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Abstract 

 Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. 

Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is 

perceived as contribution combination of geostatistics and seismic inversion algorithm. This method 

integrates information from different data sources with different scales, as prior information in 

Bayesian statistics. Data integration leads to a probability density function (named as a posteriori 

probability) that can yield a model of subsurface. The Markov Chain Monte Carlo (MCMC) method is 

used to sample the posterior probability distribution, and the subsurface model characteristics can be 

extracted by analyzing a set of the samples. In this study, the theory of stochastic seismic inversion in 

a Bayesian framework was described and applied to infer P-impedance and porosity models. The 

comparison between the stochastic seismic inversion and the deterministic model based seismic 

inversion indicates that the stochastic seismic inversion can provide more detailed information of 

subsurface character.  Since multiple realizations are extracted by this method, an estimation of pore 

volume and uncertainty in the estimation were analyzed. 
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1. Introduction 

Stochastic seismic inversion is a combination 

of statistical inference process and inversion 

algorithm in which data from different sources 

with different scales are combined to yield a 

proper model of subsurface. In the early 

1950’s, the Kriging algorithm was used to 

model reservoir parameters. However, 

smoothness of the models extracted by 

Kriging algorithm made them not realistic. In 

1989, the stochastic simulation idea was 

presented by Journal to overcome the 

smoothness of the final model [1]. Despite the 
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fact that the stochastic simulation provided 

multiple answers, the models were different 

from each other. In order to reduce modeling 

uncertainty, seismic data constraints entered 

into the simulation process whereby the model 

in which synthetic seismogram matched the 

seismic data was chosen as the final model. 

This idea formed the stochastic seismic 

inversion [2]. However, because of the 

randomness of path to visit all the points in the 

model, this stochastic seismic inversion still 

produced more than one result with no 

clarification on the relationship between the 

results. Tarantola viewed the stochastic 

seismic inversion from a different perspective 

when in his algorithm, the inverse problem 

was considered as a probability density 

function. In the first step, a posterior 

probability distribution is built based on a 

priori information and forward modeling 

theory and then the posterior probability 

distribution is sampled [3]. The combination 

of these two inversions appeared in Hansen et 

al.’s paper [4] where geostatistical information 

is used to construct prior probability 

distributions and in the case of a Gaussian 

posterior probability distribution, the 

distribution is sampled via Sequential 

Gaussian Simulation (SGS). Gunning and 

Glinski introduced a model-based Bayesian 

inversion algorithm using an open-source 

software called Delivery [5]. Sengupta et al. 

used Bayesian inversion to estimate a seismic-

based pay volume [6]. Bosch et al. combined 

Bayesian inversion with rock physics to model 

reservoir property [7]. The inversion method 

herein is similar to Hansen, but the posterior 

probability distributions are not Gaussian. The 

Markov Chain Monte Carlo (MCMC) 

sampling method is used to sample the 

posterior probability distribution because 

MCMC can be used to sample any probability 

distribution [8]. 

2. Stochastic seismic inversion 

By using the observed data and based on 

forward modeling theory, geophysical 

inversions produce subsurface models. Since 

data are always scarce and contaminated by 

noise, it is impossible for any inverse method 

to produce a unique correct subsurface 

geology model [8]. However, under some 

assumptions there is a probability that each 

possible model generated from the data may 

be a real underground model. All these 

probabilities constitute a probability 

distribution on a defined model space. 

Stochastic seismic inversion attempts to 

understand subsurface situations by analyzing 

probability distribution. In this study 

probability distribution construction is 

discussed and analyzed. The paper mainly 

focuses on P-impedance and porosity models. 

An initial probability distribution for the P-

impedance model can be constructed and 

regarded as a conditional probability density 

function, PDF, 

( )P z v   

where z  is the P-impedance model and v  

denotes the variogram of P-impedance.  

Generally, this PDF can be considered as a 

multivariate Gaussian distribution. Initial 

distribution that is not constrained by seismic 

data is called a prior probability distribution. 

Correspondingly, the probability distribution 

with seismic data constraints is regarded as a 

posterior probability distribution. According to 

Bayes’ theorem, the relationship between the 

prior and posterior probability distributions is: 

( , ) ( ) ( )P z v s P s z P z v  (1) 

where s  denotes the seismic data. The 

likelihood probability ( )P s z  signifies the 

probability of acquiring seismic data s  when 

the P-impedance model is z . In fact this term 

is a measurement of similarity between the 

model z  synthetic seismogram and the 

seismic data s  in form of probability. The 

posterior PDF, ( , )P z v s , represents the 

probability density function of the P-

impedance model z , conditioned by the 

variogram v  and the seismic data s . 
Equation (1) is used for the posterior 

probability of z , while our goal is to build a 

joint PDF for porosity and P-impedance. As a 

result, Equation (1) is rewritten as: 

( , , ) ( , ) ( , )P z v s P s z P z v    (2) 

where   denotes porosity. To constrain 

solution to the well data, Equation (2) is 

rearranged as: 
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( , , , ) ( ) ( , ) ( , )P z v s w P s z P z v P v w    (3) 

where w is representative for well log data. 

Equation 2 states that the posterior probability 

of P-impedance and porosity constrained to 

seismic, geostatistics (variograms) and well 

logs is the product of two main components: 

likelihood function and prior information. 

Joint posterior probability function of 

porosity and P-impedance is a 

multidimensional probability density function. 

Such a probability distribution contains all the 

subsurface information inferred from seismic 

data, well logs and other available data. For 

this reason, using a proper sampling algorithm 

is of great importance. Markov Chain Mont 

Carlo sampling method, which is from 

Metropolis sampling algorithms family, is 

employed to sample probability space to infer 

multiple realizations of subsurface that honors 

all the input data. The output of sampling is 

realizations (samples) of P-impedance with 

associated porosity realizations [9].  

3. Dataset 
A migrated full-stack 3D seismic volume with 

crosslines and inlines both spaced 25 meters 

and four wells, was available for seismic 

inversion. Seismic interpretation provided six 

horizons. Exploration wells showed oil 

presence in a layer. The main challenge in this 

layer was estimating porosity and pore 

volume. The idea is to use stochastic seismic 

inversion to provide multiple realizations of 

porosity and pore volume for analyzing 

estimation uncertainty [10, 11]. It should be 

noted that to decrease computational effort, 

our calculation is focused on the target layer. 

4. Results 

The first step in stochastic seismic inversion is 

constructing a priori model of properties in 

question, using hypothesis from geology and 

geostatistics [12]. In geostatistics, a priori 

model can be constructed based on variograms 

and histograms of observed data. To build 

porosity models from P-impedance, producing 

joint histogram of porosity and P-impedance is 

necessary [13]. Output realizations should 

reproduce these histograms. Figure 1 shows 

the individual and joint histograms of porosity 

and P-impedance from well log data. 

Summary statistics for porosity of target layer 

are inferred from the histograms and are 

shown in Table 1. These statistics should be 

produced in all output models of porosity. In 

addition to histograms, lateral and vertical 

variograms of P-impedance were also 

produced. To produce lateral variogram of P-

impedance, a deterministic inversion using 

Constrained Sparse Spike method was done 

and the results were utilized for lateral 

variography [13]. -impedance log and the 

production of sonic and density well logs in 

were used for vertical variography. Figure 2 

shows both vertical and lateral variograms and 

CDFs of P-impedance in target layer. 

A stochastic seismic inversion in a 

Bayesian framework was applied on the target 

layer in the study area. To reduce edge effect, 

a non-reservoir layer over the reservoir layer 

was added to the study area. 50 realizations of 

P-impedance and porosity were extracted. 

Figure 3 shows three realizations of P-

impedance and their associated porosity in a 

cross section. Target layer is distinguished 

from non-reservoir layer in both P-impedance 

and porosity  cross sections by low P-

impedance and high porosity. 

To compare resolution of P-impedance 

models obtained from both deterministic and 

stochastic inversion, these two models were 

compared in a cross section as shown in Fig. 4 

shows that stochastic inversion results in 

models that show more detail than 

deterministic inversion.  

5. Validation of results 

Extracting correlation map of synthetic 

seismogram to seismic data is the first step in 

validating results in seismic inversion 

practices. Synthetic seismograms for all P-

impedance realizations have been generated 

and correlation coefficient maps were 

extracted. Figure 5 shows the correlation maps 

for four realizations and it is obvious that the 

correlation coefficient in all realizations is 

high enough to validate the results. 

Since we have introduced histograms of P-

impedance and porosity as the conditional inputs 

of our seismic inversion scheme, the histograms 

should be reproduced in the output results. 

Figure 6 shows the input and output histogram 

of porosity and P-impedance for one realization 

and it is seen that the output histograms have a 

good agreement with input histograms. 
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(a) 

 
(b) 

 
(c) 

Fig. 1. Individual histograms and CDFs of P-impedance (a) and porosity (b), and joint histogram of porosity and P-

impedance (c) 
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Table 1. Summary statistics for porosity in target layer 

Statistics for porosity in target layer 

Mean 0.21 

Standard 

deviation 
0.0648 

 

 

(a) 

 

(b) 

Fig. 2. Lateral (a) and vertical (b) variogram of P- impedance in target layer 
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Fig. 3. Three realizations of P-impedance (upper panel) and associated porosity of them (lower panel) in a cross section 

 

Fig. 4. Comparison of details in deterministic inversion (left) to stochastic inversion (right) in a cross section. 

Stochastic inversion yields more details than deterministic inversion 
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Fig. 5. Seismic to synthetic seismogram correlation map for four realizations of P-impedance reveals good agreement 

between synthetic seismogram and seismic data 

 

 
 

(a) (b) 

Fig. 6. Output histograms (in red) of P-impedance (a) and porosity (b) compared to input histograms (in blue). The 

output histograms are in a good agreement with the input histograms. 
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Porosity models confirms prior hypothesis 

about mean and standard deviation of porosity 

in target layer as summarized in Table 1. 

Mean and standard deviation of porosity in all 

realizations are computed and shown in Figure 

7. The results show that mean and standard 

deviation of all realization of porosity are 

propagated around prior values that are 

extracted from Table 1. 

Variogram reproduction is another key 

factor that should be checked before using 

results for further analysis. Figure 8 shows 

lateral and vertical variograms of both 

porosity and P-impedance in one of the 

realizations. It is obvious that both variograms 

were reproduced. 

The final validation test is a blind well test. 

In this test, well 3W-003 was eliminated from 

the inversion process and the porosity model 

from stochastic inversion at the well location 

was compared to well porosity in this well. 

Figure 9 shows the cross correlation plot of 

porosity of well 3W-003 vs. porosity-seis-st 

(which stands for porosity obtained from 

stochastic seismic inversion). According to 

Figure 9 the correlation coefficient between 

porosity of the well and the porosity obtained 

from stochastic inversion is 74% which is high 

enough to justify utilization of the stochastic 

porosity model for further analysis. 

 
(a) 

 
(b) 

Fig. 7. Mean porosity (a) and standard deviation of porosity (b) for all realization of porosity. Prior values are 

indicated by the green line. 
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(a) 

 
(b) 

Fig. 8. Output lateral variogram of porosity (a) and P-impedance (b) in one of realization. Compared to input 

variograms it is obvious that both variograms are reproduced with high confidence. 



Moradi et al. / Int. J. Min. & Geo-Eng., Vol.49, No.1, June 2015 

 

140 

 

Fig. 9. Cross correlation plot of the well porosity and stochastic porosity in the well 3W-003 

6. Pore volume estimation and uncertainty 

analysis 

Pore volume is an important parameter in 

volumetric calculations of hydrocarbon 

reservoirs [14]. Stochastic inversion provided 

50 realizations and consequently, 50 pore 

volumes. By applying fluid contacts in all 

realizations, 50 pore volumes for target layer 

were extracted. Figure 10 shows the histogram 

and CDF of pore volumes derived from 

porosity realizations while pessimistic 10( )P , 

most probable 50(P )  and optimistic 90(P )  

values are indicated in green, red and blue 

solid lines, respectively. 

 

 
(a) 
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(b) 

Fig. 10: Histogram (a) and cumulative frequency (b) of pore volumes derived from 50 realizations. 
10

P , 
50

P  and 
90

P  

are indicated by green, red and blue line, respectively. 

7. Conclusion 

Stochastic seismic inversion integrates well 

logs and seismic data to provide petrophysical 

property models away from well. Integration 

of data from different sources increases the 

details in the results. All primary hypotheses 

about the desired property were successfully 

accepted through the stochastic inversion 

algorithm while the input histograms and 

variograms were reproduced in output models. 

Stochastic inversion of 3-D post-stack seismic 

can not only be successfully applied to 

estimate elastic and engineering properties of 

subsurface, but can also be applied in 

analyzing uncertainty in volumetric 

calculations. In this paper, stochastic inversion 

was used to infer porosity and acoustic 

impedance and then an estimation of pore 

volume and uncertainty were analyzed. 
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