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Abstract  

Most of the geochemical datasets include missing data with different portions and this may cause a 

significant problem in geostatistical modeling or multivariate analysis of the data. Therefore, it is 

common to impute the missing data in most of geochemical studies. In this study, three approaches 

called half detection (HD), multiple imputation (MI), and the cosimulation based on Markov model 2 

(MM2) are used to impute the censored data. According to the fact that the new datasets have to 

satisfy the original data underlying structure, the Multidimensional Scaling (MDS) approach has been 

used to explore the validity of different imputation methods. Log-ratio transformation (alr 

transformation) was performed to open the closed compositional data prior to applying the MDS 

method. Experiments showed that, based on the MDS approach, the MI and the MM2 could not satisfy 

the original underlying structure of the dataset as well as the HD approach. This is because these two 

mentioned approaches have produced values higher than the detection limit of the variables.  

Keywords: censored data, collocated cosimulation Markov model 2, half detection, imputation, 

multidimensional scaling, multiple imputation. 

 

1. Introduction 

A common problem in analyzing the mining 

datasets is the observations with values below 

the detection limit of the instruments 

(censored data). When the values approach 

zero and the precision of the laboratory 

instrument is not sufficient to detect the right 

values, then, the dataset will contain the 

missing values which are below the detection 

limit [1]. The level at which a measurement 

has a 95% probability of being different than 

zero is defined as the limit of detection [2]. 

Some researchers may believe that the 

censored data are unimportant since their 

values are extraordinary small. However, these 

data may influence the parameters of the 

distribution of the whole samples. Also, 

incorrect treatment of the censored data may 

produce biased mean and variance of the 

distribution [3]. Thus, the researchers have to 
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find an appropriate imputation approach for 

dealing with these data. 

One of the most common and easiest 

approaches is called simple replacement, in 

which the censored values are replaced with a 

single value equal to zero, proportion of the 

detection limit (usually 1/2 or 1/√2 times the 

detection limit), or the exact value of the 

detection limit [1] .In cases where missing 

data are less than 1 percent of the whole 

population, simple replacement by a single 

value of 0.33 to 0.5 times the detection limit is 

appropriate [4]. For instance, Carranza [5] 

replaced Arsenic missing data which 

contained 30% of the whole samples by a 

value equal to the half detection limit for As 

prior to mapping the geochemical anomalies. 

Besides, there are other types of the 

imputation approaches which are based on 

statistical algorithms. Among them, multiple 

imputation (MI) and maximum likelihood 

estimation (MLE) approaches are preferred 

more by methodologists. MI [6] is a statistical 

technique for analyzing datasets containing 

missing data. The purpose of this approach is 

to replace each missing value by several 

plausible values and produce n complete 

dataset. Thus, there is uncertainty about the 

right value to impute [7, 8]. As a result, the n 

complete datasets are integrated to produce a 

final dataset. MLE [9], as another popular 

approach, maximizes the log-likelihood of 

each observation by estimating the unknown 

population parameters through iterative 

optimization [10].  

In addition to simple and statistical based 

imputation approaches, geostatistical approaches 

can be used to impute the missing data. These 

approaches are applicable when analyzing the 

regional variables like geochemical ones. 

Geostatistical approaches estimate unknown data 

in an unbiased way and minimize the estimation 

variance [11]. As multiple imputation may not 

be suitable for geological data, geostatistical 

approaches can be merged with the MI, 

producing the parametric and non-parametric 

methods [10]. In another attempt to fill in 

missing data, Munoz et al [12] applied multiple 

imputation by means of geostatistical models to 

environmental data. They claimed that 

combining the multiple imputation method with 

the geostatistical models has the advantage of 

making it possible to impute missing data for 

both continuous and discrete environmental 

variables. 

For another instance, Zhang et al. [13] 

applied two geostatistical methods named 

ordinary kriging (OK) and ordinary cokriging 

(OCK) to fill in missing data of remotely 

sensed atmospheric methane. They found that 

the two interpolation methods presented 

similar spatial patterns and provided 

acceptable results, while OCK method yielded 

better results than OK. However, these 

approaches cannot be used for imputing the 

censored data because they may estimate or 

simulate values larger than the limit of 

detection. To explore the ability of the 

geostatistical approaches for imputing the 

censored data, Collocated Cosimulation 

Markov model 2 is applied in this study. 

According to the fact that the new datasets 

have to satisfy the original underlying 

structure of the data, multidimensional scaling 

(MDS) approach is used to explore this issue. 

MDS [14] is a multivariate technique that 

reduces the dimensions of multivariate 

datasets and also aims to reveal the underlying 

structure of the data. This method provides a 

geometrical configuration of the relations 

between the variables. In this configuration, 

variables which are more similar to each other 

have fewer distances [15]. MDS has been used 

in a small number of mining or geological 

studies during the past years. Deutsch and 

Deutsch [16] used MDS to plot the rock 

transition probability matrix. In another study, 

Boisvert and Deutsch [17] applied MDS to 

make sure of the positive definiteness of the 

resulting kriging system of equations for an 

attempt to incorporating locally varying 

anisotropy in kriging or sequential Gaussian 

simulation. 

But, applying the MDS is problematic due to 

the compositional nature of the geochemical 

data. The restriction of constant sum may yield 

spurious correlations between the variables 

because, by increasing the portion of one 

variable, other variables should be decreasing. 

Therefore, correlations are not free to vary from 

-1 to +1 [18]. So, those multivariate statistical 

methods that are based on correlation 

coefficients between the variables are not 

appropriate for untransformed compositional 

data. As a result, closed number system 

compositional data should be open prior to 
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further analysis [19- 24]. To open the 

compositional data, three types of log-ratio 

transformations have been introduced: additive 

log-ratio (alr) transformation [19], centered log-

ratio (clr) transformation [19], and isometric 

log-ratio (ilr) transformation [25], respectively. 

Log-ratio transformation methods have been 

widely used during the past years in 

geochemical studies. For example, Carrenza [5] 

applied three kinds of log-ratio transformations 

to the stream sediment data for mapping and 

analyzing the geochemical anomalies. Also, 

Caritat and Grunsky [26] performed both alr and 

clr transformations to soil geochemical data prior 

to applying multivariate analysis to identify the 

pathfinder elements associated with mineral 

deposits. 

The methodology used in this study are 

presented in section 2. The study area and 

geochemical datasets are discussed briefly in 

section 3 where also practical examples are 

given individually for all imputation 

approaches. Finally, Sections 4 and 5 present 

the discussion and conclusion, respectively.  

2. Methods  

In this paper, three different imputation 

approaches are applied: 1. simple imputation, 

2. multiple imputation approach using Markov 

Chain Monte Carlo (MCMC) method, and 3. 

Collocated Cosimulation Markov model 2. 

2.1. Simple Imputation 

In simple imputation approaches, missing data 

are imputed by a single value. There are 

several single imputation approaches, such as 

Hot Deck imputation, Mean imputation, and 

Naïve-Bayes imputation. However, in this 

study, half detection approach (HD) is applied, 

which imputes for the whole missing data a 

single value equal to half detection of the 

elements.  

2.2. Multiple Imputation (MI)  

Multiple imputation replaces each missing 

datum with more than two possible values, 

and, as a result, creates n complete datasets. It 

also provides the uncertainty of the imputed 

value. In addition, each complete dataset is 

analyzed by using standard procedures and 

finally the analyses are combined in order to 

get the final result [7]. 

There are a few methods available in the 

MI approach, the choice of which depends on 

the type of the missing data pattern [28]. 

These are:  

1. Monotone missing data pattern, for 

which both parametric regression method 

assuming multivariate normality and 

nonparametric method using propensity score 

is applicable.  

2. Arbitrary missing data pattern, in which 

case Markov Chain Monte Carlo (MCMC) 

method, assuming multivariate normality, is 

applicable. 

The monotone missing pattern exists when 

a variable xi and all subsequent variables xk 

are missing at location j. Otherwise, the 

missing data have an arbitrary pattern in which 

case MCMC is proposed to apply [28].  

MCMC is a set of methods which 

simulates direct draws from the distribution in 

question. In this method, each value is used to 

randomly generate the next value so that the 

Markov chain will be created. In this case, the 

distribution of each sample relies on the value 

of the previous one [29]. The goal in using 

MCMC is to achieve a stationary common 

distribution. It is done by performing the 

Markov chain long enough to the distribution 

of samples. MCMC simulates draws from the 

stationary distribution by repeatedly 

simulating steps of the chain [30]. MCMC is 

applied to identify posterior distributions 

which are the information about the unknown 

parameters in Bayesian inference. In MCMC 

method, joint posterior distribution of the 

unknown parameters can be simulated to 

achieve the estimated posterior parameters 

gained by simulation. 

2.3. Collocated Cosimulation Markov 

model 2 

Cokriging, as a method to estimate the primary 

variable using a secondary variable which is 

more dispersed in the area, is widely applied in 

geostatistical modeling. Implementation of the 

cokriging requires calculating a Linear Model of 

Coregionalization (LMC) variograms which can 

be tedious and take a long time. Almeida [31] 

and Almeida and Journal [32] introduced the 

Markov model in which the estimations are 

performed without modeling LMC. This method 

requires only modeling the univariate variogram 

and calculating the co-located correlation 
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coefficient between the primary and the 

secondary variables [33]. 

In Markov model, only the collocated hard 

data have influence on estimating the 

unknown points. In the primary Markov model 

(MM1), the secondary variable correlogram is 

not required; however, MM1 requires the 

sample cross-correlogram ρˆ12(h) shape and 

continuity which conform to sample primary 

correlogram ρˆ1(h). However, the sample cross 

correlogram tends to obey the secondary 

correlogram ρˆ2(h) in practice [34]. Thus, an 

alternative Markov model was proposed which 

was named Markov model 2 (MM2), and 

which requires a model for secondary 

correlogram ρ2(h) and a cross-correlogram 

ρ12(h). A cross-correlogram is made 

proportional to ρ2(h) and under the MM2 the 

following can be written [34]: 

     12 12 2   0  h h    (1) 

where ρ12(0) is the cross-correlation between 

the primary and the secondary variables. 

Therefore, in order to estimate a primary 

variable in each node of the more abundant 

secondary variable, collocated models could 

be implemented. As a result, Sequential 

Gaussian Cosimulatian is applied in this study 

using Markov model 2 and it simulates the 

missing data of the concerned variables by 

secondary variables which are more abundant 

and have acceptable correlations with the 

primary variables. 

2.4. Log-ratio transformation 

Compositional data (e.g., raw geochemical 

data) are the ones in which the elements are 

non-negative, and their sum is constant. 

Therefore, the variables in such data are not 

independent (compositional data only carry 

the relative rather than the exact information) 

[35]. These data are defined as: 
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where S
D
 is the D dimensional compositional 

data complex. The constant sum constraint 

laying in the compositional data leads to the 

limitation of geo-information, which means if 

an element in such data rises up in value, the 

other elements should decrease due to the 

constant sum constraint. Therefore, this results 

in the fact that correlation coefficients 

between the elements are not real and are 

negatively biased [36, 37]. 

As a result, these spurious correlations yield 

unreliable results when standard statistical 

methods, such as principal component analysis 

and multidimensional scaling, which are based 

on data correlation coefficient matrix, are 

performed [19]. Thus, to deal with the 

compositions problems, log-ratio 

transformations are applied to open the closed 

system data and convert them to Euclidean space 

[38, 5]. Three types of log-ratio transformations, 

as mentioned before, can be applied to 

compositional data. Among them, Additive log-

ratio transformation (alr) is used in this study to 

open the data prior to applying MDS approach. 

The alr transformation can be shown as the 

following [39]: 
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where xD is one of the components which must 

be the same for the whole data, strictly 

positive for all components [39] and also of no 

importance in the study. By applying alr 

transformation, the component which is the 

denominator is eliminated, and subsequently 

D-1 transformed component will be produced 

[39]. Also, since only some of the components 

are of interest in some studies, the concept of 

subcomposition needs to be introduced. A 

subcompositin is part of a full composition 

which is normalized. In addition, its 

covariance relationship between the 

components in subcomposition is different 

from the one in full composition [20]. The 

subcomposition can be indicated as the 

following [24]: 

1 2

1 1 1

. . .
( ) , ,..., D

D D D

i i i

i i i

k x k x k x
x C x

x x x
  

 
 
  
 
  
  

 (4) 

where, k is the constant sum. Thus, the first 

step to apply log-ratio transformation is to 

construct the subcomposition through equation 

(4).  

2.5. Multidimensional scaling 

Multidimensional scaling (MDS) is a 

multivariate technique which reduces the 

dimensionality of the dataset and aims to 
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disclose the relationships existing between the 

variables in the complex. The relationships 

between the variables are shown in one 

dimensional or multidimensional configuration 

in which each variable is represented by a 

point. The input data used for MDS can 

represent either similarities or dissimilarities. 

The distance between the points in the 

configuration reveals the relationships between 

the variables. If the data indicate similarities, a 

shorter distance represents more similarity and 

a longer distance represents less similarity. This 

is the other way around if the input data 

represent dissimilarities [15]. 

MDS includes two main methods named 

metric MDS and non-metric MDS. Metric 

MDS assumes that the distances (similarity or 

dissimilarity) between the variables are 

Euclidean distances. It aims to achieve 

distances in the configuration which are 

similar in value to the observed ones. In 

contrast, absolute values are not meaningful in 

Non-metric MDS. What is important is the 

distance between a special pair in relation to 

distances between other pairs of variables. In 

this case, the distances between variables are 

ranked with the largest distance ranking first, 

and the smallest distance ranking last. Then, 

monotonic transformation of the similarities is 

calculated to obtain scaled similarities (f(p)). 

In Non-metric MDS, the aim is to achieve 

a configuration in which the distances between 

each pair have the same rank order compared 

to the observed pairs’ ranks [40].  Non-metric 

MDS is applied in this study to find the real 

underlying structure of the original data and to 

compare it with the structures gained from 

imputed data by the already mentioned 

approaches. There are some ways to examine 

the validation of the MDS results. Stress 

function is one way. The smaller the stress 

value becomes, the more reliable the results 

will be. Stress function is as follows [40]: 

  
2

2

f p d
STRESS

d






 (5) 

The Stress function is the squared 

differences between the scaled similarities 

(f(p)) and distances between the points in the 

MDS configuration (d). 

 

3. Case study 

3.1 Case study area and geochemical data  

3.1.1. Location and brief information of the 

gold deposit  

The Sari Gunay Au/Sb prospect is located in 

the SE corner of Kordestan Province in NW 

Iran, approximately 60 km NW of Hamadan 

(Fig. 1). Primary investigation was done by 

the Rio Tinto Mining and Exploration Limited 

in May and August 1999. This investigation 

resulted in the identification of a 16 km
2
 

hydrothermal alteration system associated 

with the mineralization of gold, antimony, and 

arsenic, which occurred in Oligo-Miocene 

dacitic to andesitic porphyries and vent tuffs. 

Then, Rio Tinto/CESCO Joint Venture started 

to perform the surface exploration in the first 

half of 2000 which successfully led to 

identifying a 1300 m x 400 m well-defined 

and zoned gold soil anomaly [27]. 

3.1.2. Channel sampling geochemical data 

In the study area, 1064 lithogeochemical 

samples were collected along six trenches 

drilled with NW/SE strike. ICP-OES Multi-

element analysis was performed for all 1064 

samples. Among the datasets, there are several 

elements that have various percentages of the 

missing data. The existence of the missing 

data was due to the lower amount of the 

analysis instrument than the detection limit. 

Among the elements which had missing data, 

four with different percentages were selected:  

1. Co contains 52 missing data equal to 4.9 

percent of the whole data  

2. Ti contains 172 missing data equal to 

16.2 percent of the whole data 

3. Hg contains 376 missing data equal to 

35.3 percent of the whole data 

4. Li contains 662 missing data equal to 

62.2 percent of the whole data.  

3.2. Results     

The main purpose of this study is to perform 

three different approaches of Half Detection 

Imputation, Multiple Imputation, and 

Collocated Cosimulation Markov model 2 to 

impute the censored data and finally define the 

best approach. The comparison between the 

approaches is done by MDS by calculating: 
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1. the distances between the variables in 

the configurations which are gained from the 

imputation approaches 

2. the distances between the variables in 

the configuration which is gained from the 

original data.  

A subcomposition of a geochemical dataset 

is selected to impute. The dataset includes 

1064 samples containing Co, Hg, Li, and Ti 

with different percentages of the missing data 

(Table 1). The samples were collected from 

six trenches. First, the relationships between 

the variables which were gained by applying 

the MDS to the original data and imputed data 

will be demonstrated (Fig. 2) and, then, the 

results and the detailed discussion for each 

approach will be taken into account. 

Table 1. Mean and standard deviation with detection limits and missing percentage of the elements. 

Missing (%) detection limit (ppm) Stdev (ppm) Mean (ppm) Elements 

4.9 1 6.46 8.25 CO 
35.3 1 33.204 15.24 Hg 
16.2 2 2.77 4.18 Li 
63.2 10 47.13 33.32 Ti 

 

Fig. 1. Sari Gunay area geology and alteration. The map shows the presence of the eroded dacitic to andesitic dome 

complex related to the large hydrothermal alteration system. This complex includes a large eroded strato-volcano 

or two smaller volcanoes (Sari Gunay and the Agh Dagh). 

3.2.1. Original data 

First, in order to discover the multivariate 

structure of the original data by performing the 

MDS, log-ratio transformation using alr 

transformation is applied to the 

subcomposition to open the closed system. 

This is done using Ce as the denominator. 

Then, correlation coefficients (Table 2) of the 

transformed data are calculated and used as 

the input data for performing the MDS. Non-

metric MDS is used in this study for reducing 

the dimensions of the composition to both 2D 

and 3D configurations. Due to the difficulty of 

displaying the 3D configuration of the data, 

2D configuration of the original data and 

imputed data are shown in this study to 

demonstrate the relationships between the 

already mentioned elements (Fig. 2). 

However, to compare the results produced by 

the imputation approaches, distances obtained 

from 3D configuration are used due to being 

more reliable. 

 



Ghane and Asghari / Int. J. Min. & Geo-Eng., Vol.50, No.1, June 2016 

 

55 

Table 2. Correlation coefficient matrix of the original data. 

Ti Li Hg CO Elements 

0.447 0.487 -0.094 1 CO 
0.032 -0.093 1 -0.094 Hg 
0.671 1 -0.093 0.487 Li 

1 0.671 0.032 0.447 Ti 

  
(a) (b) 

 
 

(c) (d) 

Fig. 2. 2D configuration gained by applying the MDS. (a) configuration of the original data, (b) configuration of the Half 

detection imputed data, (c) configuration of the MI imputed data, (d) configuration of the Cosimulation imputed data. 

 

As shown in Figure 2a, elements which 

have the higher correlation coefficients are 

closer to each other in the configuration and 

those which have weaker correlations are far 

from each other. It means the distance 

between Li and Ti which have a correlation 

coefficient equal to 0.671 has to be shorter 

than the distance between the other pairs of 

elements. Consequently, the distance between 

Co and Hg which have the strongest negative 

correlation coefficient has to be more than the 

distance between the other pairs. As 

mentioned before, these relations should be 

maintained after imputing the missing data. 

3.2.2. Half detection imputation 

Half detection imputation is applied to the data 

as the first approach by replacing the missing 

data with a value equal to the half detection 

limit of the elements. After replacement, alr 

transformation is performed on the complete 

dataset, using Ce as the denominator to open 

the subcomposition. Then, the correlation 

coefficients of the transformed data are 

computed, and used as the input data to apply 

Non-metric MDS. Moreover, the distances 

between the elements are calculated in 3D 

configuration. To demonstrate the changes 

having occurred in the relationships between 
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the elements, 2D configuration is used (Fig. 

2b). As shown in Fig. 2b, two of the elements, 

Li and Ti, were altered and took each other's 

positions in the configuration. However, they 

seemed to hold their distance. The alteration in 

the positions was due to the changes that 

occurred in their correlation against the 

correlation between Hg and Co. The distances 

between the elements calculated in the 3D 

dimension are presented in Table 3.  

3.2.3. Multiple imputation 

Multiple imputation is applied in this study for 

imputation using Fully Conditional 

Specification (FCS). In addition, the 

Predictive Mean Matching (PMM) model is 

used for scale variables. FCS is an iterative 

Markov Chain Monte Carlo (MCMC) method 

which can be used for the arbitrary missing 

data patterns, and is applicable in this study. In 

this method, a univariate model is fit for each 

iteration and variable, using all other variables 

in the model as the predictors. Then, the 

missing data for the variable being fit are 

imputed, and the iteration will continue up to 

the maximum number of the iterations (which 

is ten in this study). Finally, the imputed 

values obtained from the maximum iteration 

are saved to the impute dataset (SPSS 17.0 

tutorial). PMM is one of the several kinds of 

linear regressions, which results in a good 

compatibility between the imputed values and 

the closer observed data (SPSS 17.0 tutorial). 

Thus, after applying the multiple imputation 

using the already mentioned methods, alr 

transformation is applied to the imputed 

dataset, using Ce as the denominator like the 

half detection. Then, correlation coefficients 

between the transformed data are calculated, 

and used as input data for MDS. The 2D 

configuration of the imputed dataset is shown 

in Figure 2c. The general relationships between 

the elements remain similar to the original ones 

in the configuration; however, as can be seen in 

Figure 2c, there are more changes in the 

distances between the pairs (Table 3) from the 

original ones compared to the distances gained 

from the half detection. This means that half 

detection could better reproduce the original 

relationships between the elements. It may be 

due to the origin of the missing data in this 

study. The missing data exist owing to being 

less in value than the detection limit of the 

analysis instrument. Therefore, imputing some 

values which are more than the detection limit 

of the elements may cause these discrepancies 

for the imputed data.   

3.2.4. Collocated cosimulation Markov 

model 2 

Sequential Gaussian cosimulation is applied in 

this study, using Markov model 2 as the 

collocated Cokriging method. Secondary 

variables are chosen from among the 

geochemical dataset variables for each of the 

elements. These secondary variables have to 

satisfy two conditions: 

1. the secondary variables should be more 

abundant than the primary variables and 

sampled for each node of the collocated grid 

2. They should have high correlations with 

the primary variables.  

To meet the two mentioned conditions, 

three different elements are chosen as the 

secondary variables. Au is considered the 

secondary variable for simulating the Hg and 

it has a correlation coefficient equal to 0.617 

with Hg. Ni is regarded as the secondary 

variable for simulating the Co and it has a 

correlation coefficient equal to 0.852 with Co. 

Also, Mg is considered the secondary variable 

for simulating both Li and Ti and it has a 

correlation coefficient equal to 0.716 with Li 

and 0.680 with Ti. 

Then, variograms of the secondary 

variables are computed (Fig. 3). After 

performing cosimulation for each of the 

elements, the imputed dataset is transformed 

by alr transformation, using Ce as the 

denominator and, finally, all steps are taken as 

previously mentioned. The MDS configuration 

of the imputed dataset obtained from 

cosimulation is shown in Figure 2d, and the 

distances between each of the elements are 

calculated (Table 3). The change in distances 

between the elements in the configuration is 

shown in Figure 2d. This difference is more 

easily noticed in position change of Ti and Li 

which are reported to stay farther from each 

other than their positions in the original data. 

Results reveal that the half detection 

approach produces better results compared to 

the two other approaches. Also, compared to 

MI, it is cosimulation approach that yields 

better result according to the imputed data 

structures obtained. 
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(a) 

  
(b) 

  
(c) 

Fig. 3. Variograms of secondary variables. (a) Variograms of Au in major (left) and minor (right) direction, (b) 

Variograms of Mg in major ( left) and minor ( right) direction, (c) Variograms of Ni in major (left) and minor 

(right) direction 

 

4. Discussion 

For comparison between the approaches, results 

obtained from applying the MDS method to the 

original data and to the outcomes gained from 

the three imputation approaches including the 

element distances, the stress value, and the SSE 

value (which is computed by considering the 

elements distances in the original configuration 

and the distances in the imputed data 

configuration) of each of the approaches are 

computed (Table 3). 
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Table. 3. MDS results containing the 3D elements distances, Stress value and SSE value for each of the approaches 

Data 
 Distances Stress 

(3D) 

SSE 

(3D)  Co Hg Li Ti 

Original 

Co 0    

0.0 - 
Hg 1.301 0   

Li 0.792 1.165 0  

Ti 0.858 1.101 0.612 0 

Half 

Detection 

Co 0    

0.0 0.016 
Hg 1.301 0   

Li 0.858 1.101 0  

Ti 0.792 1.165 0.612 0 

 

Multiple 

Imputation 

Co 0    

0.0 0.06 
Hg 1.126 0   

Li 0.742 1.22 0  

Ti 0.836 1.237 0.682 0 

 

Cosimulation 

Co 0    

0.0 0.048 
Hg 1.208 0   

Li 0.882 1.274 0  

Ti 0.725 1.086 0.659 0 
 

The zero value for the Stress function 

shown in the Table 3 represents the reliability 

of the outcomes gained from applying the 

MDS method. As can be seen in Table 3, 

distances between the Co-Hg and Li-Ti remain 

constant after imputing the missing data using 

half detection compared to the distances 

between the elements in each pair in the 

original data. However, the distances between 

the elements in other pairs reveal the 

substitution in the positions of Li and Ti 

according to the substitution of the distances 

between Li-Co, Ti-Co, Li-Hg, and Ti-Hg, 

which is obvious from the configurations 

illustrated in the previous section. On the other 

hand, relocations between the elements in the 

configuration obtained from the multiple 

imputation caused more differences between 

the distances between elements compared to 

the original ones. As a result, the SSE value 

for this approach increases. 

However, the lower SSE value for the 

cosimulation approach uncovered the fact that 

there is less relocation in the configuration 

gained from cosimulation against the multiple 

imputation approach. Therefore, the 

cosimulation approach could better reproduce 

the variable structures in comparison to the 

multiple imputation approach. Finally, 

considering the SSE values for all of the 

approaches, MDS determines the approaches 

which produced better results. These approaches 

are sequentially the half detection approaches, 

the Collocated Cosimulation Markov model 2, 

and the multiple imputation approach.  

5. Conclusion 

In this study, three different approaches called 

Half Detection Imputation, Multiple 

Imputation, and Collocated Cosimulation 

Markov Model 2 are used to impute the 

censored data. The results obtained from these 

approaches are compared to each other. The 

results of this study are as follows: 

a) Multiple imputation approach utilized in 

this study using MCMC method to impute 

missing data leads to greater differences in the 

configuration obtained from this approach 

compared to the original configuration of the 

data. Also, the SSE value computed for this 

approach was higher than those of the other 

approaches. 

b) Collocated Cosimulation using Markov 

model 2 as estimation method was another 

approach used in this study for imputing the 

missing data. It produced better results 

compared to multiple imputation approach 

because its SSE computed value was lower 

than the value computed in the multiple 

imputation method. 

c) Half detection approach was also applied 

in this study. This approach demonstrated the 

better result in MDS configuration due to 

having the least SSE value and reproduced the 

original configuration better than the other two 

approaches. 
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