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A B S T R A C T 

 

In this research attempts were made to create a mortar with relatively high uniaxial compressive strength (UCS), easy casting, high flexibility, 
instant hardening, low cost and easy availability. The main use of this material is to physically model the mechanical behavior of jointed rock-
like blocks. The effect of four parameters such as joint roughness coefficient (JRC), bridge length (L), bridge angle (γ) and joint inclination 
(θ) on UCS of non-persistent jointed blocks were studied. For this purpose, 35 cylindrical specimens with a broad range of plaster content 
(P) and cement content (C) in different ages were tested. In order to increase the strength of blocky specimens, some amounts of retardant 
and lubricant agents were used. The results demonstrated that the utilization of 3 wt.% (weight percent) lubricant MGAR106 and 0.05 wt.% 
retardant decreases water content by 12.5% and increases plaster and cement content by 8.3% and 4.17% respectively. Consequently, UCS of 
blocky specimens increased by 284.33%. In order to formulate the effect of P/C content and also the age of cylindrical specimens (A) on 
compressive strength (UCS), Multivariate Non-linear Regression (MNR) and Bayesian Regularized Artificial Neural Network (BRANN) 
models were employed. The results showed that BRANN approach is able to provide more precise predictions of the specimen UCS compared 
to the results from MNR model. Moreover, P/C content had more impact on UCS than the specimen age had. Finally the UCS tests on blocky 
specimens indicated that an increasing in JRC, bridge length or bridge angle results in a rise in UCS; moreover UCS would be in its minimum 
when joint inclination was 60°. Furthermore, the capability of produced material to model cracking behavior of jointed blocks was verified. 

Keywords: Mixture plan. UCS test; Non-persistent joint; Regression modelling; Bayesian Regularization Neural Network 

1. Introduction  

Physical modeling is one of the most robust methods to study 
cracking, mechanical and shear behavior of non-persistent jointed rock 
specimens. The effect of Joint Roughness Coefficient (JRC) on shear 
strength of non-persistent rock joints has not yet been investigated using 
physical modeling. The major difficulty in conducting these 
experiments, is to create mated non-persistent jointed specimens with 
specific JRC. Often two joint surfaces in natural rock are not the same 
as each other. But on the other hand, studying the effect of joint 
roughness, bridge length and bridge angle on the mechanical and shear 
behaviour of non-persistent joints requires discontinuities with same 
roughness. Therefore, in order to investigate the effect of rock joint 
roughness on mechanical and shear response of non-persistent jointed 
specimens, a specific mixture plan is required. Many researchers have 
used artificial specimen -so called ‘rock-like’ material- to investigate the 
influence of abovementioned parameters on specimens with open or 
close non-persistent smooth joints [1-14].  

Gehle and Kutter’s took advantages of pure gypsum to investigate 

breakage and shear behavior of intermittent rock joints [7]. Prudencio 
et.al utilized a mixture of fine sand, cement and distilled water, mixed in 
proportion of 4000/1000/1235 by weight to study the strength and 
failure modes of rock mass models with non-persistent joints [9]. 
Uniaxial and triaxial compression tests made with this mixture 
produced the following results: unconfined compressive strength 
σc=3.46 MPa after 14 days, cohesion 0.86 MPa, peak angle of friction 37˚, 
tensile strength σt=0.45 MPa, tangent modulus of deformation E50=2400 
MPa, and Poisson’s ratio 0.16. Ghazvinian et al. used a mixture of plaster 
(37.5%), cement (25%) and water (37.5%) to model the failure 
mechanism of planar non-persistent open joints [10]. Wong et.al used a 
mixture of barite, sand, plaster and water with a mass ratio of 2:4:1:1.5 to 
investigate crack coalescence in rock-like materials containing three 
flaws [11, 12]. The average values of specific weight, uniaxial 
compressive strength, tensile strength and friction coefficient of the 
modeling material were γ=17.67 KN/m3, σc=2.09 MPa, σt=0.35 MPa, and 
0.62, respectively. Park and Bobet investigated crack coalescence in 
specimens with open and closed cracks using a mixture of Hydrocal B-
11, a gypsum, diatomaceous earth and tap water [13]. The water and 
mass proportions used were water/gypsum = 0.4, and 
water/diatomaceous earth = 35.0. The uniaxial compression strength of 
non-jointed gypsum specimens was about 35 MPa. Huang et.al 
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investigated fracture mechanical behavior of rock-like materials 
containing two unparalleled fissures under uniaxial compression 
utilizing rock-like specimens by compounding C42.5 cement, quartz 
sand, and water at a mass ratio of 1.0:0.8:0.35 [14].  

 Many researchers have applied Artificial Neural Networks (ANNs) 
and Multivariate Regression (MR) in the field of geotechnical 
engineering [15-19]. Recently Kumar et al. [15] predicted rock 
properties using MR and ANNs and by taking drill bit speed, 
penetration rate, drill bit diameter and sound level produced during 
drilling as input parameters. Esamaldeen et al. [16], used ANNs and the 
MR in order to predict UCS of banded amphibolite rocks. In this 
research micro-fabric properties including grain size, shape factor and 
quartz content were used as input parameters. An attempt was made to 
develop artificial neural network and multivariable regression analysis 
models in order to predict UCS of rock surrounding a roadway [17]. 
Rock mass deformation modulus was predicted utilizing ANN based on 
geotechnical log sheet data [18]. Rezaei et al. [19] developed two 
predictive models including soft computing methods and multivariable 
regression analysis to predict deformation modulus based on data 
obtained from dilatometer tests. 

In this paper, synthetic rock-like material has been produced to 
investigate the strength behaviour of non-persistent jointed blocks, 
equivalent to soft rock. Mixtures with a wide range of Plaster content 
(P), Cement content (C) and specimen Age (A) were prepared and 
tested. The effect of additives and lubricants on blocky specimens was 
also studied. Furthermore, the influence of P, C content and A on UCS 
of cylindrical specimens was investigated; and two models including 
Multivariate Non-linear Regression (MNR) and Bayesian 
Regularization Artificial Neural Network (BRANN) model were made 
and presented. Best mix to create physical modeling of non-persistent 
rough joints was proposed. Using this mixture some blocks with non-
persistent joints were created. The effect of non-persistent joint 
parameters on strength behavior of rock-like blocks were studied and 
the capability of the produced synthetic rock-liked material for the 
investigation of crack propagation under uniaxial loading condition was 
studied. 

2. Materials and Methods 

In this study, an appropriate artificial material is produced using 
plaster, cement, water and several additives. The most important 
characteristics of this material are: brittleness and relatively enough 
gelation time for providing non-persistent joints easily and relatively 
high strength in comparison to pure plaster. However, a combination of 
plaster and cement is normally used as a model material for simulating 
weak rocks. This mixture is applied due to its easily casting, flexibility, 
short setting time, low cost, and availability [20-21]. Furthermore, its 
higher unconfined compression strength in comparison with pure 
plaster and pure cement makes it a suitable material for modeling a 
jointed rock medium. 

2.1. Cylindrical Specimen Preparation 

A mixture of plaster and cement (type II), was utilized to prepare 
rock-like specimens. To do so at the first step, water content was 
determined to be 40 wt. % (wt. % means mass percentage). Therefore, 
60 wt. % of mixture was made of solid (combination of plaster and 
cement). In the next step, the optimum value of P to achieve the highest 
UCS was investigated. Therefore, P was varied from 0 to 60 % of total 
mass and C from 60 to 0 %, simultaneously. Depending on mixture plan 
for each specimen 200 to 300 gr of plaster and cement were mixed 
thoroughly with 200 to 300 ml (40% by weight) of water to form a 
uniform paste. The specimen was prepared by pouring the mixture in 
the mold. The mold is an axially cracked cylinder with the internal 
diameter of 54 mm and height of 160 mm, fastened by clamps. Its base 
was adhered on a steel plate (Figure 1a).  The mold was shaken by a 
vibrating table machine for approximately 2 minutes to achieve 
appropriate compaction and departure of air bubbles. The specimens 

were split by the length of 120±1 mm and kept in 25˚c temperature for 
1- 28 days, depending on the objective. (Figure 1b) 

 

 
Figure 1. a) The molds for specimen preparation b) The prepared specimens. 

2.1.1. Optimum Mix Plan 

Since this material was to be used to investigate the effect of joint 
roughness on the mechanical response of specimens, it was required to 
possess a relatively high strength compared to pure plaster cylinders. 
The effect of plaster content on unconfined compression strength of 
prepared specimens at different ages is presented in Figure 2. Where P 
= 0 indicates that P = 0 wt % while at the same time C = 60 wt % and W 
= 40 wt % and P = 10 indicates that P = 10 wt %, C = 50 wt % and W = 
40 wt % and so on. Samples with seven different plaster contents 
including 0, 10, 20, 30, 40, 50 and 60% were tested at different ages of 1, 
3, 7, 14 and 28 days. 

 
Figure 2. The effect of the P content on UCS of specimens with different ages. 
The best mixture plan, as illustrated in Figure 2, is a combination of 

P = 40%, C = 20% and W = 40% which results in a UCS of 20.67 MPa. 
Therefore, in order to achieve the highest UCS, the P/C ratio of 2 is 
determined. Consequently, as presented in Figure 3, the effect of water 
content on UCS of specimens with P/C=2 was examined. Hence, three 
specimens with W= 35, 40 and 45% were investigated. 
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Figure 3. The effect of water content on UCS (A: 14 days). 

At W > 40% the UCS is sharply reduced while for W < 35% the paste 
could not be made properly. One can arrive to the conclusion that W = 
40% is the optimized value.   

To investigate the effect of water temperature on UCS, some 
specimens were prepared with different water temperatures ranging 
from 10°C to 35°C (Figure 4).  The results showed that at 20-25°C UCS 
does not vary and it fits well with normal lab temperature. 

 
Figure 4. The effect of water temperature on UCS of cylindrical specimens (A: 14 

days). 

2.2. The Mix Plan for Blocky Specimens 

  The optimum mixture plan is used for blocky specimens (300 mm 
high, 300 mm wide, and 120 mm thick). Ten minutes of blending is 
required to make a uniform mixture. In the process of making blocky 
specimens, high amount of water content (i.e. W = 40%) and blending 
of the constituents for a long time bring about a reduction in UCS. The 
uniaxial strength of cylindrical specimens is 21 MPa, while UCS of 
blocky specimens with the same mixture is 6 MPa. Furthermore, the 
gelation time of this mortar (the interval between first and second 
setting times) is too short for making non-persistent joints. Therefore, 
some retardant and lubricant agents shall be used to prepare blocky 
specimens with relatively high UCS. At the first stage, the “Pardis 
Retarder” was examined for increasing the gelation time. The 
relationships between retardant and gelation time vs. UCS of cylindrical 
specimens are shown in Figure 5. As it can be seen, using 0.05% retardant 
(by weight of the total mixture) not only increased the gelation time of 
the mixture from 2 to 12 minutes but also increased the uniaxial 
compression strength of cylindrical specimens from 20.67 to 24 MPa. 

  For producing the blocky specimens, at least 10 minutes gelation 
time is needed; therefore according to Figure 5, 0.05wt% retardant with 
12 minutes gelation time is chosen. On the other hand, lubricant can 
reduce the water content of the mixture, which in turn increases the 
solid content and fluidity. In this study, two commercial brands of 
lubricants (MGAR102 and MGAR106) were examined. In order to 
achieve maximum UCS, 3% lubricant by weight of plaster shall be used, 
as suggested by the lubricant producer. Therefore, three configurations 

of these lubricants were tested on blocky specimens and the results of 
which are presented in Table 1. As it can be seen, using 3% of the 
lubricant MGAR106 is suitable to increase the specimen strength. Using 
3% lubricant, brought about a decrease in water content from 40 to 
27.5%, an increase in plaster from 40 to 48.33% and an increase in the 
cement content from 20 to 24.17%.  

 
Figure 5. The effect of retardant on gelation time and UCS of cylindrical 

specimens (A: 14 days). 

Table 1. The effect of two different lubricants on the uniaxial compression 
strength of blocky specimens (A: 14 days). 

 

Parameter Test set 1 Test set 2 Test set 3 

Lubricant MGAR106 (%) 3 1.5 0 

Lubricant MGAR103 (%) 0 1.5 3 

UCS (MPa) 22.97 20.17 18.11 

  The best configuration is using 3 wt% MGAR106 lubricant, which 
results in the UCS of 23.06 MPa. By using the lubricant MGR106, the 
blending time for preparation of the mixture and water content were 
reduced from 10 minutes and 40% to 4 minutes and 27.5% respectively. 
Finally, it should be mentioned that the combination of retardant and 
MGAR106 factor extends the gelation time of mortar from 12 minutes 
in cylindrical specimens and to 14 minutes in blocky specimens. This is 
very helpful and necessary to create non-persistent mated joints. On the 
contrary, without these two additives the gelation time of mortar 
decreases to less than 2 minutes which renders the creation of non-
persistent mated joints impossible. 

2.3. Mechanical Properties of Intact Specimens 

  In order to determine the mechanical properties of artificial 
material, laboratory tests such as UCS, triaxial and Brazilian tests were 
conducted on cylindrical and blocky specimens. A summary of 
mechanical properties of specimens is listed in Table 2. 

Table 2. Mechanical properties of rock-like specimens. 
Parameter Cylindrical specimen Blocky specimen 

σc (MPa) 23.70 22.97 

E (GPa) 10.53 3.78 

σt (MPa) 3.43 - 

Poisson's ratio 0.17 - 

Cohesion (MPa) 10.99 - 

Internal friction angle (degree) 23.95 - 

It should be noted that the word brittleness is not a property but a 
behavior and there is not any agreement between researchers on which 
number a specimen can be called brittle or ductile [22].  Therefore, 
rather than using a number as brittleness index, the dropping behavior 
of the UCS after peak load was what this research was looking for and 
this specimen seemed to meet this behavior. The dropping behavior of 
the UCS after the peak load in stress-strain curves of cylindrical and 
blocky specimens are illustrated at Figure 6. This figure indicated the 
prepared specimen was brittle enough to be used for modeling of 
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cracking behavior. 

 
Figure 6 Stress-strain curves for cylindrical and blocky specimens. 

2.4. Jointed Specimen Preparation 

2.4.1. JRC Sheets 

  The joints were created using 3D JRC sheets with dimensions of 150 
× 100× 1 mm as presented in Figure 7. 3D JRC sheets were prepared 
using digitizing the standard JRC profiles proposed by Barton. The 
sheets are designed according to the digitized profiles utilizing 
SolidWorks software and created using a 3D printer. The mechanical 
properties of JRC sheets are presented in Table 3. 

 
Figure 7. 3D JRC sheet of Barton (JRC, 14-16), a) designed by SolidWorks 

b) prepared by 3D printer. 

Table 3. Mechanical properties of JRC sheets (All units in MPa). 
Material σci Ei Tensile strength Flexural strength Flexural modulus 

Vero-Gray 85.5 3000 60 95 3000 

2.4.2. The Cast for Preparing Non-Persistent Jointed Specimens 

Some identical specimens were made by designing the cast in such a 
way to have high flexibility for a wide range of non-persistent joint 
parameters (Figure 8). The cast has three parts as follows: 1) frame: 
consisting of a box and upper platform; 2) T-shaped segment: which is 
held by upper platform and is connected to the L-shaped segment, and 
finally 3) a pair of the L-shaped parts on which JRC sheets are 
assembled. The components of cast were as follows: 

1. The main box: the bottom of the main box and the walls were 
made of steel and Plexiglas, respectively. They were connected by 
bolts at the bottom of the box. The dimensions of the box are 300 
× 300 × 120 (in millimeters). 

2. Bolt rail: on each wall, a profile has been mounted on which the 
head of a bolt can easily move. These profiles act as a rail for the 
bolt. A ruler has also been installed on these profiles to control 
the joint inclination (θ) utilizing the x-y coordinate system. 

3. The upper platform: assembled on the box using two rods.  
4. Protractor: installed on the upper platform to control the bridge 

angle (γ).  
5. T-shaped segment: there is a hole on the upper platform in which 

the T segment can be easily rotated in order to measure the 
rotation along the protractor through a mounted pointer. On the 
lower part of the T segment as well, there is a sliding rail on which 
the head of the L segment can easily move, and a ruler which 
helps in controlling the length of the bridge. 

6. The head of the L segment: this part can easily slide on the sliding 
rail of T segment and it can be fixed using two bolts installed in 

the upper and lower parts. The head and the other part of the L 
segment can easily rotate around the lower bolt. 

7. The L segment: it is placed on a sliding rail-like profile and has a 
notch in its lower part. This segment can easily move in x and y 
directions using a bolt located on the abovementioned rail. 

8. The notch: JRC sheet is easily seated in the second notch 
(number 8 in Figure 8). There is a set of jaws that hold the JRC 
sheet On top of this notch. Two sets of bolts on the top can fix 
these jaws. 

9. The JRC sheets:  these sheets can be held by the lower part of L 
segment. 

 
            Figure 8. Schematic view of designed cast for pre-creation of non-

persistent jointed specimens. 

2.5. Preparation of Non-Persistent Jointed Specimens 

After complete adjustment of cast regulation and joint pattern (at the 
bottom of the cast), and correctly setting of the upper and lower parts 
of JRC sheets, the cast would be ready for pouring the mortar (Figure 
9a). The mortar was gently poured in the cast after it was carefully 
mixed. Keeping JRC sheets unmoved is very crucial. In this regard, two 
actions has to be done simultaneously: 1) the mortar should be poured 
very slowly and gently from the corners of the cast; 2) a normal load on 
the JRC sheets must be applied, until the cast is completely full. The 
mortar was thoroughly mixed for 12 minutes and while it started 
hardening the sheets were removed simultaneously. The critical part of 
this process was the removal time of JRC sheets. Too early removing of 
the sheets results in gluing the joint surfaces to each other and inheriting 
high cohesion. On the other hand, if the removal time of the sheets 
exceed 14 minutes, the sheets will stick into the specimen and could not 
be removed. This could resulted in the loss of a specimen. Figure 9b 
presents non-persistent joint with JRC 0-2. 

 

 
Figure 9. Non-persistent jointed specimen: a) Pattern of joints at the bottom of 

the cast; b) Step non-persistent jointed specimen (JRC, 0-2). 
  In the following section, attempts have been done to formulate the 

UCS of cylindrical specimens in the terms of P and A using MNR 
modeling. 
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3. Multivariate Non-Linear Regression Analysis 

  MNR is an extension of the regression analysis that includes 
additional independent variables in the predictive equation. Nonlinear 
regression is appropriate when the relationship between the dependent 
and independent variables is not intrinsically linear. This method is 
employed to establish an empirical formula in order to predict the 
dependent variables based on the known independent variables [23]. 
Here, a relationship between unconfined compressive strength (output) 
and the other relevant parameters (inputs), that is, P and A has been 
discussed based on the multivariate non-linear regression. To generate 
multivariate relation on the basis of same database as considered for 
training the ANN model, the statistical software package SPSS21 was 
used. The analysis of variance (ANOVA) technique was applied to the 

results of the non-linear regression and its statistical parameters were 

attained as presented in Table 4. 
Table 4. Analysis of variance. 

Model Sum of squares Degree of 
freedom 

Mean 
square 

R squared* 

UCS 

Regression 7925.178 3 2641.726 0.716 

Residual 74.803 32 2.338  

Uncorrected Total 7999.980 35   

 Corrected Total 262.971 34   

* R squared = 1 - (Residual Sum of Squares) / (Corrected Sum of Squares) 

The non-linear multiple regression (MNR) equation for UCS values 
found is as follows: 

0.0051.752 10.031 PUCS Ln A e   (1) 

The regression analysis was done to formulate the UCS of rock-like 
material in terms of P and A. Since R2 of the suggested formula is not 
very good, the neural network analysis was done to predict UCS of 
cylindrical specimens in terms of P and A. 

4. Artificial Neural Networks 

Artificial neural networks are a form of artificial intelligence which is 
based on biological structure found in human brains. In the cases that 
the relations between inputs and outputs are unknown, ANN can be 
used to learn and compute the relations between them. In engineering 
problems, ANNs can be used to affirm and purify design solutions [24]. 
An ANN is a computing system consisting of highly interconnected set 
of simple information processing elements called neurons or 
perceptrons. The arrangement of these neurons determines the ANN 
architecture. A particular network is defined using three fundamental 
components: transfer function, network architecture, and learning law. 
One has to define these constituents depending on the problem to be 
solved [25, 26]. One of the most commonly implemented ANNs is 
Bayesian Regularization of Neural Networks (BRANN) technique. 

4.1. Bayesian Regularization of Neural Networks 

  Bayesian regularized artificial neural networks (BRANNs) is one of 
the most commonly implemented ANNs. BRANNs are kind of back 
propagation learning approaches that are more powerful than 
conventional back-propagation networks and can omit at least decrease 
the necessity for lengthy cross-validation step. The back propagation 
ANN is a very popular method in the field of ANN that depends on 
supervised learning, typically via the use of a gradient descent method 
to reduce a chosen error function. General architecture of feed forward 
neural network are input, hidden and output layers. The connection 
between neurons in each layer is called a link (Figure 11). The 
measurement of the connection between two nodes is provided by these 
links that contain a weighted value. [27,28]. These weights are changed 
by the supervised learning method in order to decrease the arbitrary 
error function –usually mean square error- to enhance the network for 
use on unknown specimens. Overfitting and overtraining is a major 
issue in this technique, and each of them results in a fitting of the noise 

and a loss of generalization of the network.  Bayesian regularization is a 
mathematical technique that was proposed in order to reduce the 
overfitting problem by converting nonlinear systems into ‘well-posed’ 
problems [29, 30]. Generally speaking the objective of training step is to 
minimize sum square error of the model output and target value. An 
additional term is added by BRANN to this equation: 

D wF E E    (2) 
Where, F is the target function, ED is the sum of squared errors, Ew 

is the sum of square of the network weights, and a and b are target 
function parameters [30]. In BRANN the weights are considered 
random variables and thus their density function is written according 
the Baye’s rules [31]: 

( , , ) ( , )
( , , , )

( , , )

P w D M P w M
P w D B M

P D M

 


 


 (3) 
  Where, w is the vector of network weights, D represents the data 

vector, and M is the neural network model being used. Forsee and Hagan 
assumed that the noise in the data was Gaussian, and with this 
assumption they were able to determine the probability density function 
for the weights [31]. The optimization of the regularization parameters 
a and b demands for solving the Hessian matrix of F(w) at the minimum 
point wMP. They proposed a Gauss–Newton approximation to the 
Hessian matrix which is possible if the Levenburg–Marquardt training 
algorithm is used to locate the minimum [31]. This technique reduces 
the potential for arriving at local minimum, thus increasing the 
generalizability of the network. The novelty of this technique is the 
probabilistic nature of the network weights in relation to the given data 
set and model framework. As a neural network grows in size through 
additional hidden layer neurons, the potential for overfitting increases 
dramatically and the need for a validation set to determine a stopping 
point is crucial. In Bayesian regularized networks, overly complex 
models are penalized as unnecessary linkage weights are effectively 
driven to zero. The network will calculate and train on the nontrivial 
weights, which are also known as the effective number of parameters 
and which will converge to a constant value as the network grows [29]. 
The inherent noise and volatility of physical modeling data introduces a 
high probability of overfitting and overtraining for general back 
propagation networks. These more parsimonious networks reduce the 
chance of overfitting while eliminating the need for a validation step, 
thus increasing the available data for training. 

4.2. Data Collection and Preparation 

   Data collection is one of the most important steps in ANN 
modeling. Here, 35 specimens were made with different ratios of plaster 
and cement. The specimens with different ages were tested. The data 
collection was made using physical testing. In these experiments, the 
independent variables namely P/C ratio and the age of specimens were 
introduced based on P (plaster content percentage) and the day of testing 
after specimen preparation. In addition the dependent variable were defined 

to be uniaxial compression strength of specimens (UCS). The list of the 

data collected is presented in Table 5. 

4.3. Determination of Optimum Network 

The optimum architecture of BRANN model can be determined by 
testing different types of networks based on trial and error. Therefore, 
root mean square error (RMSE) is evaluated for all models, and 
accordingly, the model with minimum RMSE was chosen as the 
optimum model. The optimum number of neurons in hidden layers was 
also obtained by trial and error based on the minimum RMSE. The 
network performance for different numbers of neurons in hidden layers 
is depicted in Figure 10. As it is illustrated in the figure, to determine the 
optimum number of hidden neuron, nine networks with different 
number of neurons in hidden layers were examined. The optimum 
neurons can be located in one or two hidden layers that their 
arrangements must be determined. According to Figure 10, a network 
with 8 neurons in hidden layers had the best performance in comparison 
with the others. 

https://www.google.com/search?espv=2&biw=1280&bih=595&q=define+necessity&sa=X&sqi=2&ved=0ahUKEwisnO36gMzKAhXHOhQKHVCrDtcQ_SoIJzAA
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Table 5. The list of the collected data. 

No. Specimen age (in ay) P (%) UCS (MPa) 

1 1 0 11.13 

2 1 10 11.00 

3 1 20 11.40 

4 1 30 11.95 

5 1 40 12.30 

6 1 50 14.08 

7 1 60 11.22 

8 3 0 11.95 

9 3 10 12.10 

10 3 20 12.58 

11 3 30 12.58 

12 3 40 13.83 

13 3 50 14.46 

14 3 60 12.58 

15 7 0 15.09 

16 7 10 12.58 

17 7 20 14.29 

18 7 30 15.43 

19 7 40 16.91 

20 7 50 19.35 

21 7 60 17.21 

22 14 0 16.29 

23 14 10 13.52 

24 14 20 15.34 

25 14 30 16.32 

26 14 40 20.67 

27 14 50 20.12 

28 14 60 19.49 

29 24 0 14.46 

30 24 10 14.90 

31 24 20 14.95 

32 24 30 15.72 

33 24 40 18.79 

34 24 50 18.52 

35 24 60 17.27 

In the next step, according to the optimum number of neurons in 
hidden layers, RMSE was calculated for different types of the models 
including one and two hidden layers with different number of neurons 
and transfer functions (Table 6). RMSE is calculated by equation (3) 
[32]: 

2

1

1 n

k k

i

RMSE ( u u )
N 

 
 (3) 

Which, ku  and uk are the kth predicted and observed values of target, 
respectively. 

 
Figure 10. Network performances for different numbers of neuron in hidden 

layers. 
 

  As it can be seen from Figure 10 and Table 6, the network with 
architecture 2-6-2-1 and TANSIG transfer function 
had the minimum RMSE, hence it was considered as the optimum 
model.  

Table 6. Results of some models with different architecture and transfer 
functions. 

No. Network architecture 
RMSE (Transfer function, 

TANSIG) 

RMSE (Transfer 

function, LOGSIG) 

1 2-8-1 1.58 1.74 

2 2-7-1-1 1.37 1.98 

3 2-6-2-1 1.11 1.15 

4 2-5-3-1 1.23 1.35 

5 2-4-4-1 1.53 2.35 

Figure 11. shows a graphical presentation of this network. Also, the 
whole information of optimum network architecture is given in Table 7.  

 
Figure 11. Suggested BRANN architecture for the UCS prediction. 

Table 7. Full information of the optimum network architecture. 
Number of input neurons 2 

Number of hidden layers 2 

Number of hidden neurons 8 

Number of output neurons 1 

Number of training epochs 300 

Number of training datasets 25 

Number of testing datasets 10 

Training function Bayesian Regularization 

Transfer function TANSIG 

Learning rate 0.1 

Error goal 0 

Approximately 30 % of the dataset was randomly chosen to test the 
optimum ANN model. These data were not used in the training of the 
network. This leads to test the ANN application in a more versatile 
manner. The results of the network are presented in this section to 
demonstrate its performance. Correlation coefficient between the 
predicted and measured values of UCS is taken as the network 
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performance. The prediction was based on the input datasets that were 
discussed in the previous section. Figure 12 shows the results for 
optimum network in terms of correlation coefficient for training and 
testing processes. 

 

 
Figure 12. Results of the optimum neural network model. 

5. Comparison of Models Performance 

  The performance of MNR and BRANN models were evaluated using 
variance accounted for (VAF), root mean square error (or RMSE as 
described in Equation 3), mean absolute error (MAE) and the 
coefficient of efficiency (CE), defined as follows: 
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Where, var denotes variance; ku  and ku are already introduced in this 

research; u is the mean of predicted target values; and N is the number 
of observations for which the error has been computed. VAF index 
displays the degree of difference between the variances of measured and 
predicted datasets. VAF values closer to 100% indicate low variability 
and consequently better prediction capabilities. RMSE index is the 
measure of bias between measured and predicted data. The lower the 
RMSE, the better the model performs [18,25,26]. Ideally, the value of 
RMSE and MAE should be zero and that of CE should be one. The 
relevant outputs were controlled with performance indices. A 
comparison between models performances indexes is presented in Table 
8. 

   For testing the models, 10 datasets that were not incorporated into 
the development of the models were used. Based on the testing data, the 
models performance indices were calculated and summarized in Table 
8. Also, comparison between predicted and measured UCS for BRANN 
and MNR models are shown in the Figures 13 and 14, respectively. It can 
be seen from the comparisons that the performance of BRANN model 
in terms of those indices is much better than MNR model and its results 
are closer to the real-world data. 

 
Figure 13. Comparison between the measured and predicted UCS for the ANN 

model. 

 
Figure 14. Comparison between measured and predicted UCS for the MNR 

model. 
 

Table 8. A comparison between average performance indices of MNR and 
BRANN models. 

Index MNR model BRANN model 

R2 75.63 96.77% 

VAF (%) 75.62 90.74 

RMSE 1.64 1.11 

MAE 1.23 1.01 

CE 0.67 0.79 

6. Sensitivity Analysis 

Sensitivity analysis was performed on the output of the models in 
order to recognize the input parameters with the most significant 
impact on the average output parameter. Cosine amplitude method was 
used to investigate similarity relations between the interconnected 

parameters (CAM) [18, 33, and 34]. In this method, the data pairs are 
expressed in a common X-space and used to construct a data array X 
which is defined as: 

},...,,{ 321 mXXXXX   (8) 
Each elements (Xi) in the data array X is a vector of lengths and 

expressed as follows: 

1321 },...,,,{ imiiii xxxxX   (9) 

Therefore, in this method each data pairs is considered as a point in 
m-dimensional space, where each point requires m-coordinates for a full 
description. Each element of the (rij) relation results a pairwise 
comparison of two data pairs. The strengths of relations (rij) between 
output and input parameters can be calculated as follows: 
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Figure 15 shows the strength values of relations (rij) between input 

parameters and UCS for BRANN and MNR models. As it is depicted in 
Figure 15, according to the results of both models, plaster content had a 
more pronounced influence on UCS than specimen age had. 
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Figure 15. Strength of relationship (rij) between UCS and input parameters a) 

BRANN model b) MNR model. 

7. UCS Tests on Blocky Specimens 

7.1. Setup and Testing Procedure 

  The tests were carried out using a Material Testing Machine (MTS) 
under displacement controlled condition. For the UCS tests, the normal 
and constant velocity of 0.005 mm/s was controlled by the MTS 
machine. The load was applied to the specimen using two steel plates. In 
order to neutralize the effect of friction between these steel plates 
against the specimen, Teflon sheets of 2 mm thickness were used. A view 
of non-persistent joint parameters and loading condition is illustrated in 
Figure 16. 

 
Figure 16.  Joint configuration and boundary condition in uniaxial compressive 

loading. 

7.2. Physical Experiments Setup 

The physical tests were designed using Response Surface 
Methodology (RSM) which is some sort of experiment design method. 
A total Central Composite Design (CCD) experiment contained 30 
points in which 24 points were factorial points and the remaining 6 
points were zero points used to estimate the experimental error. The 
results of this method have been presented elsewhere. Some specimens 
of the CCD experiment used in this research are presented in Table 9. 

7.3. Effect of Non-Persistent Joint Parameters on the Strength 
Behavior of the Blocks 

  The effect of joint inclination (θ), Joint Roughness Coefficient 
(JRC), bridge angle (γ) and bridge length (L) on the strength behavior 
of jointed blocks was investigated using physical modeling. While 
studying the effect of one parameter, the other parameters were kept 
constant at their average value. 

7.3.1. Joint Inclination (θ) 

The effect of θ on the σc was investigated by varying this parameter 
from 0º to 90º. The physical models were tested with θ of 0º, 45º and 90º. 
The results showed that as joint inclination increases from 0º to 60º, σc 

decreases; and but when θ increases from 60º to 90º, uniaxial 
compression strength increases (Figure 17). Indeed, UCS takes its 
minimum at joint inclination of 60º. It should be noted that, as θ takes 
values less than 30º, the stress concentration at joint tips decreases and 
stress distributes more uniformly over the rock bridges. This leads to an 
increase in σc.   

Table 9. CCD experimental results of the specimens used in this investigation. 

Specimen code JRC L (mm) γ (degree) θ (degree) σcj (MPa) 

U1 10 25.0 135.0 0.0 21.66 

U2 0 25.0 135.0 45.0 15.00 

U5 20 25.0 135.0 45.0 19.03 

U11 10 25.0 135.0 45.0 17.01 

U12 10 25.0 135.0 45.0 16.21 

U14 10 25.0 180.0 45.0 18.88 

U15 10 25.0 135.0 45.0 16.44 

U18 10 25.0 135.0 45.0 16.04 

U19 10 25.0 135.0 90.0 17.60 

U20 10 25.0 90.0 45.0 13.90 

U21 10 10.0 135.0 45.0 15.50 

U27 10 25.0 135.0 45.0 16.55 

U29 10 40.0 135.0 45.0 18.52 

U30 10 25.0 135.0 45.0 16.78 

 
Figure 17.  Effect of joint inclination on σc. 

7.3.2. JRC 

  The effect of JRC was investigated by varying this parameter from 
0-2 to 18-20. JRC was taken to be 0-2, 10-12 and 18-20 in physical models. 
The effect of JRC on σc is shown in Figure 18. The results indicate that 
as the JRC increases, σc increases as well. 

 
Figure 18. Effect of JRC on σc. 

7.3.3. Bridge Angle (γ) 

  The effect of bridge angle (γ) on σc was studied by altering the value 
of this parameter from 90º to 180º. The physical model was tested with γ 
of 90º, 135º and 180º. The results indicate that as γ increases σc increases 
as well (Figure 19).  
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Figure 19.  Effect of bridge angle on σc. 

7.3.4. Bridge Length (L) 

   To consider the effect of bridge length on σc, bridge length was 
varied from 10 mm to 50 mm. Bridge length was taken 10 mm, 25 mm 

and 40 mm in physical models. The effect of bridge length on uniaxial 
compressive strength is shown in Figure 20. The results indicate that as 

the length increases σc increases as well. 

 
Figure 20. Effect of bridge length on σc. 

Although the investigation of crack initiation, propagation and 
coalescence of non-persistent joints is out of the scope of this paper and 
the discussion of this issue is presented elsewhere, but in this section 
just as an example, the crack initiation, propagation and coalescence of 
specimen U30 which is a central point in the CCD experiment design is 
presented in Figure 21. This example indicates that the produced 
synthetic rock-like material is good enough to model crack development 
under uniaxial compressive loading.  

 
Figure 21. Specimen U30 (θ=45º) a) before test and initiation of outer crack tips 

b) crack coalescence in the bridge area c) after test d) schematic view of the 
propagated cracks. 

8. Conclusions 

In this paper, a synthetic rock-like material was produced to 
physically model weak rocks. This material is appropriate to investigate 
the effect of non-persistent joint parameters on mechanical behavior of 
blocky specimens. The effect of parameters such as plaster content, 
cement content, specimen age, retardant and lubricant on the UCS of 
small specimens were investigated. An MNR and a BRANN model were 
developed to predict UCS of cylindrical specimens based on plaster 
content and specimen age. Finally, the effect of joint inclination (θ), 
Joint Roughness Coefficient (JRC), bridge angle (γ) and bridge length 
(L) on the strength behavior of jointed blocks was investigated using 
physical models. The following key conclusions can be drawn.  

1. In cylindrical specimens, the highest UCS=20.67 MPa was 
obtained by combination of W=40%, P=40% and C=20%. The 
UCS of  blocky specimens with this mixture plan measured at 6 
MPa. This reduction happened mainly due to long mixing time 
and high amount of paste water content. In addition, the gelation 
time of this mixture plan was so short (about 1 to 2 minutes) and 
this time is not enough to produce non-persistent jointed 
specimens. 

2. The water temperature in mixture affects the UCS of specimens. 
In order to remove the impact of temperature variation of paste 
water on UCS, the water temperature was kept constant in the 
range of 20C° to 25C°, which is equivalent to the normal room 
temperature. In this temperature interval, UCS had minimum 
variation. 

3. Using retardant increased the gelation time of the mixture and 
decreased the unconfined compression strength of the specimen 
simultaneously. Therefore, using 0.05 % retardant (by the weight 
of the mixture) increased the gelation time of the mixture from 2 
to 12 minutes. Furthermore, using retardant and lubricant in 
blocky samples increased gelation time up to 14 minutes. 

4. By reducing the water content and increasing solid content and 
fluidity of the mixture, lubricant resulted in an increase in the 
UCS of blocky specimens. Using 3% lubricant MGAR106 (by the 
weight of plaster) resulted in an increase of 8.33 % plaster, 4.17% 
cement content and a decrease of water content of 12.5%. These 
all in turn yielded an increase of 284.3% in block strength. 

5. The effect of P and specimen age on UCS of cylindrical 
specimens was examined. Based on these two parameters, a 
Bayesian regularization neural network model and a multivariate 
non-linear regression model were developed to predict UCS of 
cylindrical specimens. The average performance of proposed 
models was evaluated by the following indices: variance account 
for (VAF), root mean square error (RMSE), mean absolute error 
(MAE), coefficient of efficiency (CE), and coefficient of 
correlation (R2). The optimum average performance of the 
BRANN and MNR models was verified by the calculated values 
of VAF, RMSE, MAE, CE , R2 as 90.74%, 1.11, 1.01, 0.79, 96.77 % 
and  75.62%, 1.64, 1.23, 0.67, 75.63% respectively for both models. 
The results obtained from this study indicate that the developed 
BRANN model can generalize complex nonlinear relationships 
between UCS and P content and specimen age. This showed that 
BRANN model can provide a more accurate prediction for UCS 
values than MNR model does. 

6. Sensitivity analysis was conducted on the inputs of both models. 
The results of the cosine amplitude method (CAM) showed that 
P had the most noticeable impact on UCS of cylindrical 
specimens.  

7. The results of this research showed that the produced rock-like 
material with properties of P/C=2, W=27. 5% of the weight of the 
mixture, 3% MGAR106 factor by the weight of plaster and 0.05% 
of the weight of the solid is suitable to physically model 
mechanical and cracking behavior of non-persistent jointed 
specimens subjected to uniaxial compressive load. 

8. Uniaxial strength takes its minimum at θ=60º when joint angle is 
varied. The maximum UCS is provided when θ = 0º.   

9. Increasing each of JRC, bridge length and bridge angle 
parameters of a non-persistent joint while other properties 
unchanged, increases the compressive strength of blocky 
specimens. 
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