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Abstract 

In this study, 115 samples taken from the stream sediments were analyzed to determine the concentrations of 

As, Co, Cr, Cu, Ni, Pb, W, Zn, Au, Ba, Fe, Mn, Sr, Ti, U, V and Zr. In order to outline mineralization-

derived stream sediments, various mapping techniques including fuzzy factor score, geochemical halos and 

fractal model were used. Based on these models, concentrations of Co, Cr, Ni, Zn, Ba, Fe, Mn, Ti, U, V and 

Zr showed anomalies which are distributed over the andesitic volcanic rocks. In addition, an anomaly map 

for each element also ascertained the most ideal results for the exploration of deposits. Anomaly element 

associations can be successfully used in future geochemical exploration projects. According to the stream 

sediment study, it characterized a high Ti anomaly in central and northern parts of the area which was 

confirmed by heavy mineral study in sediments and litho-geochemical study in the andesitic unites.  

 

Keywords: Delijan, Multifractal Model, Stepwise Factor Analysis, Ti anomaly 
  

1. Introduction 

The Urumieh-Dokhtar magmatic arc in Iran is a 

world-class Cu metallogenic belt. Porphyry, 

hydrothermal veins and magmatic and volcanic 

deposits of Cu, Pb, Zn, Au and other metallic and 

non-metallic elements widely occur in this belt [1-

3]. Integration of stream sediment geochemical 

data with other types of mineral exploration data 

is a challenging issue that needs careful analysis 

of multi-element geochemical anomalies. 

Analysis of stream sediment samples can reveal 

various geochemical anomalies, some of which 

can be considered as surficial geochemical 

signature of the deposit-type. Multivariate data 

analysis (e.g., factor analysis, cluster analysis and 

correlation analysis), and multifractal models have 

been successfully used to analyze geochemical 

data. Carranza [4] mapped anomalies in stream 

sediment using the mean+2SDEV (standard 

deviation), median+2MAD (median absolute 

deviation) and concentration–area (C–A) fractal 

methods of identifying threshold values in a 

geochemical data set. Carranza [5] determined 
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catchment basin modeling of stream sediment 

anomalies based on fractal analysis and revisits 

catchment basin modeling of stream sediment 

geochemical anomalies with regard to 

standardization of uni-element residuals derived 

from analysis of a number of subsets of stream 

sediment geochemical data in order to obtain a 

single set of uni-element residuals for 

classification of anomalies. Cheng et al. [6] 

showed principal component analysis (PCA) is 

frequently used in geosciences for information 

extraction. In many applications, masking PCA 

has been used to create subsets of samples or sub-

areas to enhance the effect of the main objects of 

interest. Grunsky [7] showed that modern 

methods of evaluating data for associations, 

structures and patterns are grouped under the term 

‘data mining’. Mining data includes the 

application of multivariate data analysis and 

statistical techniques, combined with geographical 

information systems, and can significantly assist 

the task of data interpretation and subsequent 

model building. Zuo et al. [8] used hybrid method 

combining multivariate fuzzy comprehensive 

evaluation with asymmetric fuzzy relation 

analysis to map porphyry-copper prospectivity in 

the Gangdese district, Tibet, western China. Zuo 

et al. [9] applied singularity mapping technique to 

identification local anomalies using stream 

sediment geochemical data. They illustrated that 

weak anomalies are hidden within the strong 

variance of background and are not well identified 

by means of inverse distance weighted; neither are 

they clearly identified by the C–A method if this 

method is applied to the whole study area. Zuo 

[10] used robust neighborhood statistics, such as 

median, median absolute deviation (MAD) were 

used to model spatial variations of geochemical 

landscapes and to recognize weak geochemical 

anomalies in covered terrain by means of a case 

study from the Chaobuleng Fe polymetallic 

district covered by grassland, in Inner Mongolia 

(China).  

Multivariate analyses are especially useful for this 

purpose because the relative importance of 

combinations of geochemical variables can be 

evaluated. There are many studies in the literature 

that have used multivariate methods to analysis 

the geochemical exploration data [11, 9]. Factor 

analysis, one of the multivariate analysis methods, 

has been widely used for interpretation of stream 

sediment geochemical data [12-15]. The principal 

aim of factor analysis is to explain the variations 

in a multivariate data set by as few factors as 

possible and to detect hidden multivariate data 

structures [16]. Thus,, factor analysis is 

theoretically suitable for analysis of the variability 

inherent in a geochemical data set with many 

analyzed elements. Consequently, factor analysis 

is often applied as a tool for exploratory data 

analysis. Multivariate data analyses based on the 

frequency distributions or on correlations of 

geochemical data may be effective tools for 

solving some problems in the frequency domain, 

but are of limited use in the spatial domain due to 

spatial autocorrelation inherent in geochemical 

data. Fractal and multifractal models (specifically 

Concentration–Area) (C-A) proposed by Cheng et 

al. [17], involve both the frequency distributions 

and the spatial self-similar properties of 

geochemical variables and have been 

demonstrated to be effective tools for 

decomposing complex and mixed geochemical 

populations and to identify weak geochemical 

anomalies hidden within strong geochemical 

background. Cheng [18] applied local singularity 

for mapping anomalies based on multifractal 

theory. It assembles geochemical map at different 

scales and calculates an index indicating the 

scaling characteristics of enrichment and 

depletion of geochemical concentration at 

multiple scales. Cheng and Agterberg [19] 

proposed a new local singularity mapping method 

for assembling element concentration values from 

stream sediment samples to delineate anomalous 

areas induced by buried mineral deposits, which 

are often missed in ordinary geochemical surveys 

and mapping. Cheng et al. [20] introduced a 

fractal filtering technique newly developed on the 

basis of a spectral energy density vs. area power-

law model in the context of multifractal theory. It 

can be used to map anisotropic singularities of 

geochemical landscapes created from geochemical 

concentration values in various surface media 

such as soils, stream sediments, tills and water. 

http://www.sciencedirect.com/science/article/pii/S0375674213002021
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Zuo [21] applied the spectrum-area technique to decompose a mixed pattern of arsenic in 

Gangdese belt based on stream sediment data. Zuo 

and Xia [22] used fractal and multifractal methods 

to map the local anomalies. The spectrum-area 

model (S-A) method was used to separate the 

anomaly from the singularity map. Hassanpour 

and Afzal [23] proposed concentration-number 

(C-N) multifractal modeling for geochemical 

anomaly separation in Haftcheshmeh porphyry 

system. Heidari et al. [24] used the 

Concentration–Area (C–A) fractal method and 

separated mineralization phases based on surface 

lithogeochemical Au, Ag, As and Cu data.  Afzal 

et al. [25] determined geochemical anomalies 

using power spectrum–area (S–A) method based 

on the grade values of Cu, Mo and Au in soil 

samples.  

In this paper, integrating method, factor and 

cluster analysis and concentration-area fractal 

model are used to identify geochemical anomalies 

based on stream sediment geochemical data from 

the Delijan region. Geochemical analyses of 115 

stream sediment samples for 17 elements 

including As, Co, Cr, Cu, Ni, Pb, W, Zn, Au, Ba, 

Fe, Mn, Sr, Ti, U, V and Zr, collected by the 

Geological Survey of Iran (GSI) from Delijan area 

(Central Iran) has been used to test the proposed 

approach using stepwise factor score. In all 

geochemical data distribution maps described in 

this paper, the cumulative percentile equivalent to 

97.5% frequency has been considered as a 

reference value/threshold to evaluate and compare 

the efficiency of the discussed methods. 

 

2. Geological setting 

The Delijan area is situated in Markazi Province 

in Central Iran located in the main Iranian 

Cenozoic Urumieh-Dokhtar magmatic belt [26]. 

This belt extends from NW to SE which hosts the 

large Iranian porphyry deposits [1]. The study 

area is mainly comprised of Cenozoic rocks, 

which were intruded by granodioritic intrusions 

rocks (Fig. 1). Theserocks are including marl, 

sandstone, Eocene andesitic tuff and lava and 

Oligo-Miocene limestone, marl of Qom 

formation. Magmatic events in Delijan area 

happened as intrusive and dikes with granodioritic 

and diabase affinities, respectively. The main 

structural feature has a NE–SW trending. 

Moreover, the main alteration zones of 

epidotization and chloritazation types were 

accompanied by the vein fillings of Fe-oxides. 

Mineralization has occurred into the andesitic 

dikes and in host rocks such as andesitic tuff and 

andesitic lava. The ore minerals, i.e. hematite, 

magnetite, Ti-magnetite, illmenite and barite are 

present and occur in the host rocks [27]. 

The source of mineralization at the Delijan area is 

interpreted as magmatic events. Petrography 

studies show that the area is composed of 

pyroclastic, volcanic and intrusive rocks. Basaltic 

andesite lava consisted of plagioclase, pyroxene, 

and hornblende minerals (Fig. 2). These rocks are 

aphanitic and devitrified. Andesite has been 

altered to chlorite, epidote and sericite. Andesitic 

tuff included vitric and detrital texture and has 

plagioclase, hornblende minerals and rock 

fragments. We can see sericite and chlorite 

alteration in these rocks. Andesitic dikes are other 

forms of magma in this area that have porphyritic 

texture and plagioclase, hornblende, pyroxene are 

abundant minerals, and epidote is the secondary 

mineral in these rocks. This area has a small 

granodiorite body that has granular texture and 

minerals such as quartz, plagioclase and feldspar 

are the main rock forming minerals.  

 

3. Materials and methods 

3.1. Stream sediments and sample collection  

One of the most commonly used methods in 

geochemical prospecting is the study of active 

stream sediments. According to the definition 

given by the Forum of the European Geological 

Surveys (FOREGS), these are represented by the 

fine and medium size fraction of sediments 

carried and settled by second order streams. 

Stream sediments can be considered as averagely 

representative of the outcropping rocks in the 

drainage basin, upstream of the sampling point 

[28] (Fig.3). The Extended Sample Catchment 

Basin (ESCB) mapping technique, discussed in 

this paper, can be used to display the spatial 

distribution of geochemical variables measured in 

stream sediments. [29,30]. This approach is based 

on the allocation of an area of statistical 

representativeness to each sample, and the 

concentration measured in the stream sediments 

can be considered as the average reference values 

for this area. ESCBs can be easily identified 

considering the position of the sampling points 

within the hydrographic network and using the 

confluences between the streams of highest rank 

as break points for representing the geochemical 

background changes. The area of each sample was 
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determined on geographical information system 

(GIS). Over a total basin surface of about 1773 

km2, 115 stream sediment samples (150 μm 

particle size diameter) were collected with an 

average sampling density of 1 sample/15.50 km2 

(Fig. 3). The concentration of 17 chemical 

elements including As, Co, Cr, Cu, Ni, Pb, W, Zn, 

Au, Ba, Fe, Mn, Sr, Ti, U, V and Zr was measured 

by ICP–MS method. Afterwards, ESCB mapping, 

was tested and compared using GIS functions of 

spatial analysis. 

 

 
Fig.1. Location of study area in Iran and simplified geological map in Delijan. 
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Fig.2. Photographs of representative samples; (a) andesitic dike; (b) Epidite (Epi) alteration in the andesite; (c,d) microphotographs 

of andesite rock that plagioclase (Plg) and mafic minerals are effected by serecitization (Ser) and chloritization (Chl) alteration and 

Opaque minerals such as: Ti-magnetite(Ti-Mag), Illmenite (Ill). 

3.2. Data analysis  

A total of 17 variables from 115 stream sediment 

data were used in our analysis. Since these 

variables are not symmetrically distributed 

(especially As, Cr, Au, Ba and U), we examined 

the normality of each variable based on skewness, 

and if a variable does not satisfy the provision, the 

variables were transformed [31]. In our data set, 

none of the variables passed this normality 

distribution. Therefore, isometric logratio-

transformations were conducted for the skewed 

variables to achieve normality transformation [32-

34]. Isometric logratio (ilr) transformations are of 

useful classes of logratio transformations with 

good theoretical properties. In addition to data 

transformation, all variable were standardized [33, 

34].  

In order to determine the relationships between 

the elements and groups, stepwise multivariate 

analysis was employed. Results of the analyses 

were evaluated with the STATISTICA program. 

The factor analysis method was carried out based 

on the examination of dependency among the 

artificial variables which are computed from 

covariance and correlation coefficient matrixes 

[35]. In other words, eigenvalues and eigenvectors 

of covariance and correlation coefficient matrixes 

are interpreted. Also, varimax rotation was 

performed to strengthen the factor loads. Cluster 

analysis (hierarchical cluster analysis) was carried 

out using Ward's method and Pearson's correlation 

coefficients and the results are given in a 

dendrogram.  
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Fig.3. Use of ESCB technique in the Delijan district. 

 

Fractal models may be similarly applied to 

separate populations, but generally do not require 

specific distribution types to be specified. In the 

C-A model, the spatial distribution of 

observations is taken into account [36-39]. If A 

(ρ) is the area of concentration value greater than 

ρ in a contour map of spatial data, then A (ρ) 

should be a decreasing function versus ρ. If υ 

represents a threshold value, the following Eq. 1, 

can be experimentally fitted to the data: 

 
A (ρ ≤ υ) ∝ρ−α

1; A (ρ> υ) ∝ρ− α
2                                     (1)  

 
where ν represents a concentration contour (or 

threshold) and A (ρ) denotes area enclosed by 

concentration values (ρ) that are≤ν or >ν; α1 and 

α2 are fractal dimensions of the data distributions 

that can be estimated from the slopes of straight 

lines fitted to the log–log plot of A(ρ) versus ρ; ∝ 

denotes proportionality. If a plot of A (≥ρ) versus 

r (in log–log plot) is linear then all data belong to 

a single population and the distribution is a simple 

fractal. If, however, the plots can be fitted with 

several straight-line segments, then the 

distribution is multi-fractal and the break-points 

between straight-line segments are the thresholds 

which separate the populations. The greater the 

difference between fractal dimensions, the clearer 

is the separation between populations [40].  
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4. Results and discussion 

4.1. Elemental concentrations of stream 

sediments 

Descriptive statistics such as minimum, median, 

maximum and percentiles (25, and 75%) for 17 

elements used in this study are shown in Fig.4. 

Most of the elements have a wide range of 

variations of several magnitudes. This was evident 

for As, whose concentrations vary from 6.50 ppm 

to 13 ppm with a median of 10 ppm. Similar 

variability was also found for other elements. The 

mean Co content in the sediments is 15 ppm, 

ranging from 9 to 30 ppm (Fig. 4). The Cr 

concentrations in the sediment samples vary from 

63 to 153 ppm and the average is 108 ppm. 

Copper content in the sediments varies from 10 to 

108 ppm with an average of 24 ppm. Nickel 

concentration in sediments is between 15 and 45 

ppm with an average of 27 ppm. The minimum Pb 

concentration in the sediments is 10 ppm and the 

maximum value is 50 ppm. The average Pb 

concentration is 11 ppm. The mean W content in 

the sediments is 1.28 ppm, ranging from 1.00 to 

3.00 ppm. The Zn concentration in sediments 

varies from 24 to 103 ppm and an average is 48 

ppm. Gold content in the sediments varies from 

0.001 to 0.003 ppm with an average of 0.002 ppm. 

Barium content in the sediments varies from 172 

to 337 ppm with an average of 250 ppm. The 

minimum Fe concentration in Delijan sediments is 

3% and the maximum value is 10 %. The average 

Fe concentration is 5.06%. The mean Mn content 

in the sediments is 690 ppm, ranging from 397 to 

1355 ppm. The mean Sr content in the sediments 

is 262 ppm, ranging from 137 to 5330 ppm. 

Titanium concentration in sediments is between 

3059 and 15119 ppm with an average of 5705 

ppm. The mean W content in the sediments is 

1.28 ppm, ranging from 1.00 to 3.00 ppm. The U 

concentrations in sediments vary from 1.00 to 

7.00 ppm and an average is 3.29 ppm. The 

minimum V concentration in Delijan sediments is 

84 ppm and the maximum value is 463 ppm. The 

average V concentration is 176 ppm. The Zr 

concentration in sediments varies from 71 to 140 

ppm and an average is 98 ppm. The 

concentrations of elements in stream sediments of 

the study area were compared with the values of 

the upper continental crust. The elements mean 

such as As, Cr, Ti, U and V exhibit depletion 

relative to the upper continental crust based on 

Wedepohi [41] and Rudnick and Gao [42]. 

Maximum values for all of the elements present 

high values relative to the upper continental crust. 

Therefore, there are many stream sediments that 

have high elemental values. 

 
Fig.4. Elemental concentrations of stream sediments of Delijan district (except Fe is %). 
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4.2. Statistical analysis  

The principal component analysis has been used 

for extraction of factors. Furthermore, it applied 

varimax rotation of factors [43], and then used a 

three-step factor analysis to extract components 

representing anomaly [13]. In the first step, factor 

analysis has yielded six rotated components, each 

with eigenvalues greater than 1 (Table 1). Six 

significant factors have produced, that explain 

76.60% of the variance of the original data set 

(Table 1). 

 Most of the variance is contained in the factor 1 

(34.05%) in the original data set, which is 

associated with the component Co, Fe, Ti and V 

(Table 1). Factor 2 explains 14.78% of the 

variance and is mainly related to elements Zn, Ba, 

Mn and Zr. The As contributes most strongly to 

the third factor that explains 8.40% of the total 

variance. The fourth factor is concerned with Cr 

and Ni and represents 7.23% of the total variance. 

Factor 5 explains 6.24% of the variance and is 

mainly related to elements Au and Sr. Using the 

stepwise factor analysis, the number of factors can 

be reduced and the anomaly intensity can be 

increased. The sixth factor is concerned with U 

and represents 5.89% of the total variance. 

Increasing anomaly’s intensity means that the 

number of adjacent anomalous samples in 

sediments has increased with respect to the total 

number of anomalous samples in the study area. 

Regarding this, the data for Cu, Pb, W and Sr 

which have weak correlations were omitted for all 

factors. Then, the results of the second factor 

analysis for the remaining geochemical data were 

used to calculate factor scores for each sample. 

Table 2 provides the rotated factor matrix and the 

factor plot in rotated space for the second factor 

analysis . Factor 1 represents Co, Fe, Ti and V 

association, factor 2 related to Zn, Ba, Mn and Zr, 

factor 3 and factor 4 shows Ni, Cr and U, 

respectively.  For step 3, we omitted As and Au 

and total variance changed from 74.00% to 

85.72% (Table 3).There are not any changes in the 

amounts of factors and variables in step 3, but  the 

total variance increased and we stop stepwise 

factor analysis in this step (Fig.5). According to 

Tables 1 and 3, the total variance relevant to 

factor 1, has increased from 34.05% in the first 

factor analysis up to 48.24% in the second one. 

Consequently, through stepwise factor analysis 

whereby poor indicator elements are removed 

from the data and the total variance related to each 

factor increased. In order to reveal the relationship 

between elements and element groups in the first 

and third factor analyses, other multivariate 

analysis techniques such as cluster analysis and 

correlation matrix were performed (Table 4). 

Cluster analysis (hierarchical cluster analysis) was 

carried out using Ward's method and Pearson's 

correlation coefficients and the results are 

provided in a dendrogram (Figs. 6 and 7). Results 

of cluster analysis in step 1 indicate that the 

elements comprise several groups that are mainly 

similar to the first stepwise of the factor analysis 

(Fig.7). In the third step of cluster analysis, all 

clusters are corresponding to the third stepwise 

factor analysis and there are four groups (Fig.7). 

The first group is including Ti, V, Fe and Co; the 

second groups consists of Zr, Ba, Mn and Zn; the 

third group composed Ni and Cr; and the forth 

group included U. All groups coincide with the 

results of factor analysis and correlation 

coefficients in correlation analysis in the third 

stepwise (Tables 2, 3 and 4). 

 
Fig.5. Factor plot in rotated space in the third step of factor analysis. 
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Table 1.Rotated factor analysis in first step (loadings in bold represent the selected factors based on threshold of 0.70). 

 Factor  1 Factor  2 Factor  3 Factor  4 Factor 5 Factor  6 

As -0.01 -0.03 0.84 0.07 -0.15 -0.03 

Co 0.91 0.03 -0.04 0.20 -0.04 0.11 

Cr 0.04 0.25 -0.01 0.82 0.06 -0.01 

Cu 0.36 0.40 -0.49 0.31 -0.03 0.33 

Ni 0.17 0.25 0.19 0.77 0.13 0.01 

Pb -0.35 0.39 0.24 -0.45 0.33 -0.12 

W 0.01 0.17 0.45 0.06 0.19 0.03 

Zn 0.29 0.82 0.23 0.12 0.22 0.04 

Au 0.27 -0.06 -0.05 0.05 0.72 0.21 

Ba 0.01 0.88 0.04 0.23 0.01 0.11 

Fe 0.92 0.25 -0.04 0.06 -0.08 0.07 

Mn 0.51 0.67 0.15 0.14 0.09 0.04 

Sr -0.27 0.16 0.09 0.11 0.53 -0.26 

Ti 0.93 0.12 -0.03 0.08 0.11 -0.10 

U -0.03 -0.03 0.01 -0.01 -0.01 -0.92 

V 0.96 0.16 -0.02 0.01 0.03 0.06 

Zr 0.27 0.71 -0.18 0.16 -0.11 -0.16 

Eigenvalue 5.78 2.51 1.42 1.22 1.06 1.01 

% Total - variance 34.05 14.78 8.40 7.23 6.24 5.89 

Cumulative - % 34.05 48.83 57.23 64.47 70.71 76.60 

 

 

 
Table 2. Rotated factor analysis in second step of factor analysis (loadings in bold represent the selected factors based on 

threshold of 0.70). 

 Factor 1 Factor 2 Factor 3 Factor 4 

As -0.03 -0.11 0.54 -0.43 

Co 0.92 0.06 0.15 0.14 

Cr 0.03 0.33 0.73 0.15 

Ni 0.15 0.31 0.77 0.06 

Zn 0.25 0.83 0.21 0.03 

Au 0.25 -0.07 0.29 0.40 

Ba -0.03 0.89 0.18 0.08 

Fe 0.92 0.27 0.04 0.04 

Mn 0.57 0.72 0.16 0.04 

Ti 0.93 0.17 0.05 0.01 

U -0.01 -0.02 0.01 -0.83 

V 0.95 0.19 0.01 0.07 

Zr 0.24 0.72 0.03 -0.09 

Eigenvalue 5.37 2.08 1.09 1.07 

% Total - variance 41.31 16.01 8.43 8.23 

Cumulative - % 41.31 57.32 65.75 74.00 
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Fig.6. Dendrogram depicting the hierarchical clustering of the elements in the first step. 

 
Fig.7. Dendrogram of the elements in the third step. 

Table 3. Rotated factor analysis in third step of factor analysis (loadings in bold represent the selected factors based on a 

threshold of 0.70). 

 Factor 1 Factor 2 Factor 3 Factor 4 

Co 0.93 0.03 0.21 0.10 

Cr 0.06 0.18 0.87 0.02 

Ni 0.15 0.26 0.81 -0.01 

Zn 0.24 0.88 0.16 0.09 

Ba -0.04 0.86 0.27 0.08 

Fe 0.92 0.26 0.07 0.02 

Mn 0.56 0.74 0.15 0.07 

Ti 0.93 0.17 0.07 -0.07 

U -0.06 -0.02 -0.01 -0.97 

V 0.95 0.21 -0.01 0.05 

Zr 0.23 0.71 0.12 -0.20 

Eigenvalue 5.31 2.05 1.04 1.03 

% Total - variance 48.24 18.63 9.44 9.41 

Cumulative - % 48.24 66.87 76.32 85.72 
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Table 4. Pearson correlation coefficient matrix for elements in the third step (p≤0.01). 

 Co Cr Ni Zn Ba Fe Mn Ti U V Zr 

Co 1.00           

Cr 0.21 1.00          

Ni 0.35 0.55 1.00         

Zn 0.28 0.27 0.47 1.00        

Ba 0.07 0.43 0.36 0.74 1.00       

Fe 0.89 0.17 0.26 0.44 0.26 1.00      

Mn 0.58 0.30 0.41 0.84 0.65 0.68 1.00     

Ti 0.85 0.23 0.18 0.38 0.11 0.86 0.68 1.00    

U -0.16 -0.04 -0.01 -0.09 -0.06 -0.09 -0.10 0.01 1.00   

V 0.88 0.10 0.21 0.44 0.15 0.95 0.68 0.91 -0.11 1.00  

Zr 0.27 0.27 0.29 0.52 0.46 0.39 0.52 0.33 0.05 0.33 1.00 

 

Potential map was obtained by fuzzy factor score 

map (FFS). After the factor score (FS) of each 

sample, weights should be assigned to each 

sample to represent probability of the presence of 

the deposit-type upstream of the sample. The 

weights are here called the fuzzy factor score map 

(FFS: [8, 13]). In general factor analysis, the 

response variable is continuous and the values 

outside the [0, 1] range are inappropriate if the 

response variable relates to probability. In order to 

constrain the values of the predicted response 

variable within the unit interval [0, 1], Cox and 

Snell recommended use a logistic model in order 

to represent the probability [44], Eq. 2: 

 

𝐹𝐹𝑆 =
𝑒𝐹𝑆

1+𝑒𝐹𝑆                                                      (2) 

 

where FS is the factor score of each sample per 

indicator factor obtained in a factor analysis. The 

FFS is, therefore, a fuzzy weight of each stream 

sediment geochemical sample for each indicator 

factor. In this way, the weights of different classes 

of evidential maps are calculated based on the FSs 

of samples per indicator factor obtained in the 

stepwise factor analysis. Values of the FFS 

corresponding to cumulative content of 99.5%, 

97.5%, 84%, 75%, 50%, 25% and minimum were 

determined for the indicator factors for mapping 

purposes. In this paper, distributions of FFS for 

indicator factors are represented as interpolated 

values (Fig.8). A value of the FFS corresponding 

to cumulative percentile of 97.5% frequency was 

selected as the threshold value to separate 

anomalous and background samples, like in the 

FS distribution maps (Fig.8). 

The map of the first fuzzy factor scores (FFS1: 

Fig.8) shows high values disposed in andesitic 

volcanic rocks in form of lava and dike and 

concentrated mainly in northwest parts of the 

study area which are the favorable areas for Ti, V, 

Fe and Co deposits. The first fuzzy factor scores 

represent mixed geochemical populations, 

because the Urumieh-Dokhtar belt has a complex 

geological structure of different tectonic zones 

and have different geochemical background and 

threshold ranges. The second and third fuzzy 

factor scores (FFS2, FFS3) represent the high-

frequency anomalies. They are generally related to 

the andesitic lava rocks which are favorable area 

for Zr, Ba, Mn, Zn, Ni and Cr deposits. It 

occurred in the northern and southern parts of the 

study area. The forth fuzzy factor scores (FFS3) 

map shows that high values occur in marl of 

Eocene age, which are favorable area for U 

deposits. These results indicate potential for the 

discovery of multi-element deposits which are 

mainly distributed in the andesitic volcanic rocks 

of Eocene age and have a similar origin. 
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Fig.8. FFS distribution map for (a) FFS1 (Ti, V, Fe and Co); (b) FFS2 ( Zr, Ba, Mn and Zn) ;(c) FFS3 (Ni and Cr) and (d) 

FFS4 (U)  indicator factor based on 99.5%, 97.5%, 84%, 75%, 50%, 25% and minimum contents. 

 

 
4.3. Application of fractal modeling 
Concentration–area relations in multifractal model 

were computed by assigning an area of influence 

to each sampled point and summing all elemental 

areas whose concentration lie below a given value 

[17, 29, 5]. This procedure was repeated for 

different elemental concentrations. Based on 

decreasing grades, the evaluated grades in 

catchments were sorted out and cumulative areas 

were calculated for grades [22, 40]. Finally, log–

log plots were provided for Ti, V, Fe and Co (Fig. 

9). On the basis of this procedure, there are 

several populations for Ti, V, Fe and Co 

respectively as shown in Fig. 9, but the best 

population were selected. As shown in Fig. 9, 

there are two break lines as a whole called 

background and anomaly. Anomaly break line is 

divided into three parts of low anomaly, medium 

anomaly and high anomaly. Titanium anomaly 

threshold (high anomaly) is 5301 ppm based on 

log–log plot as depicted in Fig. 9. 

 

Vanadium log–log plot shows that most of V 

enrichment occurred at 441 ppm. Iron anomaly 

threshold is about 8.1 %. Most of Co enrichment 

started from 27 ppm. The break between the 

straight-line segment and the corresponding 

values of above elements have been used as the 

cut-offs to reclassify catchment values in the 

interpolated maps [38]. The main maps are 

indicated in Fig. 10. Interpolated maps of the 

distribution of Ti, V, Fe and Co based on the 

modeled populations by the values equal to 

99.5%, 97.5%, 84%, 75%, 50%, 25% and the 
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minimum cumulative contents are presented in 

Fig. 10.  

A final main map value corresponding to high 

anomaly is used to generate the final distribution 

map for comparison with the main maps obtained 

from fractal method (Fig. 11).The anomaly map 

shows that high anomalous values occur in 

andesitic volcanic rocks of Eocene age in northern 

and southern parts of the study area. There are a 

few deposits in marl and limestone of Oligocene 

age and in granodiorite intrusive rocks. The multi-

element anomalies of above elements occurring in 

volcanic rocks should be further investigated in 

the next step of mineral resource exploration. 

However, investigation of heavy minerals 

exhibited that illmenite and Ti-magnetite minerals 

are abundant in stream sediments and in andesitic 

dikes [27]. Therefore, in the later studies, multi-

element deposit in volcanic rocks and specially Ti 

deposit in alluvial deposit and rocks should be 

investigated.  

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

Fig.9. Log–log plots (concentration–area method) for elemental component; V (a), Ti (b), Fe (c), Co (d) ,concentration of 

elements is mg/kg, but Fe is %. 

 

Geochemical halos can be ascertained more 

efficiently with a combination of two or more 

pathfinder elements rather than a single element 

[45, 46]. This practice is called ‘multielement 

halos technique’, where halos are slightly affected 

by the random errors. This technique increases the 

likelihood that the geochemical data are actually 

the geological features. Multielement halos 

technique is computed as Eq. 3: 

  

𝐺𝐻 = (
𝑋1

𝑋0
+

𝑌1

𝑌0
) ; (

𝑋2

𝑋0
+

𝑌2

𝑌0
) ; … (

𝑋𝑁

𝑋0
+

𝑌𝑁

𝑌0
)   (3) 

where X1, X2, …, XN are concentrations of X in 

samples 1, 2, …, N; Y1, Y2, …, YN are  

concentrations of Y in samples 1, 2, …, N; and X0 

and Y0 are background values of X and Y 

elements. Median values are used as the 

background values for each element. Fig. 12 

shows the anomaly halos of Ti and pathfinder 

elements in the Delijan area (GH1 and GH2). The 

anomaly halos of Ti and Fe-Co-V multi elements 

(GH1) are more than that of Ti and Fe (GH2) but 

have a similar form. 

a b 

c d 
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Fig.10. Distribution map of elemental component; Ti (a), Fe (b), V (c) and Co (d), plotted based on 99.5%, 97.5%, 84%, 75%, 

50%, 25% and minimum contents. 

 

Comparing different models such as fuzzy factor 

score (FFS-Ti), main concentration (Ti), fractal 

model (Fr-Ti) and geochemical halos (GH2-Ti) in 

Fig. 13, the main difference is that the target areas 

delineated based on the fact that the whole study 

area is mainly located in the northwest and south 

part of the study area. Significant spatial area by 

fuzzy factor score (FFS-Ti) method, main 

concentration (Ti) and geochemical halos occupy 

13.0%, 12.5% and 10.5%, respectively. Fractal 

model (Fr-Ti) occupies more than 50% of the total 

study area. The targets in Fig. 13 are nearly 

similar for the three above models but are 

different from fractal model (Fig.14). However, 

the target areas for Ti deposits in fractal method 

(Fr-Ti) are like that of average for upper 

continental crust (Ti). In overall, however, the 

fractal model could identify local anomalies as 

clearly as the other Ti mapping model. 
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Fig.11. Distribution map of elemental components; Ti (a), Fe (b),V (c) and Co (d), plotted based on threshold of fractal model 

(Fr). 

 
Fig.12. Geochemical halos for Ti and pathfinder elements such as (a); Fe, V and Co (GH1) and (b); Ti with Fe (GH2) based 

on 99.5%, 97.5%, 84%, 75%, 50%, 25% and minimum contents. 

 

By using fractal model, two potentially 

prospective areas for Ti exploration were 

indentified, i.e. the center and the north of the 

study area in which the andesitic unites are 

located. The presence of andesitic outcrop in these 

areas means that a high visible evidence of 

potential mineralization is present at the surface 

suggesting that the litho-geochemistry studies (in 
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addition to stream geochemistry) are useful tools 

for exploration within this area. There exists a 

very good correlation between the calculated 

anomalous threshold values and the range of 

concentrations obtained in the rocks, especially 

for Ti in the Delijan area. Such correlation is also 

valid by heavy minerals. These results also are 

interpreted according to their nature, especially 

multi fractal curves in log–log plots. Ti 

concentration in the area may be a result of the 

three steps of enrichment, i.e., mineralization and 

later dispersions. Major Ti mineralization 

occurred by the extrusion of Eocene andesitic lava 

and dikes in this area. The occurrence of high Ti 

enrichments in andesitic unites in central and 

northern parts of the area has been actually 

realized in the samples collected from the field. 

High Ti intensive anomalies were found within 

andesitic units. The chemical analysis of seven 

samples of in andesitic unites in lavas and dikes 

showed the value of Ti is 0.75 to 0.98 percent. All 

samples are rich of illmenite mineral in the ore 

microscopic studies. Study of 10 heavy mineral 

samples also, identified the presence of illmenite 

in the central and northern parts of the area. 

Statistical analysis of stream sediment also 

confirms these results. Further, geological 

evidences include lithological information, proved 

that accuracy of the results is obtained from 

different models in this article. The richest part of 

Ti element correlated direction to the andesitic 

unites. The developments in multifractal theory in 

special and their usage could provide a favorable 

ground for the stochastic simulation of 

geochemical distributions, and their understanding 

and interpretations, as well. 

 
Fig.13. Target areas for (a); Ti delineated by means of 97.5% of fuzzy factor score (FFS1-Ti), (b); main concentration (Ti), 

(c); fractal method (Fr-Ti) and (d); geochemical halos of Ti (GH2). 
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Fig.14. Targets delineated by means of different models of anomaly mapping for Ti. 

 

5. Conclusions 

Descriptive statistical studies conducted for 

stream sediments of the Delijan area show that 

most of elements have an asymmetric distribution. 

After ratio transformation and standardization, all 

elements achieve normal distribution. Results of 

stepwise factor and cluster analysis reveal that 

there are four factors or groups which are well 

correlated to each other. Factor 1 represents Co, 

Fe, Ti and V association, factor 2 related to Zn, 

Ba, Mn and Zr, factor 3 and factor 4 shows Ni, Cr 

and U, respectively, and the total variance of these 

factors to be 85.72%. Then, low valued elements 

(such as As, Cu, Pb, Au and Sr) omitted during 

three stepwise factor analysis. In order to outline 

the geochemical markers of mineralization-

derived stream sediments more efficiently, various 

mapping techniques such as fuzzy factor score, 

geochemical halos and fractal model were used. In 

preparation of element distribution maps, the 

threshold value was computed using the 

multifractal model. This method can be 

considered as an alternative technique which is 

commonly used for the determination of 

background values. A comparison of anomaly 

maps and geology of the study area reveals that 

mineralization is closely related to the andesitic 

rocks in form of lava and dike with an Eocene 

age. Results of studies of heavy minerals showed 

that Ti value has been enriched in studied 

sediments. In addition, enrichment of other 

elements (based on lithology) suggests a multi-

element association with mineralization in the 

area and should be further investigated in the next 

phase of mineral exploration. 
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