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Abstract 

Elastic solutions applicable to single underground openings usually suffer from geometry related 

simplification. Most tunnel shapes possess two axes of symmetry while a wide range of geometries 

used in tunneling practice involve only one symmetry axis. D-shape or horse-shoe shape tunnels and 

others with arched roof and floor are examples of the later category (one symmetry axis). In the 

present paper, with the use of conformal mapping, two methods were developed to determine the 

appropriate mapping functions on which an analytical elastic solution for a tunnel with one vertical 

axis of symmetry is based. These conformal mapping functions turn complicated geometries into a 

unit circle for the sake of simplification. These two approaches were introduced into a computer 

program used for an arbitrary tunnel cross section. Results showed that the second approach has more 

accuracy and is able to produce any shape, since it uses a nonlinear structure in its constitutive 

equations. Besides, the values for different coefficients have been presented for a variety of tunnel 

geometry curvature, as well as acceptable variation for the coefficients to represent tunnels with 

conventional shapes. 

Keywords: arched roof tunnel, conformal mapping, theory of elasticity, tunnel cross section, 

underground opening. 

 

1. Introduction  

Determination of stresses and displacements 

around underground excavations is vital for 

the design and assessment of stability and 

safety. Underground spaces, depending on 

their functionality, possess a wide range of 

cross section geometries from circle to horse-

shoe shape and square. This diversity of shape 

considerably affects the state of stress and 

displacement around tunnels. Stress and 

displacement also play an important role in 

evaluating the stability of underground 

structures. In order to evaluate the stability of 
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an underground opening, different methods 

such as analytical, numerical, and physical 

modeling approaches are employed. More 

specifically, closed-form solutions hold for the 

exact determination of stress and displacement 

fields, considered for long as the most reliable 

approach in underground engineering practice. 

In introducing an analytical solution, the 

geometry has a profound impact on the 

equations and, sometimes, complicated 

geometries have prevented the finding of a 

closed-form solution so far. In many 

geotechnical applications, underground 

openings in soils and rocks are excavated with 

more complex geometries such as semi-

circular, quadrilateral, oval, horse-shoe shape, 

rectangular, square, and double-arch cross 

sections. All shapes mentioned were found to 

get solved  using the complex variable 

method, as well as conformal mapping. This 

method is used to transform a noncircular 

geometry to a circular disc or planes weakened 

by a circular hole depending on the mapping 

function as well as the boundary condition of 

the problem. The advantage of the complex 

variable method with respect to the method 

that uses bipolar coordinates [1] is that the 

complex variable method is of a more general 

character, enabling the solution of problems 

for various cross sections and boundary 

conditions. Another advantage is that it 

directly gives displacement and stress.   

Analytical solutions are available in 

literature with different degrees of 

mathematical complexity. Lekhnitskii gave 

solutions for stresses around different shapes 

of holes using a series of methods [2]. These 

shapes are more approximate. Savin’s 

approach by conformal mapping and Schwarz 

formula are much simpler [3]. Greengave 

solutions for concentration problems with 

varieties in holes’ shapes considering isotropic 

and aelotropic plates [4]. The solution given 

by Stephens for a curvilinear triangular hole in 

aelotropic plates entails onerous algebra [5]. 

Hwu gave a solution to consider circular, 

elliptical, oval, square and pentagonal shaped 

holes in anisotropic plates [6]. These shapes 

are approximate since Gwu employed the 

same mapping function as that of Lekhnitskii. 

Bobet considered a rectangular tunnel exposed 

to a far field shear stresses simulating semi-

static analysis of stress and displacement [6]. 

Gercek derived an analytical solution for 

stresses around tunnels with conventional 

shapes [7]. Later on, a closed-form solution 

for a semi-circular tunnel was obtained 

through Muskhelishvili’s complex potential 

functions along with conformal mapping [8]. 

In almost all the researches mentioned above, 

mapping functions used in the domain of the 

problem are in their simplest forms [9] to 

avoid extra coefficient determination. In fact, 

mapping functions hold the responsibility to 

convert the geometry of the problem into the 

circular shapes which are far easier to deal 

with rather than complex ones. In order to 

solve a boundary value problem in 

underground structures involving complex 

cross sections, it is of vital importance to 

obtain the conformal mapping function having 

capability of representing the shape of the 

original cross section in the most efficient 

way. It has to be that way, since even a small 

deviation from the original geometry has a 

certainly great impact on the stress and 

displacement around the hole.  

In this paper, a new method has been 

presented to optimize the conformal mapping 

functions for an arbitrary cross section to be 

employed in boundary value problems with 

application in underground structures. 

Besides, the coefficients of mapping functions 

for cross sections common in tunneling 

practice have also been presented. 

2. Problem statement 

For the solution of plane elasticity problems 

with complicated shapes, the conformal 

mapping technique of the complex variable 

method [4] can be used. In this powerful 

method, the problem geometry involving an 

awkwardly shaped region is transformed into 

one of a simpler shape (e.g. a circle). 

Although, in general, the transformation 

complicates the boundary conditions; the 

difficulties of handling these are outweighed 

by the simpler geometry that results [5]. An 

infinite plane weakened by a hole with an 

arbitrary shape is to be mapped onto a unit 

circle or, similarly, into an infinite plate with a 

circular hole as shown in Figure 1. In 

problems involving a hole in an infinite plate, 

the region surrounding the hole is mapped 

conformally onto the interior or exterior of a 

circle using a mathematical function.   



Nazem et al. / Int. J. Min. & Geo-Eng., Vol.49, No.1, June 2015 

 

95 

In order to have a solution, a conformal 

mapping function, which transforms the 

infinite region surrounding the hole in a 

complex z plane  (i.e. z x iy   
where 

2
1i   ) onto the interior or exterior of the 

unit circle in another complex plane 
 
(i.e. 

i     or 
ie    ), has to be known. 

Then the boundary conditions of the problem 

given in the z-plane are simultaneously 

transformed into an appropriate form for 

the plane  . The problem is solved using 

two complex potential functions. Finally, the 

resulting equations for the distribution of 

stresses or displacements are inverted to 

obtain those for the actual problem in the z-

plane[8]. 

Herein, the problem refers to the 

determination and optimization of appropriate 

conformal mapping functions to transform an 

infinite plane weakened by a tunnel with 

arbitrary cross section into a problem with 

simpler geometry for further stress and 

displacement analysis. Mapping functions also 

convert a set of tunnel and infinite plane to a 

circular disc or, as with unit diameter or, as 

another alternative, an infinite region 

weakened by a circular tunnel, as shown in 

Figure 1, to decrease the level of complexity 

involved in developing a closed form solution.  

On the other hand, in the mapping 

functions, numbers of real and imaginary 

coefficients as well as their values control the 

geometry of the original problem. Thus, two 

methods have been introduced to optimize 

functions for tunnels with different cross 

sections.  

3. The solution method 

3.1. Conformal mapping 

The conformal mapping functions used in this 

study is a method of conjugate trigonometric 

series [7]. The mapping function which 

conformally transforms the infinite region 

surrounding the hole onto the interior of the 

unit disc is of the following form: 

1

1
( ) , 1

N
k

k

k

z R    
 

 
    

 
  (1) 

where R is a real constant that scales the shape 

and the complex coefficients appearing in 

Equation 1 are: 

, 1,2,...,k k ka ib k N     (2) 

It can be easily verified that the circle 1   

corresponds to the boundary of tunnel. The 

infinity in the z plane
 
is mapped onto the 

origin of the unit circle, as shown in Figure 2.   

 

 

 

 

 

 

 

 

 

Figure 1. original and conformally mapped regions 

Fig. 1. Original and conformally mapped regions 
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Fig. 2. Conformal mapping of an infinite region surrounding a hole onto a unit circle 

The values of real and imaginary parts of 

these coefficients determine the shape of the 

hole, which must be a simple closed curve. 

When the coefficients are selected properly 

according to the approaches presented 

hereafter, the coordinates of the points in the 

region surrounding the hole in the z plane  

were obtained by setting exp( )n n ni   in 

Equation 1. After separation of real and 

imaginary parts of z x iy  , parametric 

equations become: 

 

 

1

1

cos
cos sin

sin
sin cos

N
N

N N

k

N
N

N N

k

x R a N b N

y R a N b N


  




  







  
   

  


      
 





 (3) 

By setting 1 
 

in Equation 3, the 

parametric equations defining the boundary of 

the hole were obtained. Then it is possible to 

define some tunnel and cavern shapes widely 

used in mining and civil engineering if certain 

number of terms and their values are assigned 

to the coefficients of Equation 3 [10].  

3.2. Optimization of mapping function 

As it was previously referred to in Equation 4, 

mapping function shall conformally convert 

the geometry of the original problem and its 

corresponding transformed geometry, herein a 

unit disc, in a new coordinates system. It 

should be noted that in these functions, the 

number of terms in the series expansion as 

well as their values control the accuracy and 

correctness of the produced geometry through 

those functions matched with the original 

geometry. This is of great importance since 

geometry has profound impact on stress and 

displacement. Hereafter, two methods have 

been introduced to optimize the 

aforementioned mapping functions. One may 

presume the original geometry of tunnel cross 

section and its transformed shape as Figure 1. 

Mapping function is therefore of the form: 

2 30
1 2 3 ... n

n

a
z a a a a   


       (4) 

On the circle boundary ( 1, z x iy     ) 

Equation 4 shall have the form: 

2

0 1 2

3

3 ...

i i i

i ni

n

x iy a e a e a e

a e a e

  

 

   

  
 (5) 

where 

0

1

0

1

cos cos( )

sin sin( )

N

n

i

N

n

i

x a a n

y a a n

 

 






 



   






  (6) 
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According to Figure 1, one may consider 

that M points are required to identify the 

boundary of underground excavation and, on 

the other hand, these points are supposed to 

have corresponding pairs on the unit circle in 

the transformed coordinates. Replacing the 

coordinates of these points in Equation 6, is as 

follows: 

Taking Equations 7 into account, there are 

two possible ways to match the geometry of 

the original excavation and one mapping 

function produces: 
j  is a constant or 

variable.  

1

0

0

1

0

1

cos cos( ) ( 2,3,..., )

sin sin( ) ( 2,3,..., )

N

n

n

N

j n j j

i

N

j n j j

i

a x

a a n x j M

a a n y j M

 

 













  


   








 

 

 

 

                            (7) 

 

 

The first approach deals with optimization, 

while 
j  is constant. In this method, each 

point on the original boundary forms an angle 

  on the unit circle. Therefore, Equation 7 

will form a linear equation system with na  as 

its unknown vector. After performing some 

manipulations, it is obvious that the 

aforementioned equation system contains 

2 1M   equations and 1N   unknown 

variables. It should be noted that if M  and 

N  are determined such that both numbers are 

the same, it means that the equation system 

has a direct solution and the obtained function 

passes through all points on the original 

geometry as its input data. However, this 

approach requires the least square method as 

its complementary part to yield an appropriate 

match for a given excavation boundary. Given 

that 2 1M   is sufficiently greater than 1N  , 

the system of Equation 7 shall be rewritten as: 

   pqA Xq Rp     

( 2 1, 1)p M q N     

       

(8) 

where 

2 2 2 2

2 2 2 2

1 1 1 1

cos cos cos(2 ) cos( )

cos cos cos(2 ) cos( )

sin sin sin(2 ) sin( )

sin sin sin(2 ) sin( )

pq M M M M

M M M M

N

A N

N

N

   

   

   

   

 
 
 
 
 

  
 
 
 
  

                (9) 

and  

   0, 1 2, ,...,
T

q NX a a a a  (10) 

   1 2 3 2 3,, , ,..., , , ...,
T

p M MR x x x x y y y  (11) 

where only the vector qX is unknown. Using 

least square mean approach, one obtains 

1

T T

qp pq q qp p qq q q

q qq q

A A X A R B X C

X B C

  

 
 (12) 

 

In the following results, the Matlab 

programming language has been extensively 

used for different tunnel cross sections.  

The second approach is defined where   

is variable. This approach is of more accuracy 

as compared to the previous method and 

requires lower number of points and terms to 

reach the desired accuracy. However, this 

method seems to be onerous since the system 
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of equations is nonlinear, where iteration 

methods are to be employed.  

In this approach, as mentioned above, the 

system of equations is nonlinear due to terms 

including  jSin n  and  jCos  . In order 

to solve this system of equations, one may 

assume:  

1 0 1

1 1

N N

n n

n n

a x a x a
 

      (13) 

By substituting 0a  in Equation 7, one 

obtains: 

   

   

1

1 1

1

1 1

cos cos 0, 2,3,...,

sin sin 0, 2,3,...,

N N

j n j n j j

n n

N N

j n j n j j

n n

f x a a n x j M

g x a a n y j M

 

 

 

 

  
       

  


           

 

 
 (14) 

As shown earlier, 
jf and 

jg are functions 

of na  and 
j that shall become zero. To solve 

the equations above, initial values are 

presumed for parameters na  and 
j  to yield 

jf  and 
jg . If the initial values selected for 

the aforementioned parameters satisfy the 

system of Equations 14, then they are 

desirable values. Otherwise, wide range for 

na  and 
j  are to be examined using iteration 

methods to satisfy Equation 14.  

4. Results And Discussion 

The number of terms and their values for 

different shapes of tunnel cross sections (Fig. 3), 

are depicted in Table 1. A close examination of 

the shapes and corresponding coefficients 

revealed that the value of 1b  controls the width-

to-height ratio  /W H of the hole [3]; for 

example, for 1 0,b W H  ; for 1 0, /b W H ; 

and for 1 0,b W H   which yields a circle. 

Also, the value of 2a controls the trigonometry 

of the tunnel shapes; for example for 2 0a  , the 

roof is wider than the floor, and for 2 0a  , the 

cross section becomes symmetric with respect to 

the horizontal axis. Similarly, coefficients 7a and 

8a are responsible for the curvature radius of 

lower corners of the tunnel cross section. The 

more these coefficients increase, the less 

curvature radius the tunnel possesses. 

Coefficient 7b also takes control of tunnel 

curvature at the crown; for example, 7 0.07b   

the crown of the tunnel is flat and for 

7 0.07b  the crown takes a parabolic shape. 

Coefficients 9b and 10a also control the accuracy 

of points by mapping function so far. As stated 

earlier, two methods have been put into the 

programming code showing that 10 coefficients 

yield the least amount of error between real 

tunnel shapes and prescribed ones. It should also 

be noted that the first and second approaches 

introduce, respectively, 8 and 10 coefficients. 

Having employed Equation 1, the symmetry axis 

of the opening makes an angle of 
4


  with the 

Oy axis in a counterclockwise sense. In fact, 

this is an awkward position to consider. 

Furthermore, the following formula for rotation 

of the axis of symmetry of tunnel with respect to 

Oy axis by
4


 is introduced into Equation 4:  

   exp
4

x iy x iy       (15) 

This rotation does not affect the results 

since the actual solution of the problem has 

been carried out using the original mapping 

function given by Equation 4. 
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Table 1. Coefficients and their values in conformal mapping for different shapes 

Tunnel shape 
Values of constants in 

the first approach 

Values of constants in 

the second approach 

Number of terms 

First 

approach 

Second 

approach 

 

1 2

3 7

7 8

0.0, 0.1,

0.055, 0.071

0.008, 0.23

/ 1.06

b a

a b

a a

W H

 

 

 



 

1 2

3 7

7 8

9 10

0.0, 0.1,

0.055, 0.071

0.008, 0.23

0.022, 0.30

/ 1.06

b a

a b

a a

b a

W H

 

 

 

 



 8 10 

 

1 2

3 7

7 8

0, 0.07

0.02, 0.089

0.009, 0.012

/ 1.02

b a

a b

a a

W H

 

 

 



 

1 2

3 7

7 8

9 10

0, 0.07

0.02, 0.089

0.009, 0.012

0.045, 0.18

/ 1.02

b a

a b

a a

b a

W H

 

 

 

 



 8 10 

 

1 2

3 7

7 8

0.0, 0.07

0.075, 0.081

0.005, 0.24

/ 1.04

b a

a b

a a

W H

 

 

 



 

1 2

3 7

7 8

9 10

0.0, 0.07

0.075, 0.081

0.005, 0.24

0.051, 0.12

/ 1.04

b a

a b

a a

b a

W H

 

 

 

 



 8 10 

 

1 2

3 7

7 8

.32, 0.09

0.025, 0.02

0.007, 0.19

/ 2.02

b a

a b

a a

W H

 

 

 



 

1 2

3 7

7 8

9 10

.32, 0.09

0.025, 0.02

0.007, 0.19

0.034, 0.20

/ 2.02

b a

a b

a a

b a

W H

 

 

 

 



 8 10 

 

1 2

3 7

7 8

0.32, 0.09

0.025, 0.043

0.022, 0.51

/ 0.55

b a

a b

a a

W H

  

 

 



 

1 2

3 7

7 8

9 10

0.32, 0.09

0.025, 0.043

0.022, 0.51

0.01, 0.30

/ 0.55

b a

a b

a a

b a

W H

  

 

 

 



 8 10 

 

1 2

3 7

7 8

0.3, 0.07

0.09, 0.049

0.018, 0.42

/ 0.55

b a

a b

a a

W H

  

 

 



 

1 2

3 7

7 8

9 10

0.3, 0.07

0.09, 0.049

0.018, 0.42

0.01, 0.34

/ 0.55

b a

a b

a a

b a

W H

  

 

 

 



 8 10 
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Transformation of Cartesian coordinates 

through the parametric Equation 3, after their 

correction according to Equation 12, will 

result in a new orthogonal system of 

coordinates (Fig. 2b) that corresponds to the 

families of curves   constant and 

  constant in the plane   (Fig. 2b). It is 

noted that other values not mentioned in the 

table are considered to be zero. Since a 

combination of different values of the 

aforementioned coefficient, introduces a wide 

range of tunnel cross sections, Figure 3 shows 

the variation interval for either coefficients to 

give conventional shapes of tunnel cross 

sections widely used in tunneling practice. 

As earlier mentioned, curvature radius of 

tunnel cross sections at different positions is 

found to be controlled by 

coefficients 7 8 7, ,a a b . After execution of 

computer program containing both methods 

for broad range of shapes, the correlation 

between tunnel boundary curvatures and the 

corresponding coefficient values has cast light 

on the fact that these parameters play the 

leading role in giving a tunnel cross section 

the curvature of interest. 

In Table 2, different curvatures have been 

represented by a variety of coefficient 

combinations. On the other hand, considering 

the magnitude of error for the two proposed 

methods representing tunnel shapes, it follows 

that 8 and 10 terms for the first and second 

methods, respectively, give acceptable 

accuracy for shapes generated by mapping 

function as shown in Figure 4. It is noted that 

the error function may be defined as difference 

between ( )x y summation of all points 

concluding the original tunnel boundary and 

those generated by mapping function. 

 

Fig. 3. Variation interval of coefficients for tunnel shapes with arched roof and floor 

Table 2. Relation between tunnel curvature radius and coefficients 

Tunnel curvature radius a7 a8 b7 

6.2 0.020 0.230 0.119 

7 0.020 0.300 0.102 

7.8 0.060 0.370 0.092 

8.5 0.090 0.420 0.080 

10 0.110 0.560 0.069 

14.6 0.124 0.610 0.031 

22 0.143 0.670 0.011 

31 0.150 0.697 0.003 
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In the z plane , each point coordinates, 

lets say x y , have been added up with the 

entire points and the resulting summation was 

compared with the summation resulting from 

the tunnel shapes generated by conformal 

mapping function for both methods. Based on 

this comparison, as shown in Figure 4, the first 

method may reach an extremely low error 

magnitude of 0.0186 for 8 terms while more 

terms make no significant difference so far.  

 

Fig. 4. Correlation between the optimum number of terms in mapping function and error magnitude 

On the other hand, for the second method, 

the magnitude of error reached 0.0083 for 10 

terms, substantiating that the second approach 

has more potential of accuracy and tendency 

to converge to zero. Considering 10
th
 terms 

onward, there is no considerable difference in 

error magnitude; thus, 10 terms have been 

considered as optimum number of terms for 

the second approach.   

5. Conclusion  

Two new methods to derive and optimize 

mapping functions, used in 

stress/displacement analysis of underground 

structures, are introduced as follows: 

Analytical approaches have been developed 

to optimize the generated shapes by mapping 

function to have the least inconsistency with 

those of original tunnel shapes. That is, since 

the mapping functions are of series type with a 

limited number of constants, they never 

reached the exact expected geometry. The 

Matlab program has been used to determine the 

number of terms in each approach, using 

sensitivity analysis to produce good match 

original and mapped shapes. 

On the other hand, it has been proven that 

certain coefficients have full control over 

special features of tunnel shapes such as 

height to width ratio and lower and upper 

curvature radii. It has also been shown that 

certain interval of variation is valid for each 

coefficient enabling the produced tunnel 

shapes to represent common tunnel cross 

section in tunneling practice. However, more 

research on the interval of variation needs to 

be done to fully understand the accuracy of the 

solution.  
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