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Abstract 

Block-flexure is the most common mode of toppling failure in natural and excavated rock slopes. In 

such failure, some rock blocks break due to tensile stresses and some overturn under their own weights 

and then all of them topple together. In this paper, first, a brief review of previous studies on toppling 

failures is presented. Then, the physical and mechanical properties of experimental modeling materials 

are summarized. Next, the physical modeling results of rock slopes with the potential of block-flexural 

toppling failures are explained and a new analytical solution is proposed for the stability analysis of 

such slopes. The results of this method are compared with the outcomes of the experiments. The 

comparative studies show that the proposed analytical approach is appropriate for the stability analysis 

of rock slopes against block-flexure toppling failure. Finally, a real case study is used for the practical 

verification of the suggested method. 

Keywords: analytical solution, blocky-flexure toppling failure, case study, physical modeling. 

 

 
1. Introduction 

Toppling failure is one of the most probable 

instabilities of layered rock slopes. The failure 

was first mentioned by Müller after studying 

the instabilities near the "Vaiont" dam lake in 

1968[1]. In 1971, based on theoretical and 

physical modeling, Ashby proposed the term 

"toppling" for such failures [2]. In 1976, 

Goodman and Bray classified the toppling 

failures into four principal types: flexural, 

blocky, block-flexure, and secondary. Also, 

they suggested an analytical approach for the 

stability analysis of slopes against block 

toppling failure on the basis of a step-by-step 

method. This approach presented many times 

for the analysis of block toppling failures in 

the form of design charts and computer 

programs [3-6]. After 1986, based on 

Goodman and Bray’s classification, numerous 

researches were carried out on blocky and 

flexural toppling failures [7-20]. Aydan and 

Kawamato were the first to propose a 

complete theoretical solution to analyze slopes 
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and underground openings prone to flexural 

toppling failures, on the basis of a limiting 

equilibrium method utilizing the bending 

theory of cantilever beam with the 

consideration of gravity, earthquake, and 

water pressure [10]. Adhikary et al. (1997, 

2007) presented a numerical method for the 

analysis of the failure based on the Cosserat 

approach and centrifuge physical modeling 

[14]. In addition, Amini et al. (2008) proposed 

a procedure to determine the safety factor of 

rock slopes against flexural toppling failure on 

the basis of the deflection compatibility of 

rock columns [15, 16]. In 2009, Brideau and 

Stead carried out a study on some numerical 

three-dimensional models with a potential of 

toppling failures and explained their results 

[21]. As it can be seen in the literature, 

researches on toppling failures have 

concentrated mostly on blocky and flexural 

types. However, rock is a natural material and 

its discontinuities are generally irregular; 

therefore, pure toppling failures (flexural and 

blocky) are infrequent and most of such 

failures, occurring in layered natural rock 

slopes, are of block–flexure type (Fig. 1). In 

2010, Amini et al. presented an analytical 

method for evaluating rock slopes against 

block-flexure toppling failure based on 

Aydan-Kawamato and Goodman-Bray 

approaches [18]. In 2014, Mohtarami et al. 

studied the interaction between soil and rock 

blocks and presented a new analytical solution 

for combined circular-toppling failure [22]. 

Also, in 2014, Amini et al. described the 

stability analysis of rock slopes facing dam 

lakes against block toppling failure on the 

basis of theoretical models and a real case 

study [23]. Recent studies on this field can 

been found in the works of Alejano et al. in 

2015 [24]. They modelled toppling failures 

with rounded edge rock blocks and presented 

some new theoretical and experimental 

considerations for their assessments. 

In the current study, the failure is modeled 

in laboratory with tilting table apparatus and 

its mechanism is assessed. Consequently, a 

new analytical approach is suggested to 

evaluate rock slopes against such failure. 

 

 

Fig. 1. Block-flexural toppling failure in rock slopes, a) schematic diagram, b) actual case study (north slope of the 

”Venarch” mine, Iran) 

2. Physical modeling of block-flexure 

toppling failure 

Evaluating the behavior of natural rock slopes 

is complicated; therefore, the mechanism of 

their probable instabilities is sometimes 

studied through ideal physical modeling. 

However, the latter is quite time-consuming 

and costly, and the selection of the proper 

materials for the models needs high precision. 

Effort has been made in this research to 

evaluate the block-flexure toppling failure 

mechanism using physical modeling explained 

briefly in the following sections. 

2.1. Physical and mechanical properties of 

the materials 

2800 gr of a special chemical powder has been 

used to prepare one sample block. This 

powder was a mixture of some chemicals and 

Vaseline oil, with specified proportions, mixed 

thoroughly and compacted in a steel mold of 

50×5×6 cm under a consolidation pressure of 

a b 
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210 kPa. Under this pressure, the powder 

particles stick together thoroughly and form 

solid blocks (Fig. 2). Using these blocks, it is 

possible to construct a variety of blocky and 

layered rock slopes. The powder composition 

is such that the resulted blocks have high 

densities and low tensile strengths; therefore, 

they may break under their weights even with 

small dimensions. Although such blocks have 

been used several times by other researchers 

and have undergone several tests [9, 10, 17, 

21], in the present study, the physical and 

mechanical properties of the blocks were 

retested in the laboratory. The test procedures 

and their final results will be explained in 

detail in the following sections. 

 

Fig. 2. Material used for physical modeling, before and after consolidation 

2.1.1. Unit weight 

The blocks’ unit weights depend much on the 

consolidation pressure; the more the pressure 

is, the more the materials are consolidated. In 

the present study, the powder weight in the 

mold was 2800 gr resulting in a 50×5×4.7 cm 

block with a unit weight of 23.4 kN/m
2
. 

2.1.2. Uniaxial compressive strength 

A key mechanical property of a block needed 

to make decisions regarding the construction 

of a physical model is the uniaxial 

compressive strength. To determine this 

parameter, the total number of seven 10×5×4.7 

cm blocks were selected and tested randomly 

(Fig. 3). Figure 4 shows the stress-strain 

curves of these tests. As shown in the figure, 

the uniaxial compressive strength of these 

blocks varies between 45 and 65 kPa, but the 

average value is nearly 56.7 kPa (Fig. 5).  
 

Fig. 3. Determination of the uniaxial compressive 

strength of the solid blocks
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Fig. 4. Stress-strain curves of the uniaxial compressive strength tests 
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Fig. 5. Box plot of the uniaxial compressive strength tests results 

2.1.3. Modulus of elasticity 

The elasticity modulus can be determined 

through finding the gradients of the stress-

strain curves drawn based on the results of the 

uniaxial compressive strength tests. Using 

Figure 4, the elasticity moduli of the tested 

blocks were found to be 3.3 -7.1 MPa. 

2.1.4. Tensile strength 

The stability of the models with the potential 

of block-flexure toppling failure is very 

sensitive to the tensile strength of the blocks. 

On the other hand, since these blocks are quite 

weak against tensile stress, it is not possible to 

easily estimate their tensile strength through 

such conventional methods as the “Direct 

Tension”, “Brazilian”, or “Point Load”. Other 

researchers have used three- or four-point 

bending tests wherein the failure may also 

occur in the supports and cause errors in the 

test results. Therefore, in the present research, 

to determine the more reliable tensile strength, 

a special apparatus was designed and 

constructed in which a block more than 20 cm 

long lies on a small conveyer belt at the end of 

which a balance weight is placed on the block 

(Fig. 6). When the motor starts, the belt moves 

causing one end of the block to exit; under 

such conditions, the block behaves like a 

cantilever beam. As time passes, the beam's 

effective length increases and the block 

suddenly breaks under its own weight and the 

laser transducer in the apparatus registers the 

time of the block failure. Various tests have 

shown that the blocks in this research break at 

an effective length of 14.5 cm; therefore, 

having this length and the blocks densities, 
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their tensile strength can be obtained as 

follows: 

t
3 3

2 2 4
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h t
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(1) 

 

where the parameters which have been used in 

the equation are: 𝑀: bending moment, 𝐼: 
Moment of inertia, 𝑦: Distance from neutral 

axis, 𝑤: Weight of the column, ℎ: Effective 

length of the column, 𝑡: Thickness of the 

column. 

 

Fig. 6. Tensile strength determination of solid blocks with a new apparatus 

2.2. Tilting table apparatus 

One way of evaluating the results of 

theoretical analyses is testing the physical 

models in the laboratory [22]. Tilting table, 

base friction, and centrifuge are among the 

common geotechnical methods used for the 

examination of the behavior of scaled soil and 

rock structures. In this research, a tilting table 

(Fig. 7) was constructed to study the 

mechanism of the block-flexure toppling 

failure. It has a box (90 cm long, 60 cm wide, 

and 50 cm high) placed over a pneumatic jack 

to set up the models. The jack gradually 

increases the table angle, and the dip of the 

blocks and the slope angle vary 

proportionately. Other components in the 

tilting table include the compressed air 

compressor, air-transfer hoses, compressed air 

fittings and fasteners, the table’s angular 

velocity control equipment, and devices used 

to read the table slope and laser transducer. 

After the model is set up, the table is tilted 

until failure occurs. On this basis, the angle at 

which the model starts to fail or slide can be 

considered as the angle of instability. 

2.3. Two-block physical modeling 

Before constructing the main model, we first 

made some two-block models that had the 

potential of block-flexure toppling failure and 

studied their failure behavior. Since this 

failure modeling was done for the first time 

and there existed no previous related 

experiences, we obtained excellent experience 

in a short time and with low costs, and it 

enabled us to better select the dimensions of 

the main model. To make two-block models, 

two blocks were set up on the table: one in the 

front as a cantilever beam (with the potential 

of flexural toppling failure) and the other, with 

the same height and a free end, behind it (with 

the potential of block toppling failure). The 

table was, then, tilted until failure occurred 

(Fig. 8), and the table angle was measured at 

the moment of toppling. The test was repeated 

for 10-25cm-long blocks. The results are given 

in Table 1. 
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Fig. 7. Tilting table 

 
b) 

 
a)  

 

Fig. 8. Physical modeling of two-blocks with a potential of block-flexural toppling failure 

Inclinometer 

Compressor 

(10 Bar) 

Pneumatic jack 

(10 tone capacity) 

Regulators 

control 

Laser transducer 

Data logger 

Computer 

Balance masses 

(100 Kg) 

90 cm 

60 cm 

87 

Transparency box 

Transparency box 
Laser transducer 

Data logger 

Computer 

Balance masses 

Compressor 

Regulators 

control 
Pneumatic jack 

Model 



Amini et al./ Int. J. Min. & Geo-Eng., Vol.49, No.2, December 2015 

 

161 

Table 1. Results of two-block physical modeling 

Table inclination (
0
) Effective length (cm) No. 

58 10 1 

31 15 2 

20 20 3 

15 25 4 

 

3. Theoretical modeling of two blocks with 

the potential of block-flexure toppling 

failure 

Figure 9 shows the schematic view of a 

theoretical two-block model with the potential 

of block-flexure toppling failure. At the time 

of failure, block 2 with the potential of 

toppling, sliding, or toppling–sliding, exerts a 

special distributed force (with a uniform-to-

triangular pattern) on the adjacent column. 

This column has a potential of flexural 

toppling failure and carries a tensile stress at 

its pivot. If the maximum resultant tensile 

stress produced at the pivot is greater than the 

tensile strength of the materials, the column 

cracks and the model becomes unstable. Since 

equilibrium occurs simultaneously in the 

entire system and in its individual 

components, it may be assumed that system’s 

factor of safety is related to those of the 

individual components. If it is assumed that 

the system’s factor of safety is equal to the 

linear combination of the factor of safety of 

each of the individual components, we can 

find the two-block model safety factor against 

block-flexure toppling failure as follows: 

SBF SB SFF aF bF   (2) 

where FSF is the safety factor of block 1 

against flexural toppling failure and FSB is the 

safety factor of block 2 against blocky 

toppling failure. If a block with a potential of 

flexural toppling failure is modelled with a 

cantilever beam and a block with a potential of 

blocky toppling failure is modelled with a 

beam-column, FSB and FSF are found through 

limit equilibrium equations and substituted in 

Equation (2). We will then have: 

t

2

b.t.σ.

h.tanδ 3h .γ.cosδ
SBF

a t
F    (3) 

where δ is the angle of solid blocks with the 

horizon and σt is the tensile strength of these 

blocks.  

If, in Equation (3), both blocks are capable 

of pure blocky toppling failure, then a=1 and 

b=0, and if they both have the potential of 

pure flexural toppling failure, then a=0 and 

b=1; therefore, the boundary conditions of 

Equation (3) can be found through these 

values. If the physical and mechanical 

properties of the blocks and the boundary 

values of “a” and “b” are substituted in 

Equation (3), we can draw the graphs of the 

blocks’ effective lengths versus the table angle 

under the limit equilibrium condition. These 

graphs show the upper and lower boundaries 

of the block-flexure toppling failures; 

therefore, the zone between the two shows the 

failure zone (Fig. 10). In this failure zone, “a” 

and “b” show the rate of the tendency of the 

block-flexure toppling failure compared with 

the ideal (pure blocky and flexural toppling) 

failures. Next, we will suggest appropriate 

values for “a” and “b” using the physical 

modeling results. 
 

 

Fig. 9. Theoretical model for two blocks with the 

potential of block-flexure toppling failure 
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Fig. 10. Block-flexure toppling failure zone for two-block models 

4. Comparison of the theoretical and 

physical modeling results for the two-

block model 

To validate the results of the proposed 

theoretical approach for the analysis of two-

block models against block-flexure toppling 

failure and determine “a” and “b” values, the 

model results were compared with those of the 

physical modeling (Fig. 11). To better 

interpret the graphs, the pure blocky and 

flexural toppling failure boundaries have been 

shown, too. As shown, for a two-block case 

where one block with a blocky toppling failure 

potential lies on one with a flexural toppling 

failure potential, if “a” and “b” values are 

assumed as 0.5, the theoretical and laboratory 

results will have the best conformity. This 

figure also shows the desirable conformity of 

the results at the boundaries. Totally, this 

comparison concludes that “a” and “b” can be 

found as follows: 

   ,  
m n

a b
m n m n

 
 

 (4) 

 

where “m” and “n” are the number of blocks 

with the potential of blocky and flexural 

toppling failure, respectively. Therefore, the 

relation between “a” and “b” can be found as 

follows: 

 a 1 b     (5) 

Substituting Equation (5) in Equation (3), 

we can find the final equation for the 

determination of the factor of safety of the 

block-flexure toppling failure for some equal-

height blocks as follows: 

  t

2

t.σ
1

h.tanδ 3h .γ.cosδ
SBF

t
F a a    (6) 

 

Fig. 11. Comparison between theoretical and experimental results 
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5. Modeling rock slopes against block-

flexure toppling failure 

After presenting a theoretical model for the 

analyses of two-block failures, we modeled 

rock slopes with the potential of block-flexure 

toppling failure in two series: first, it was 

assumed, quite ideally, that the slope's block 

geometries are divided into two blocky and 

flexural parts so that every other block is 

potentially blocky or flexural. These models 

are, of course, quite different from real rock 

slopes because, in nature, slope blocks are 

usually arranged quite randomly; therefore, in 

the second series, we followed the same 

pattern (random arrangement) so as to show 

more similarity with real naturally layered 

rock slopes. In both series, after the models 

were constructed, the table was tilted 

gradually to cause the failure to occur. At the 

moment of failure, such parameters as the 

table angle, total failure plane angle, and so on 

were measured. In what follows, we will 

explain the two modeling sets separately. 

5.1. Ideal block-flexure toppling failure 

modeling 

Figure 12 shows an example of such modeling 

before the test and after failure; in these 

models, the blocks regularly undergo blocky 

and flexural failures. In fact, every 

consecutive two blocks resemble the two-

block models; one block is fixed at its pivot 

and is capable of carrying tensile stresses, but 

the next block is free at its end and imposes its 

weight, after the table tilts, on the fixed block. 

Because of some limitations regarding the 

construction and placement of the blocks, the 

heights of the slopes vary from 41 to 47.39 

cm. Table 2 shows the modeling results. 

 

 
b) 

 
a) 

Fig. 12. Ideal block-flexure toppling failure modeling 
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Table 2. Geometrical parameters of rock slope models 

having a potential of block-flexure toppling failure 

with ideal setup 

H (cm) 𝛉 (
0
) 𝛅 (

0
) 𝛗 (

0
) β (

0
) No. 

53.49 102 57 18 -12 1 

47.39 98 55 15 -8 2 

44.24 92 47 12 -2 3 

5.2. Modeling block-flexure toppling failure 

with random setup 

In the second series, the blocks were placed in 

the model quite randomly so that some blocks 

could break and some could overturn freely. 

The length of these blocks was selected 

between 5 to 20 centimeters. When the length 

of all blocks is 5 centimeters, blocky toppling 

failure occurs, because blocks can overturn 

freely. Also, when all the blocks are 

continuous, we have flexural toppling failure. 

Our experiments showed that if the length of 

the blocks are selected randomly, the models 

fail due to block-flexure toppling failures. The 

models’ heights were considered to be 

approximately 45 cm so that the inclination of 

rock slope may not exceed 90
0
 at the failure 

time. Fig. 13 shows the schematic view and 

two photos of a model selected from these 

experiments. All modeling results are given in 

Table 3. 

 

 
b) 

 
a) 

Fig. 13. Physical modeling of rock slopes against block-flexure toppling 

Table 3. Geometrical parameters of the physical models 

of rock slopes having a potential of block-flexural 

toppling failure with random setup 

H 

(cm) 
𝛉 (

0
) 𝛅 (

0
) 𝛗 (

0
) β (

0
) No. 

44.97 110 67 17 24- 1 

46.81 102 59 27 16- 2 

47.59 96 53 29 10- 3 

44.97 110 67 21 24- 4 

47 106 63 15 20- 5 

43.72 114 71 14 28- 6 

 

6. Analysis of block-flexural toppling 

failure 

In 2008, Amini et al. presented a theoretical 

method for the analysis of the pure flexural 

toppling failure [15]. This method's 

authenticity was confirmed through comparing 

its results with those of the "Centrifuge", 

"Base Friction", "Tilting Table", and "Shaking 

Table" modeling methods. According to the 

presented method, a rock column safety factor 

against flexural toppling failure can be 

assumed equal to that of a single cantilever 
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beam. The thickness, inclination, and all the 

other physical and mechanical properties of 

such a beam are exactly the same as those of 

rock columns in a rock slope, and its length is 

found from Equation (7). This approach is 

known as the “Equivalent Length” method. It 

is worth mentioning that in the original paper, 

the upper surface of the rock slope has been 

assumed to be horizontal, but in the present 

study the principal equations have somewhat 

changed and have become more generalized, 

because according to the following relations, 

the upper surface of a slope can lie below or 

above the horizontal plane. 

 

   

2tan .

tan

cos
A

tan

   

     

 


    
 (7) 

 2cos .cos
B H

sin

   



 
  (7-1) 

 
2

cos
.C H

sin

  



   
  
 

 (7-2) 

 
0.5

2 4

2

B B AC

A


  
  (7-3) 

where the parameters which have been used in 

the equation are: ψ: equivalent length of rock 

slope, 𝛿: Angle of rock mass stratification 

with respect to the horizontal, φ: Angle 

between total failure plane and the line of 

normal to discontinuities, θ: Angle between 

face slope with respect to the horizontal, 𝛽: 

Angle of upper surface of rock slope with 

respect to the horizontal, 𝐻: slope height. 

These parameters have been shown in Figure 

14. 





Fig. 14. Schematic picture of a rock slope with a potential of toppling failure 





H




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Therefore, the factor of safety against the 

flexural toppling failure can be found as 

follows [15]: 

t

2

t.σ

3ψ .γ.cosδ
sF   (8) 

Also, the safety factor of a block with 

length ψ against block toppling failure is 

found as follows: 

ψ.tanδ
s

t
F   (9) 

As mentioned earlier for two-block models, 

in block-flexure toppling failures, the blocks 

with toppling failure potentials exert part of 

their weight force on the cantilever rock 

column. On this basis, it is suggested that, for 

the analyses of rock slopes against block-

flexure toppling failures, a combination of the 

above relations be used as follows: 

  t

2

t.σ
1

ψ.tanδ 3ψ .γ.cosδ
SBF

t
F k k    (10) 

where k is a dimensionless modification factor 

varying between 0 and 1; this factor shows the 

percentage of blocks with a pure blocky 

potential compared to the total blocks in the rock 

slope. If all the blocks in a slope are cantilevers 

under flexure, the slope will be capable of a pure 

flexural toppling failure and this factor will be 0; 

otherwise, it will be less than 1. Also, if all the 

blocks in a slope have blocky potentials, the 

factor will equal 1 and the failure will be of a 

pure blocky toppling type. 

7. Comparison between theoretical and 

experimental results  

In the previous section, Equation (10) was 

proposed for the determination of the rock 

slope safety factor against block-flexure 

toppling failure. At the moment of failure, the 

slope factor of safety against the failure is 1; 

therefore, it is possible, using the experiments 

in this research, to validate the results of the 

suggested approach. For more clarifications, 

we also made some physical models with the 

potentials of pure blocky and flexural toppling 

failures through which it is possible to 

evaluate the boundary conditions (k=0 and 1) 

of Equation (10). The physical and theoretical 

modeling results have been compared in 

Figure 15. As shown, under limit conditions, 

there is relatively good conformity between 

the experimental results and those of Equation 

(10). The error of this relation is, of course, 

more than those of two-block models, because 

in this case, the models’ conditions are more 

complicated. In this figure, the graph found for 

Equation (10) has also been drawn for k=0.5. 

As shown, this graph thoroughly conforms to 

the results of the ideal models of block-flexure 

toppling failures. In these models, the number 

of blocks with pure blocky failure potentials is 

equal to that of those with pure flexural failure 

potentials, and the failure plane is such that 

half of the blocks have failed due to the tensile 

stresses. However, in non-ideal models, since 

the blocks are placed randomly, the failure 

plane is so formed that fewer blocks break. 

Therefore, in most of these models, the 

experimental results are between the blocky 

and ideal block-flexure curves. This 

comparison shows that Equation (7) can be 

used to analyze and predict the rock slope 

behavior against block-flexure toppling 

failure. 

8. Analysis of a real case study with the 

proposed approach 

In the previous section, a new theoretical 

model was proposed for the analyses of block-

flexure toppling failures. The comparison of 

the results of this model with those found from 

experimental modeling showed that the 

suggested approach was satisfactorily precise 

and correct. Since the ultimate goal of such 

methods is to analyze the stability of real rock 

slopes that have the potential of block-flexure 

toppling failure, it is necessary that their 

results be compared with those found from 

case study examples. In this section, a real 

rock slope with a block-flexure toppling 

failure potential has been analyzed, using the 

theoretical method proposed in this paper, and 

the results have been compared. 

8.1. Rock slope features     

“Chaloos” is the road that connects Tehran to the 

north of Iran. A major part of its bed has been 

constructed through excavating trenches in 

layered sandstone. The rock slope facing this 

road in km 55.4 has a potential of block-flexure 

toppling failure (Fig. 16). The rock mass of this 

slope is made of thick layers of sandstone. The 

geometrical specifications of the rock slope and 

the rock mass discontinuities were gathered 

through field observations and studied using the 



Amini et al./ Int. J. Min. & Geo-Eng., Vol.49, No.2, December 2015 

 

167 

DIPS software. Figure 17 shows the results of 

the investigations. As shown, there are two sets 

of dominating discontinuities in the rock mass: a 

set of joints and a bedding plane; the persistence 

of the bedding plane is such that it can be 

observed regularly throughout the rock mass, but 

the joints’ persistence is, at most, equal to the 

thickness of the rock mass layers so that they do 

not cover the whole rock mass continuously. To 

determine the geo-mechanical properties of the 

rock mass, some rock blocks were taken from 

the site and transferred to the laboratory. In the 

laboratory, many cores were obtained from the 

rock blocks and tested. 

Tables 4, 5, and 6 show the physical and 

mechanical results of the tests performed on 

the core samples. In addition, in order to 

evaluate the overall characteristics of the rock 

slope, its rock mass was classified based on 

the GSI and RMR approach; on these bases, 

the rock mass RMR was 40-45 and its GSI 

was 30-35. The rock mass specifications, 

considering engineering classifications, were 

determined and are shown in Table 7. 

 

 

Fig. 15. Comparison between theoretical and experimental results  

 

Fig. 16. Block-flexural toppling failure in “Chaloos” road (km 55.4) 
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Fig. 17. Stereonet diagrams of discontinuities and the face slope of the case study 

Table 4. Physical properties of Sandstone samples 

Durability 

Index 

Point 

Load 
Physical Properties 

Rock Type 

Is (50) 
Water 

Absorption % 
Porosity % 

Density (gr/cm
3
) 

Sat Dry 

98 1.5 1 1.4 2.5 2.3 Sandstone 

Table 5. Geomechanical properties of Sandstone samples 

Sound velocity Brazilian 
Uniaxial compressive 

strength test 
Rock Type Vs(m/s) Vp(m/s) t(MPa)σ E(GPa) σc (MPa) 

Sat Dry Sat Dry Sat Sat Sat 

2680 2690 5680 5650 2.3 11 26 Sandstone 

Table 6. Shear strength parameters of Sandstone samples 

Direct Shear Test Tri-axial Compressive Strength Test 

Rock Type Peak Residual Hoek’s Constants 
Φ c (MPa) 

φ c (MPa) φ c (MPa) S mi 

34.8 0.098 28.1 0.075 1 8.35 36 8.5 Sandstone 

Table 7. Specification of the rock mass of the case study  

(MPa)σ Em(GPa) 
°

φ c (MPa) A s mb 

0.196 5.336 25.62 0.299 0.518 0.0001 0.21 

 

8.2. Stability analysis of the case study slope 

To analyze the stability of this slope, we first 

studied its stability using stereographic 

diagrams; the results are shown in Fig. 18. As 

shown, the poles of the rock mass cross-joints 

are in the plane failure zone, and those of its 

bedding planes are in the toppling failure 

region. Since the joints are not fully 

continuous, there will not be any potential of 
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complete plane failure and the rock mass has 

only a potential of block-flexure toppling 

failure. Also, site investigation shows that, in 

this case, some rock blocks fail due to bending 

tensile stresses, and some blocks overturn due 

to their own weights, and overall block-

flexural toppling failure occurs. Hence, the 

theoretical method that is presented in this 

paper can be used to assess the slope. 

To find the safety factor of this slope 

against toppling failure based on the method 

proposed in this paper, the parameters required 

for Equations (7) and (10) are found from 

subsection 7-1-1 and shown in Table 8. 

Table 8. Geometrical and geo-mechanical parameters of the rock slope  

Parameters 𝑯 𝜹 𝛗 𝛉 𝜷 𝒌 𝒕 𝛔𝐭 𝜸 

Units (m) (Degree) (Degree) (Degree) (Degree) ---- (cm) (MPa) (KN/m
3)

 

Values 8.5 55 10 100 30 0.5 35 2.3 23 
 

Substituting these parameters in Equation 

(7), the equivalent length of this slope was 

found to be 3.29 m. Hence, the safety factor of 

the slope against block-flexural toppling 

failure can be found with the modeling of two 

blocks with a length of 3.29, as shown in 

Figure 19. Therefore, using Equation (10), we 

can find its safety factor against block-flexure 

toppling failure as follows. 

 
2

0.33
0.5

3.29 tan55

0.33 2300
1 0.5 0.974

33.29 23 cos55

SBFF   



 

 

 
(11) 

As shown, the safety factor of this slope is 

nearly equal to 1 which conforms very 

satisfactorily to reality, because this slope is 

on the limit equilibrium condition and its 

safety factor should be equal to 1. 

 

Fig. 18. Kinematic stability analysis of the case study slope 
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Fig. 19. Modeling of rock slope with a potential of block-flexure toppling failure with two equivalent columns  

9. Conclusions 

In this research, a special chemical powder 

was used to prepare synthetic solid blocks. 

The powder was turned, under a consolidation 

pressure of 210 kPa, into blocks 2.34 gr/cm
3
 in 

density, and 56.7 kPa in compressive strength. 

Since, on the one hand, the blocks’ tensile 

strengths are quite low and, on the other hand, 

this parameter highly affects the block-flexure 

toppling failure, to determine the tensile 

strength of the blocks, a special apparatus was 

designed and constructed; using this device, 

the blocks’ tensile strength was found to be 

32.37 kPa. The solid blocks were used to 

make several physical models of rock slopes 

with a potential of block-flexure toppling 

failure, and their failure was studied using the 

tilting table. Then, a theoretical method was 

proposed for the stability analyses of rock 

slopes against such failures. Based on the 

proposed method, it is possible to directly find 

the safety factor of such slopes. A comparison 

of the results of this method with those found 

from physical models shows that the 

suggested theoretical approach is appropriate 

for the analysis of such failures. Also, for the 

practical verification of the results of the 

theoretical approach, a case study was 

evaluated using this method. The results found 

from the analyses of the case study have 

verified the correctness of the results of the 

proposed method.  
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