligible for 
entry and removal. Let the current model be the full model. 

2. Based on the MLEs of the current model, calculate the Wald 
statistic for every variable in the model and find its significance. 

3. Choose the variable with the largest significance. If that 
significance is less than the probability required for variable 
removal (significant at the 10% level), go to step 5. Otherwise, 
if the current model without the variable with the largest 
significance is the same as the previous model, stop BSTEP; if 
not go to step 4. 

4. Modify the current model by removing the variable with the 
largest significance. Estimate the parameters for the modified 
model and return to step 2.  

5. Check to see if any eligible variable is not in the model. If all are 
included, stop BSTEP; otherwise, go to the next step. 

6. Based on the MLEs of the current model, calculate the score 
statistic for every variable not in the model and find its 
significance. 

7. Choose the variable with the smallest significance. If that 
significance is less than the probability of variable entry, go to 
the next step; otherwise, stop BSTEP. 

8. Add the variable with the smallest significance to the current 
model. If the model is not the same as any of the previous 
models, estimate the parameters for the new model and return 
to step 2; otherwise, stop BSTEP. 

In the step-down procedure, the effects of four covariates, 𝑧1, 𝑧3, 𝑧4 
and 𝑧6 , are found significant at the 10% level. The estimates of α are 
listed in Table 4. It should be mentioned that the dependent variables 
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are represented using dummy coding; that is, the dummy corresponding 
to the reference category simply was omitted. Also note that the stepwise 
method includes parameters for dummy variables, but excludes the 
intercept in the analysis. The significance of dummy variable 𝑍1 is 0.021, 
i.e., less than the probability of variable entry; therefore, its intercept 
(𝑍11. 𝑍12. 𝑍13) is excluded from analysis. 

Table 4. Estimation of reliability covariates by SPSS. 

Variables in the equation 

 α SE Wald D.f. Sig.(p-value) Exp(α) 

Step 1 

𝑍1   8.168 3 0.043  

𝑍11 0.963 0.358 7.228 1 0.007 2.621 

𝑍12 0.473 0.288 2.684 1 0.101 1.604 

𝑍13 0.291 0.261 1.240 1 0.265 1.338 

𝑍2 -0.232 0.198 1.376 1 0.241 .793 

𝑍3 -1.426 0.235 36.733 1 0.000 .240 

𝑍4 0.368 0.111 11.014 1 0.001 1.445 

𝑍5 -.703 0.780 .811 1 0.368 .495 

𝑍6 0.179 0.074 5.832 1 0.016 1.196 

Step 2 

𝑍1   8.635 3 0.035  

𝑍11 1.000 0.356 7.878 1 0.005 2.719 

𝑍12 0.477 0.287 2.760 1 0.097 1.611 

𝑍13 0.313 0.260 1.446 1 0.229 1.367 

𝑍2 -0.197 0.193 1.035 1 0.309 .822 

𝑍3 -1.446 0.235 37.956 1 0.000 .236 

𝑍4 0.336 0.106 10.133 1 0.001 1.400 

𝑍6 0.180 0.075 5.720 1 0.017 1.198 

Step 3 

𝑍1   9.683 3 0.021  

𝑍11 1.067 0.351 9.230 1 0.002 2.906 

𝑍12 0.455 0.286 2.525 1 0.112 1.576 

𝑍13 0.334 0.259 1.666 1 0.197 1.397 

𝑍3 -1.511 0.226 44.792 1 0.000 .221 

𝑍4 0.329 0.105 9.807 1 0.002 1.390 

𝑍6 0.176 0.076 5.406 1 0.020 1.192 

Variables not in the equation 

 Score D.f. Sig. 

Step 2 𝑍5 0.808 1 0.369 

Step 3 
𝑍2 1.037 1 0.309 

𝑍5 0.446 1 0.504 

a. Residual Chi Square = .808 with 1 D.f. Sig. = .369 

b. Residual Chi Square = 1.835 with 2 D.f. Sig. = .399 

According to the Cox regression, the actual failure rate and reliability 
function of the tire component considering the environment can be 
presented respectively as: 

𝜆(𝑡. 𝑧) = 𝜆0(𝑡)𝑒𝑥𝑝(𝑧1𝛼1 + 𝑧3𝛼3 + 𝑧4𝛼4 + 𝑧6𝛼6) (15) 

𝑅(𝑡, 𝑧) = (𝑅0(𝑡))
𝑒𝑥𝑝(𝑧1𝛼1+𝑧3𝛼3+𝑧4𝛼4+𝑧6𝛼6)

 (16) 

The hazard ratio should be constant throughout the passage of time; 
that is, the proportionality of hazards from one covariate to another 
should not vary over time. This assumption is known as the proportional 
hazards assumption (PH assumption). Graphical approaches are 
commonly used to assess the PH assumption by comparing log–log 
survival curves. Parallel curves, say comparing two different values of a 
covariate, indicate that the PH assumption is satisfied. The graphical 
approach has some problems, however. The main problem is “how 
parallel is parallel?” This decision can be very subjective for a given 
dataset, particularly if the study size is relatively small. Another problem 
is how to categorize a continuous variable, like temperature. If many 
categories are chosen, the data “thin out” in each category, making it 
difficult to compare different curves. A final problem is how to evaluate 
the PH assumption for several variables simultaneously. Goodness-of-fit 
(GOF) tests represent an alternative way to assess the PH assumption. 

This study draws on the test of Harrel and Lee (1986), a variation of 
a test originally proposed by Schoenfeld (1982) and based on the 
residuals defined by Schoenfeld, now called the Schoenfeld residuals. 
The GOF testing approach is appealing because it provides a test 
statistic and p-value (P(PH)) for assessing the PH assumption for a 
given predictor of interest. Thus, the researcher can make a more 
objective decision using a statistical test than is typically possible in a 
graphical approach. P(PH) is used to evaluate the PH assumption for 
the variable of interest. An insignificant (i.e., large) P(PH), say, greater 
than 0.10, suggests that the PH assumption is reasonable, whereas a 
small P(PH), say, less than 0.05, suggests that the variable being tested 
does not satisfy this assumption [28]. Table 5 gives the mean values and 
the statistical GOF test outcomes for the tire data. 

Table 5. Statistical test approach results for PH assumption. 

Covariates  Means Coeff. (Pearson Correlation) P(PH) 

𝑍11 0.116 0.066 0.442 

𝑍12 0.268 -0.158 0.065 

𝑍13 0.464 0.061 0.447 

𝑍3 0.616 0.034 0.689 

𝑍4 1.652 -0.144 0.092 

𝑍6 6.676 0.044 0.606 

Correlation is significant at the 0.01 level 

The P(PH) values given in this table provide GOF tests for each 
variable in the fitted model adjusted for the other variables in the model. 
The P(PH) values are quite high for all variables satisfying the PH 
assumption. Thus, according to  Figure 1, the PHM can be used to assess 
the covariates of the tires. With the results obtained from SPSS in Table 
5, the actual failure rate and operational reliability considering the 
environmental conditions can be presented respectively as: 

𝜆(𝑡. 𝑧) = 𝜆0(𝑡)𝑒𝑥𝑝(1.067𝑧11 + 0.455𝑧12 + 0.334𝑧13
− 1.511𝑧3 + 0.329𝑧4 + 0.176𝑧6) 

(17) 

𝑅(𝑡. 𝑧)

= (𝑅0(𝑡))
𝑒𝑥𝑝(1.067𝑧11+0.455𝑧12+0.334𝑧13−1.511𝑧3+0.329𝑧4+0.176𝑧6) 

(18) 

The results of the analytical and graphical trend tests carried out on 
the TTF tire data using Minitab software are shown in Table 6 and 
Figure 2. The null hypothesis (H0: No trend) is violated at a 5% 
significance level (p-value<α) for each of the three analytical tests. Thus, 
the component is not identically distributed. However, as Figure 2 
shows, there is a trend, interpreted by the nonlinearity of the curve and 
verified by the analytical test result. 
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Table 6. Results of analytical trend test. 

 MIL-Hdbk-189 Laplace’s Anderson-Darling 

Test Statistic 226.04 2.62 6.99 

P-Value 0.031 0.009 0.000 

 
Figure 2. Results of graphical trend. 

A test for serial correlation is done by plotting the ith TTF against the 
(i-1)th TTF, i = 1; 2; 3;…; n. The results indicate no correlation in general 
among the TTFs. Therefore, the assumption that the data are iid is not 
valid, and the NHPP method is the best choice for baseline hazard 
function modeling and analysis. This research selected the PLP, a special 
form of the NHPP, to analyze the baseline hazard function of the tire. 
Because of the polynomial nature of the rate of occurrence of a failure, 
this model is very flexible and can model both increasing and decreasing 
baseline hazard rates. 

Next, the parameters of the baseline PLP model are estimated 
analytically using ReliaSoft's RGA software. According to the 
calculations, 𝛽0=1.221 and 𝜂0=15900. Based on these parameters, the 
operational failure rate and operational reliability considering the 
environmental conditions are represented respectively as: 

𝜆(𝑡. 𝑧) = [
1.221

15900
(

𝑡

15900
)
0.221

]

× [𝑒𝑥𝑝(1.067𝑧11 + 0.455𝑧12 + 0.334𝑧13 − 1.511𝑧3
+ 0.329𝑧4 + 0.176𝑧6)] 

(19) 

(20) 

𝑅(𝑡. 𝑧)

= (𝑒𝑥𝑝 (−
𝑡

15900
)
1.221

)

𝑒𝑥𝑝(1.067𝑧11+0.455𝑧12+0.334𝑧13−1.511𝑧3+0.329𝑧4+0.176𝑧6)

 

(21) 

(22)  
In these equations, Exp(α) is the hazard ratio. This ratio indicates the 

expected changes in the risk of a terminal event when the covariate’s 
categories change, or for continuous covariates, the ratio predicts 
change in the hazard rate for each unit increase in the covariate. If 
Exp(α) is less than 1.0, the direction of the effect is a reduction in the 
hazard rate. If the value 1.0 appears within the confidence intervals of a 
covariate, the effect of that covariate is considered insignificant. The 
result of the analysis shows that 𝑧2 and 𝑧5 play less important roles than 
the other factors, such as 𝑧3  and 𝑧5 , on tire reliability. It may also be 
concluded that the failure rate of the loader system in a Komatsu 
WA470-3 wheel loader is exp(1.067) times greater than that of the other 
models. The effect of covariates 𝑧12 , 𝑧13  and 𝑧3  can be explained 
similarly. However, 𝑧11  plays a more important role than the other 
covariates on the reliability performance of the tires.  

The results of the covariate analysis can assist managers and 
performance engineers. Based on the results, they may decide that the 
𝑧1 , 𝑧3 , 𝑧4  and 𝑧6  factors need to be controlled or improved to avoid 
component failures. In the manufacturer perspective, some of these 
parameters can be considered during the design stage of a system or 
component.  

The reliability and hazard rate of the tire for the Komatsu WA470-3 

loader and other models is now calculated and plotted for the mean 
value of other covariates, as shown in Figure 3. The results show the tires 
on the Komatsu WA470-3 loader are less reliable than the tires on other 
loaders. As can be seen, their reliability reaches about 42% after about 
2000 hr of operation and zero after about 7000 hr of operation. There is 
a 70% and a 75% chance that tires will work without failure for 1000 hr 
in a Komatsu WA470-3 loader and the other models, respectively. The 
results can obviously help engineers and managers to make decisions 
about operation planning, maintenance strategy, sales contract 
negotiations, spare parts management etc. 

 
Figure 3. Comparison of reliability performance of tires in Komatsu WA470-3 

loader and other models. 
Totally, operational conditions have significant effects on reliability 

performance and should be considered carefully in both design and 
operation phases. Otherwise, the system’s targets reliability performance 
may not be reached. 

3.3. Required spare parts estimation for loader 

When a machine fails, the operator (inspector or sensors) reports the 
failure and the failed part has to be sent to the field depot workshop. If 
the field depot has the spare part on hand and a technician is available, 
the technician travels to the site to fix the machine. Otherwise, the repair 
is delayed until a technician is available to fix the machine or the spare 
part becomes available at the field depot. In either case, the delay is very 
costly to the customer. The workshop of Sungun mine is always active, 
so a technician is available at any time. In this case, it is necessary to 
correctly manage spare parts to achieve high-quality service and shorten 
the response time.  

On one hand, spare parts are expensive and sometimes have high 
depreciation and obsolescence costs, for instance, electronic 
components. Therefore, it is imperative to keep the inventory level as 
low as possible at the central warehouse and the field depots. On the 
other hand, mining managers are often faced with a shortage of required 
spare parts when making decisions based on the 
manufacturer’s/supplier’s recommendations. In most cases, the 
manufacturer is unaware of the prevailing environmental factors when 
estimating the average number of required spare parts. Yet the actual 
reliability of a system is a function of the length of operation and the 
environment under which it operates. To calculate the spare parts for 
different operating conditions in the case study mine, 12 scenarios for 
the two most efficient covariates (loader model and tire brand) were 
defined as shown in Table 7. 

Using Eqs. (6), (10), (11), and (17) the required number of spare parts 
for each scenario can be calculated for the next three years in a short-
term production plan. According to the mine production plan, annual 
operating time is 7668 hours. 
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Table 7. Scenarios over three years in Sungun mine. 
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Description 

Covariates 

𝒁𝟏𝟏 𝒁𝟏𝟐 𝒁𝟏𝟑 𝒁𝟑
∗ 𝒁𝟒 𝒁𝟔

∗ 

1 A 1 
Komatsu - WA470-3 with 

Bridgestone tire 
1 0 0 0.616 1 6.676 

2 A 2 
Komatsu - WA470-3 with 

Triangle or Goodyear tire 
1 0 0 0.616 2 6.676 

3 A 3 
Komatsu - WA470-3 with the 

other tire brands 
1 0 0 0.616 3 6.676 

4 B 1 
Komatsu - WA600-3 with 

Bridgestone tire 
0 1 0 0.616 1 6.676 

5 B 2 
Komatsu - WA600-3 with 

Triangle or Goodyear tire 
0 1 0 0.616 2 6.676 

6 B 3 
Komatsu - WA600-3 with the 

other tire brands 
0 1 0 0.616 3 6.676 

7 C 1 
Caterpillar - 988B with 

Bridgestone tire 
0 0 1 0.616 1 6.676 

8 C 2 
Caterpillar - 988B with 

Triangle or Goodyear tire 
0 0 1 0.616 2 6.676 

9 C 3 
Caterpillar - 988B with the 

other tire brands 
0 0 1 0.616 3 6.676 

10 D 1 

Komatsu WA600-3 & 

Caterpillar 988B with 

Bridgestone tire 

0 0 0 0.616 1 6.676 

11 D 2 

Komatsu WA600-3 & 

Caterpillar 988B with Triangle 

or Goodyear tire 

0 0 0 0.616 2 6.676 

12 D 3 

Komatsu WA600-3 & 

Caterpillar 988B the other tire 

brands 

0 0 0 0.616 3 6.676 

∗: 𝑍3 and 𝑍6= mean value of covariates 

Using Eqs. (6), (10), (11), and (17) the required number of spare parts 
for each scenario can be calculated for the next three years in a short-
term production plan. According to the mine production plan, annual 
operating time is 7668 hours.  

Note that when the covariates are ignored (𝑒𝑥𝑝(∑ 𝑧𝑖𝛼𝑖
𝑛
𝑖=1 ) = 0), the 

required number of tires is 3.07. This estimation is not accurate enough, 
because in real situations, as discussed earlier, several covariates 
influence the reliability characteristics of tires. Table 8 shows the 
required number of spare parts for the different scenarios with 5% 
probability of shortage. The calculation shows that the value of 𝑁𝑡 in all 
scenarios is greater than 3.07. This difference is considerable in spare 
parts forecasting and inventory management. 
Table 8. Required number of spare parts for different scenarios over three years. 

Scenario �̅� 𝜎(𝑇) 𝜁 𝑁𝑡  

1 3895.12 3206.31 0.82 9.04 
2 2974.70 2448.66 0.82 11.34 
3 2271.78 1870.04 0.82 14.27 
4 6429.84 5292.80 0.82 5.98 
5 4910.47 4042.11 0.82 7.45 
6 3750.12 3086.96 0.82 9.33 
7 7097.25 5842.19 0.82 5.52 
8 5420.17 4461.67 0.82 6.87 
9 4139.38 3407.38 0.82 8.59 
10 9330.62 7680.61 0.82 4.43 
11 7125.79 5865.68 0.82 5.50 
12 5441.96 4479.62 0.82 6.85 

As shown in Figure 3 and Table 8, lower reliabilities mean a greater 
probability of an unexpected number of failures, leading to unscheduled 
repairs and a consequent increase in the required number of spare parts. 
The spare parts calculations for scenario 1 compared to scenarios 4, 7 
and 10, for scenario 2 compared to scenarios 5, 8 and 11, and for scenario 
3 compared to scenarios 6, 9 and 12 all verify this hypothesis. 

As Table 8 shows, the Caterpillar - 988B loader is the best choice from 
the spare parts cost point of view (scenarios 7, 8, 9) and the Komatsu - 
WA470-3 loader is the most costly model (scenarios 1, 2, 3). However, 
there is no big difference between the required tires for the Komatsu - 
WA600-3 and the Caterpillar -988B loaders (scenarios 10, 11, 12). In 
other words, both can be used. In addition, all loader models using 
Bridgestone tires require fewer spare parts than the loaders using other 
brands. Thus, the life cycle of Bridgestone tire is longer than the life 
cycle of the other tires, as seen in the �̅� column. Triangle, Goodyear and 
the other brands follow the order. 

3.4. Loader tires inventory management requirements 

The following assumptions were considered: 
 The cost of one tire equals 10,000 USD$ 
 The cost of ordering one lot equals 145 USD$ 
 The annual holding cost equals 1000 USD$ of the part cost 
 The average lead-time is 10 days 
 Cycle service confidence level is 90%  

The economic order quantity (EQO) and reorder point (ReP) with 
respect to annual demand rates in different scenarios are calculated 
based on Eq. (12) and (13) and tabulated in Table 9. 

Table 9. Economic order quantity. 

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 

EOQ 1.04 1.15 1.29 0.85 0.95 1.05 0.82 0.91 1.01 0.74 0.82 0.91 

ReP 0.99 1.14 1.31 0.77 0.88 1.01 0.73 0.84 0.96 0.63 0.73 0.84 

Whenever the inventory position reaches 0.99 units/loader tire, we 
should order 1.04 units/loader tire for scenario 1. However, where no 
covariate exists, the EOQ and RP of tires are equal to 0.62 and 0.5 
respectively. In comparison, the EOQ and RP in both conditions, with 
or without considering the operating environment's effect, illustrate the 
significance of these factors and their role in the actual life of the parts. 
In other words, the operating environment parameters should be 
considered in the process management of machines, in this case, the 
loaders. 

4. Conclusions 

Since the tire prices are increasing and the increased downtime 
decreases the performance reliability, the optimization of tire 
management is very important. Tires are crucial spare parts with a 
significant impact on both productivity and costs of mine production. 
Mining engineers must have an understanding of how tires work, how 
tires fail, and how to optimize the tires life for mining projects to be as 
profitable as possible. The operating condition of tires and the 
performance index, such as reliability, are the two important elements 
that mining engineering could use for effective management of tires. 
This study considers reliability and the operating environment to 
estimate spare parts for loader tires in Sungun mine in Iran. Forecasting 
the spare parts based on the reliability characteristics of an item is one 
of the most effective strategies for preventing unplanned stoppages due 
to lack of spare parts. For effective forecasting, all factors that influence 
the reliability characteristics of the item need to be treated as covariates 
in the reliability analysis.  

The results of the reliability analysis of the loader tires in Sungun 
using PHM show that the hazard rate of a Komatsu WA470-3 loader is 
2.91 times higher than the other models under similar conditions. 
Moreover, the loader model, tire brand, temperature and tread depth 
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have a significant effect on the reliability characteristics of the loader 
tire and, consequently, on the required number of spare parts. The 
noticeable difference in spare parts estimation caused by including (case 
1) and dismissing (case 2) the covariates for different scenarios verifies 
this. The calculation of the economic order quantity and reorder point 
shows around 50% difference between the two cases. 
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