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A B S T R A C T 

 

Shear wave velocity (Vs) data are key information for petro-physical, geophysical and geomechanical studies. Although compressional wave 
velocity (Vp) measurements are available in almost every well, shear wave velocity is usually not recorded for most of old wells due to the 
technological limitations. Furthermore, measurement of shear wave velocity comparatively costly. This study proposes a novel methodology 
to tackle these problems by taking advantage of Hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) with Ant Colony Optimization 
algorithm (ACO) based on Fuzzy C–Means Clustering (FCM) and Subtractive Clustering Method (SCM). The ACO is combined with two 
ANFIS models for determination of the optimal value of its user–defined parameters. The optimization implementation by the ACO 
significantly improves the generalization ability of the ANFIS models. These models are used in this study to formulate conventional well log 
data into Vs in a swift, economical, and accurate manner. A total of 3030 data points were used for model construction and 833 data points 
were employed for assessment of ANFIS models. Finally, a comparison among ANFIS models, and six well–known empirical correlations 
proved that ANFIS models can outperform the other methods. This strategy was successfully applied in the Marun reservoir, Iran. 

Keywords: Shear wave velocity; Carbonate reservoir; ANFIS-subtractive clustering; ANFIS-fuzzy c–means clustering; Ant colony 
optimization algorithm 

1. Introduction  

Shear wave velocity (Vs) is an important parameter, which has many 
applications in reservoir characterization and geomechanical studies. Vs 
can provide invaluable data for reservoir study such as rock mechanical 
properties calculation of, lithology identification [1], and pore type 
identification  [2]. True measurement of this parameter, carried out by 
dipole sonic imager or laboratory measurements, is very expensive. 
Therefore, many researchers have attempted to find rapid and accurate 
alternative ways to predict this parameter. Intelligent methods such as 
artificial neural networks (ANN), fuzzy systems (FS), swarm 
intelligence (SI) and evolutionary algorithms (EA) are robust tools for 
estimation of this parameter. Review of the literature shows that many 
intelligent methods for prediction of Vs have been suggested by the past 
researchers. In this paper, these well–known research works are 
addressed. H. Eskandari et al used multiple regression and artificial 
neural network techniques to predict shear wave velocity from wireline 

log data for a carbonate reservoir, south-west Iran [3]. M. R. Rezaee et 
al. utilized intelligent systems for prediction of shear wave velocity from 
petrophysical data [4]. M. Rajabi et al. proposed intelligent approaches 
for prediction of compressional, shear and stoneley wave velocities from 
conventional well log data [5]. I. Moatazedian et al. used genetic 
algorithms technique for prediction of shear and compressional wave 
velocities from petrophysical data [6]. M. Asoodeh, P. Bagheripour 
utilized committee machine with intelligent systems for prediction of 
compressional, shear, and stoneley wave velocities from conventional 
well log data [7]. P. Bagheripour et al.  proposed support vector 
regression approach for prediction of shear wave velocity [8].  

In this study, Vs is estimated from conventional well log data using 
hybrid adaptive neuro fuzzy inference system (ANFIS) with Ant Colony 
Optimization Algorithm (ACO) based on Fuzzy C–Means clustering 
(FCM) and Subtractive Clustering Method (SCM). The ACO is 
combined with two ANFIS models (ANFIS–FCM and ANFIS–SCM) 
for determining the optimal value of its user–defined parameters. The 
optimization implementation by the ACO significantly improves the 
generalization ability of the ANFIS models. ANFIS–ACO models were 
compared with six well-known empirical correlations. Results confirm 
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superiority of ANFIS–ACO models over other methods. This 
methodology was successfully implemented to Asmari carbonate 
reservoir rocks, the major reservoir of Iranian Oil Fields.  Top of the 
reservoir formation is varied in range of 2107m to 2769m in the scope of   
this study. 

2. Theory and Methodology 

The idea behind the proposed predictor is to optimize values of the 
ANFIS models using search algorithm. In this section, the ANFIS 
models is first explained and then followed by describing the employed 
optimization algorithm of ACO. 

2.1. Adaptive Network-based Fuzzy Inference System 

An adaptive neural network is a network structure consisting of 
several nodes connected through directional links. Each node is 
characterized by a node function with fixed or adjustable parameters. 
Once the fuzzy inference system (FIS) is initialized, neural network 
(NN) algorithms can be utilized to determine the unknown parameters 
(premise and consequent parameters of the rules) minimizing the error 
measure, as conventionally defined for each variable of the system. Due 
to this optimization procedure the system is called adaptive [9].  

The architecture of ANFIS consists of five layers, and a brief 
introduction of the model is as follows. 

Layer 1: each node i in this layer generates a membership grades of a 
linguistic label. For instance, the node function of the ith node might be: 
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Where, x is the input to node i, and Ai is the linguistic label (small, 

large…) associated with this node; and  , ,i i iV b  is the parameter set 
that changes the shape of the membership function (MF). Parameters in 
this layer are referred to as the "premise parameters". 

Layer 2: Each node in this layer calculates the "firing strength" of each 
rule via multiplication: 
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Layer 3: The ith node of this layer calculates the ratio of the ith rule's 

firing strength to the sum of all rules’ firing strengths: 
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For convenience, outputs of this layer will be called "normalized 
firing" strengths. 

Layer 4: Every node i in this layer is a node function: 
4 ( )i i i i i i iQ W f W p x q y r     (4) 

Where, 
iW  is the output of layer #3. Parameters in this layer will be 

referred to as "consequent parameters". 
Layer 5: The single node in this layer is a circle node labeled R that 

computes the "overall output" as the summation of all incoming signals: 
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For a given data set, different ANFIS models can be constructed, 

using different identification methods. SCM and FCM are two methods 
used in this study to identify the antecedent MFs. 

2.2. Subtractive Clustering Method (SCM) 

The SCM is introduced by S. L. Chiu [10] in which data points are 
considered as the candidates for center of clusters. The algorithm 
continues as follow: 

At first a collection of n data points  1 2 3, , ,..., nX X X X in an M-
dimensional space is considered. Since each data point is a candidate for 

cluster center, a density measure at data point iX  is defined as: 
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Where, ar  is a positive constant. Therefore, a data point will have a 

high density value if it has many neighboring data points. The radius ar  
defines a neighborhood; data points outside this radius contribute only 
slightly to the density measure. After the density measure of each data 
point has been calculated, the data point with the highest density 

measure is selected as the first cluster center. Let 1cX  be the point 

selected and 1cD  as its density measure. Next, the density measure for 

each data point ix
  is revised as follows: 
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Where, br  is a positive constant. After the density calculation for each 

data point is revised, the next cluster center 2cX  is selected and all of 
the density calculations for data points are revised again. This process is 
repeated until a sufficient number of cluster centers are generated. 

By using SCM, the cluster center of all data was found out. Then the 
numbers of subtractive centers were utilized to generate automatic MFs 
and rule base, as well as the location of MF within dimensions. This 
method is a fast clustering method designed for high-dimension 
problems with a moderate number of data points. 

2.3. Fuzzy C-Means Clustering Method 

The FCM was originally introduced by J. C. Bezdek [11]. FCM 
clustering can be viewed as an optimization problem that tries to 
optimize the following objective function: 
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where C is the number of clusters,  0,1iju   expresses the 
membership degree of the data point xj belonging to the ith fuzzy group, 

ij i jd w x 
 is the Euclidean distance between the ith cluster center wi 

and jth data point xj, and  1,m   is a weighting exponent that 
influences the fuzziness of the clusters. 

The FCM starts with an initial guess for the cluster centers, which is 
intended to mark the mean location of each cluster. The initial guess for 
these cluster centers will most likely be incorrect. Additionally, the FCM 
assigns every data point a membership grade for each cluster. By 
iteratively updating the cluster centers and the membership grades for 
each data point, the FCM iteratively moves the cluster centers to the 
“right” location within a data set. This iteration is based on minimizing 
an objective function that represents the distance from any given data 
point to a cluster center weighted by the membership grade of that data 
point. The FCM algorithm is implemented by the following steps: 

1. Choose the number of clusters C. 

2. Choose m, 1 m  . 

3. Choose a precision for termination . 

4. Initialize the fuzzy C-partition 
(0)U . 

5. Set the iteration counter t =1. 
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6. Update the centers using: 
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7. Update the memberships of all feature vectors in all the clusters 
using 
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 then stop or else t =t+1, go to step 6. 

2.4. Ant Colony Optimization Algorithm 

The ACO algorithm is an algorithm inspired by real ants. This 
algorithm was first proposed by Dorigo and colleagues as a novel nature-
inspired method for the solution of Combinatorial Optimization (CO) 
problems in the early 1990s [12]. From then on, researchers have 
successfully applied the ACO to many optimization problems such as 
continuous optimization problems [13], global optimum function [14], 
feature selection [15]. The principle of the method is based on the way 
ants search for food and find their way back to the nest. Ants can find 
the shortest path to food by laying a pheromone (chemical) trail as they 
walk. Other ants follow the pheromone trail to food. Ants that happen 
to pick the shorter path will create a strong trail of pheromone faster 
than the ones choosing a longer path. Since stronger pheromone attracts 
ants more strongly, more and more ants choose the shorter path until 
eventually all ants have found the shortest path [16].  

In the ACO, artificial ants find solutions starting from a start node 
and moving to feasible neighbor nodes in the process of building the 
solutions. Each ant builds a tour by frequently applying a stochastic 
greedy rule, which is called the state transition rule; 
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(r,u) represents an edge between point r and u, and τ(r,u) stands for 
the pheromone on edge (r,u). η(r,u) is the desirability of edge (r,u), 
which is usually defined as the inverse of the length of edge (r,u). b is 
the parameter controlling the relative importance of the desirability, q0 
is a user-defined parameter with 0≤ q0 ≤1, q is a random number 
uniformly distributed in [0, 1]. J(r) is the set of edges available at 
decision point r. S is a random variable selected according to the 
probability distribution given below; 
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 (10) 
While constructing its tour, an ant will modify the amount of the 

pheromone on the passed edges by applying the local updating rule; 

    0( , ) 1 . ,r s r s     
  (11) 

Where ρ is the coefficient representing pheromone evaporation, 
0<ρ<1.  

Once all ants have arrived at their destination, the amount of 
pheromone on the edge is modified again by applying the global 
updating rule; 
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Where; 
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Lgb denotes the length of the globally best tour from the beginning of 
the trial; the δ is the global pheromone decay parameter, 0<δ<1 and the 
Δτ(r,s) is used to increase the pheromone on the path of solution [17]. 

In this paper, the proposed approach consists of two main steps.  First, 
well log data are prepared to train and test ANFIS models to represent 
the objective function. Finally, an ACO algorithm is utilized to obtain 
the optimal objective value. Figure 1 demonstrates the algorithm process 
of the selection of the ANFIS model parameters based on ACO. 

 
Figure 1. The process of optimizing ANFIS parameters with the ACO. 

3. Field Overview 

The Marun oil field produces oil from Asmari formation which is a 
massive carbonate rock, and the structure is 63 km long in the NE–SW 
direction and 7 km wide. This field is located southeast of the city of 
Ahwaz in Khuzestan province, southwester Iran. In this field, 48 wells 
out of a total of 267 wells drilled in Gachsaran formation have 
experienced collapse, while passing through the sequence of anhydrite, 
marl and salt layers. Gachsaran is the formation above Asmari, which 
due to its composition acts as the cap rock. The Gachsaran formation 
consists of seven members which were deposited one after the other 
after the deposition of Asmari reservoir formation. Member 1, which is 
often called cap rock, consists of multiple sequences of anhydrite layers, 
gray marl layers, thin layers of carbonate and thin layers of dark 
bituminous to red shale. Up to 75% of this member is made up of 
anhydrite. Member 2 mainly includes salt layers with cross-bedded 
layers of anhydrite and gray marl. More than 70% of this member is 
made up of salt. Anhydrite, gray marl and cross-bedded carbonate are 
the main layers of member 3. Member 4 is composed of thick layers of 
salt, gray marl and thin layers of anhydrite; member 5 comprises 
anhydrite, gray marl and cross-bedded salt and carbonate layers. 
Member 6 consists of a sequence of anhydrite, red marl and cross-
bedded salt layers. Member 7 is composed of anhydrite, gray marl and 
sometimes cross-bedded carbonate [18,19]. A total of 4163 data points 
from Asmari formation that have Vs, as measured using the 
Schlumberger DSI tool, and well log data were used in this study. 

4. Inputs and Output Data 

Input selection is done to find the strongest inputs for predicting a 
target. To select the appropriate inputs, conventional well logs that have 
a logical relationship with Vs are desired. The Vs depends on many 
factors, which are listed in Table 1 [20,7]. 
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Table 1. List of the parameters that control Vs [20,7]. 

Environment Fluid Rock 

Reservoir pressure Saturation Pore shape 

Geometry of layer Gas to oil ratio Porosity 

Production history Fluid type Fracturing 

Reservoir Hydrophilic Isotropy 

Processes Fluid phase Clay content 

Temperature Viscosity Bulk density 

Stress history  Texture 

Frequency  Cementation 

  Lithification 

  History 

  Compaction 

In this paper, according to the correlation matrix (Table 2), four input 

parameters including Log Gamma (GR), Vp, vertical stress  v  and 
bulk density (RHOB), output including Vs were used. Also, it was aimed 
to model the simplest way for formulating conventional well log data to 
Vs. Knowing that conventional well logs implicitly record effects of 
lithology changes, lithology was not used as an input. Several studies 
which have been done to show conventional well log data contain 
invaluable lithology information in their records [21,22,8]. In ANFIS-
ACO modeling, a dataset that includes 4163 data points was employed 
in current study, while 3349 data points (80%) were utilized for 
constructing the models and the remainder data points (870 data points) 
were utilized for model performance evaluation.  Partial dataset used in 
this study for constructing the ANFIS-ACO models are shown in Table 
3. Also, descriptive statistics of the data sets used for modeling are shown 
in Table 4. 

Table 2. Correlation matrix between Vs and independent variables. 

Bulk Density 

 (RHOB) 

Vertical Stress 

 (󠆽σ) 

Drilling Rate 

 (DR) 
Vp 

Log Gamma 

 (GR) 
Vs  

     1 Vs 

    1 -0.6379 
Log Gamma 

(GR) 

   1 -0.7792 0.8157 Vp 

  1 0.0008 -0.2597 -0.0161 
Drilling Rate 

(DR) 

 1 0.0414 0.1725 -0.0282 0.1790 
Vertical Stress  

(󠆽σ) 

1 0.0206 -0.6515 0.4360 -0.1250 0.4014 
Bulk Density 

(RHOB) 

5. Pre-processing of Data 

In data-driven system modeling methods, in order to eliminate any 
outliers (missing values or bad data), some pre-processing steps are 
commonly implemented prior to embarking on any calculations. This 
step ensures that the raw data retrieved from database is perfectly 
suitable for modeling. In order to soften the training procedure and 
improving the accuracy of prediction, all data samples are normalized 
to adapt to the interval [-1, 1] according to the following linear mapping 
function: 

min

max min

2 1M

x x
x

x x

 
  

 

 (14) 

Where x is the original value from the dataset, xM is the mapped value, 
and xmin (or xmax) denotes the minimum (or maximum) raw input values, 
respectively. It is to be noted that model outputs will be remapped to 

their corresponding real values by the inverse mapping function ahead 
of calculating any performance criterion. 

Table 3. Partial dataset used in this study for construction of the models. 

No. 

Input parameters Output parameter 

GR 
Vp 

(Km/s) 
v  

(Mpa) 

RHOB 

(kg/m3) 

Vs 

(Km/s) 

     

1 35.0966 2.62360 54.3679 3191.90 2.2828 

2 35.8456 2.61850 54.3718 3191.90 2.2942 

3 35.6576 2.61402 54.3757 3191.90 2.3057 

4 35.9701 2.60384 54.3796 3191.90 2.3173 

5 36.8902 2.59120 54.3835 3191.90 2.3409 

6 37.0557 2.62940 54.3874 3191.90 2.3650 

7 36.2179 2.68686 54.3913 3191.90 2.3896 

8 34.5685 2.72449 54.3951 3191.90 2.5069 

9 32.0269 2.81208 54.3990 3191.90 2.4584 

10 28.8795 2.99576 54.4029 3191.90 2.4118 

 
Table 4. Statistical description of inputs and output dataset. 

Parameter Min Max Average 

 GR  8.92 121.45 27.01 

Vp (Km/s) 2.11 6.81 4.33 

σv (Mpa) 54.37 70.54 62.46 

RHOB (kg/m3) 1916.7 3191.9 2425.91 

Vs (Km/s) 1.68 3.75 2.64 

6. Prediction of Shear Wave Velocity Using ANFIS-ACO 
Models 

In this research, hybrid ANFIS was utilized with ACO algorithm 
based on fuzzy c–means clustering and subtractive clustering. The ACO 
is combined with two ANFIS models (ANFIS–FCM and ANFIS–SCM) 
for determining the optimal value of its user–defined parameters. The 
optimization implementation by the ACO significantly improves the 
generalization ability of the ANFIS models. Related to the purpose, the 
selection of ACO parameters plays an important role in the optimization 
process. A single selection of ACO parameter has a tremendous effect 
on the rate of convergence. For this research, the optimal ACO 
parameters were determined by trial and error experimentations (Table 
5). Furthermore, after 100 epochs of training, the optimal parameters of 
the ANFIS models estimated by the ACO are presented in Tables 6 and 
7. 

Table 5. Regulated parameters for run the ACO. 

Value Parameter 

20 The number of ants (initial population) 

200 Number of iterations 

100 Pheromone intensity 

4 Utility important factor 

1 Evaporation important factor 

0.1 Evaporation coefficient (ρ) 

100 Initial value of the pheromone trail (τ) 

These models were utilized to build a prediction model for the 
estimation of the Vs from available data, using MATLAB environment. 
A dataset that includes 4350 data points was employed in current study, 
while 3480 data points (80%) were utilized for constructing the model 
and the remaining data points (870 data points) were utilized for 
assessing the degree of accuracy and robustness. 
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Table 6. The optimal parameters of the ANFIS-FCM model estimated by the 
ACO. 

Parameter Value 

Error goal of training 0.001 

Initial step size 0.01 

Step size decrease rate 2.1 

Step size increase rate 3.1 

Number of clusters 5 

Table 7. The optimal parameters of the ANFIS-SCM model estimated by the 
ACO. 

Parameter Value 

Error goal of training 0.001 

Initial step size 0.01 

Step size decrease rate 2.1 

Step size increase rate 3.1 

Influence radius of a cluster center 0.4 

The training and testing procedures of two ANFIS-ACO models were 
conducted from scratch for the mentioned five datasets. The obtained 
MSE and R2 values for training datasets indicate the capability of 
learning the structure of data samples, whereas the results of testing 
dataset reveal the generalization potential and the robustness of the 
system modeling methods. The characterizations of the ANFIS-ACO 
models are revealed in Table 8. As it can be seen in Table 8, Gaussian 
function plays the role of MF. The Gaussian membership function is 
popularly used in specifying fuzzy sets, which have the advantage of 
being smooth and differentiable at all points [23]. Furthermore, the 
Gaussian membership functions facilitate theoretical analysis of fuzzy 
systems, as they are continuously differentiable and infinitely 
differentiable, i.e. they have derivatives any grade [24]. 

Table 8. Characterizations of the ANFIS-ACO models for the estimation of the 
Vs. 

Parameter 
ANFIS-SCM 

improved by ACO 

ANFIS-FCM 

improved by ACO 

MF type Gaussian Gaussian 

Output MF Linear Linear 

Number of nodes 87 37 

Number of linear 

parameters 

40 15 

Number of nonlinear 

parameters 

64 24 

Total number of parameters 104 39 

Number of training data 

pairs 

3330 3330 

Number of testing data pairs 833 833 

Number of fuzzy rules 8 3 

The number of rules obtained for the ANFIS models (ANFIS-SCM 
and ANFIS-FCM) improved by ACO are 8 and 3 respectively. The MFs 
of the input parameters for different models are presented in Figures. 2 
and 3. 

Furthermore, correlations between measured and predicted values of 
Vs for training and testing phases are demonstrated in Figures 4 and 5. 
Also, a comparison between predicted values of Vs and measured values 
for data sets at training and testing phases is displayed in Figures 6 and 
7. 

 

 

 

 

 
Figure 2. MFs obtained by ANFIS-SCM improved by ACO model. 

As presented in Figures 6 and 7, the results of the ACO-improved 
ANFIS model compared to actual data demonstrate a good precision of 
this method. Furthermore, according to Figures 4 to 7, application of the 
ACO for the ANFIS optimization decreases the estimation error and 
increases correlation in all two states of using training and testing data. 

7. Comparison among ANFIS-ACO Models and Empirical 
Correlations 

In the latter stage of this study, a comparison among ANFIS-ACO 
models and empirical correlations [25,3,26,27,1,28] was performed. A 
List of empirical correlations used for estimating the Vs is shown in 
Table 9. 

Different statistical concepts, including Mean Squared Error (MSE), 
variance account for (VAF) and correlation coefficient (R) were 
employed to carry out this comparison. Following equations 
demonstrate the aforementioned statistical tools: 
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Figure 3. MFs obtained by ANFIS-FCM improved by ACO model. 

While n is the number of samples, and y and y' are the measured and 
predicted values, respectively. Results of this comparison are shown in 
table 10. As it is obvious in table 10, ANFIS-SCM method enhanced by 
ACO outperformed other methods owing to higher R and VAF and 
lower MSE. 

Table 9. List of empirical correlations used for estimating Vs. 

Empirical equation Researcher 

 F. Gassmann [28] 0.9131 0.2564s pV V   

 G. R. Pickett [1] 
1.9

p
s

V
V 

 

 D.-h. Han et al. [27] 0.7936 0.7868s pV V   

J. P. Castagna, M. Backus [26] 20.05509 1.0168 1.0305s p pV V V     

 H. Eskandari et al. [3] 20.1236 1.612 2.3057s p pV V V     

 T. M. Brocher [25] 4 3 20.0064 0.1238 0.7949 1.2344 0.7858s p p p pV V V V V      

 

(a) 

(b) 
Figure 4. Correlation between measured and predicted values of Vs using ANFIS-

SCM improved by ACO model a) training data, b) testing data. 

(a) 

(b) 
Figure 5. Correlation between measured and predicted values of Vs using ANFIS-

FCM improved by ACO model a) training data, b) testing data. 
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(a) 

 
(b) 

Figure 6. Comparison between measured and predicted values of Vs using 
ANFIS-SCM improved by ACO model a: training data, b: testing data. 

 
(a) 

 
(b) 

Figure 7. Comparison between measured and predicted values of Vs using 
ANFIS-FCM improved by ACO model a) training data, b) testing data. 

Table 10. comparison of ANFIS-ACO models results with six well-known 
empirical correlations according to mean squared error (MSE), variance account 

for (VAF) and correlation coefficient (R). 

Method R VAF MSE 

ANFIS-SCM improved by 

ACO 

Training 0.852 72.70 0.0386 

Testing 0.873 76.32 0.0344 

ANFIS-FCM improved by 

ACO 

Training 0.814 66.27 0.0483 

Testing 0.838 70.37 0.0407 

F. Gassmann [28] 0.742 -60.87 3.5692 

G. R. Pickett [1] 0.762 60.63 0.0747 

D.-h. Han et al. [27] 0.732 -6.27 0.1996 

J. P. Castagna, M. Backus [26] 0.762 55.72 0.0703 

H. Eskandari et al. [3] 0.767 46.45 0.1671 

T. M. Brocher [25] 0.824 12.39 0.1268 

 

8. Conclusions 

A quantitative formulation between conventional well logs (available 
in all wells) and Vs eliminates the aforementioned problems and makes 
it possible to perform geophysical and geomechanical studies. Due to 
significance of calling for Vs knowledge, several researchers attempted 
to determine Vs through empirical correlations and/or traditional 
intelligent systems. Nonetheless, the quest for highest precision possible 
demands looking for high accuracy methods. In this study, hybrid 
ANFIS with ACO based on FCM and SCM was employed in order to 
respond this demand. ANFIS-ACO models were used to formulate 
conventional well log data, including Log Gamma (GR), Vp, vertical 
stress (σv) and bulk density (RHOB) into Vs. Results indicated ANFIS-
ACO models performed acceptably and it was capable of mining hidden 
knowledge about Vs from conventional well logs. A total of 3030 data 
points from Marun reservoir of Iran was used for model construction 
and 833 data points were employed for assessment of ANFIS model 
results. A comparison between ANFIS-ACO models and previous 
works, including six well-known empirical correlations verified 
superiority of ACO-enhanced ANFIS-SCM model. The comparison 
showed ACO-improved ANFIS-SCM has a higher correlation 
coefficient and VAF and at the same time lower MSE. Finally, 
implementation of proposed methodology can produce Vs for old 
and/or cased holes where no shear wave measurement has been done. 
Applying ANFIS-ACO models for new wells can significantly reduce 
costs and bring about saves in time. 
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