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Abstract  

To enhance the certainty of the grade block model, it is necessary to increase the number of 

exploratory drillholes and collect more data from the deposit. The inputs of the process of locating 

these additional drillholes include the variogram model parameters, locations of the samples taken 

from the initial drillholes, and the geological block model. The uncertainties of these inputs will lead 

to uncertainties in the optimal locations of additional drillholes. Meanwhile, the locations of the initial 

data are crisp, but the variogram model parameters and the geological model have uncertainties due to 

the limitation of the number of initial data. In this paper, effort has been made to consider the effects 

of variogram uncertainties on the optimal location of additional drillholes using the fuzzy kriging and 

solve the locating problem with the genetic algorithm (GA) optimization method.A bauxite deposit 

case study has shown the efficiency of the proposed model. 
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1. Introduction 

After Kim et al.’s [1] and Walton and 

Kaufman’s [2] studies regarding the use of 

geostatistical methods in optimallylocating  

additional samples and drillholes, some 

relatively vast and comprehensive researches 

have been performed to complement their 

results by putting together geostatistical and 

optimization methods. Two general tendencies 

can be observed in these researches: 1) the 

sampling plan is optimized and its objective is 

to optimally estimate the spatial structure [3-8] 

and; 2) a specified spatial structure for the 

known variable is assumed and its objective is 

to reduce the block model's uncertainties. The 

focus of this paper is on the second tendency as 

our objective is optimally locating additional 

drillholes, whereas the first tendency is more 

related to initial drilling pattern. The main 

developments in the second tendency can be 

summarized as those related to the objective 

function [9, 10], extension of the studies on 3D 

space[11, 12], optimization of the number of 

additional drillholes[12, 13], and the 

optimization method used [7, 11, 15, 16]. The 

inputs of all the above methods include the 

locations of the initial drillholes, the variogram 

model parameters and the 3D geological model 
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of the deposit. Since the initial drillholes are 

limited, fitting a crisp model to the 

experimental semivariogram is usually difficult 

and the fitted model generally faces high 

epistemic uncertainties. Epistemic uncertainty 

arises from a lack of knowledge regarding the 

true value of variogram model parameters and 

is typically specified using an interval. Since 

the outputs of the locating procedures highly 

depend on the variogram model parameters, the 

optimum locations of additional drillholes are 

usually tainted with uncertainty. This 

uncertainty originates from epistemic 

uncertainty of variogram model parameters. 

Common kriging methods (ordinary, simple, 

universal, indicator, cokriging, and disjunctive) 

are not made for considering the effects of such 

uncertainties and therefore, these effects are not 

considered in the additional drillholes’ optimal 

locating algorithm either. Although the effects 

of epistemic uncertainties are usually ignored in 

geostatistical studies, two fuzzy [17-19] and 

Bayesian Kriging [20] methods, respectively, 

have been proposed to study the effects of such 

uncertainties. Effort has been made in this 

paper to consider the effects of epistemic 

uncertainties in the objective functions of 

additional drillholes’ optimization studies and 

investigate the consequences of the 

improvements in the results. 

2. Materials and Methods 

2.1. Problem statement  

Consider deposit DR
3 

where in K drillholes 

have been drilled (in positions xiD, i=1,…, 

K) and M samples taken and assayed. The 

sample grade Z(xi)D,i=1,…,M follows an 

intrinsically stationary process.If the deposit is 

divided into N blocks viD, i =1,…,N (with 

specified shapes and sizes), each block’s 

estimated grade Z*(v) and kriging variance 


2
K(v) can be calculated as follows:  
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where ),( ixv  is the average variogram value 

between block v and location ix ,   is the 

Lagrange multiplier, ),( vv is the average of 

semivariogram values of all possible paired 

points within the block being estimated, 

𝑎 = {𝑎𝑗،𝑗 = 1،… ،𝑝} are the variogram model 

parameters (nugget effect, sill, and range), p is 

the number of variogram model parameters 

(commonly p=3),  and ,i ,1i …, n, are 

weights obtained by solving the kriging 

system [21]. The problem is to optimally 

locate T additional holes. 

2.2. Fitness function  

The common objective in studies of optimally 

locating additional drillholes is to minimize 

the average kriging variance (AKV): 
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The reason for selecting the estimation 

variance as a criterion for locating the 

additional samples is that it is known to be 

homoscedastic as itdoes not depend on data 

values but on semivariogrammodel [22]. 

Therefore, AKV has been used as an optimality 

criterion in locating additional samples by 

many authors [1-2,7,13]. However, it gives just 

the spatial configuration of neighbor data used 

to estimate an unsampled location (Journel and 

Rossi1). It means that if the same configuration 

is used for distinct locations, the kriging 

variance will be exactly the same. Each 

candidate location does not have the same 

importance because the impact of the data 

obtained from drilling in different points is 

different [9]. Soltani et al. [23] changed the 

traditional objective function of AKV according 

to the hints of Burger and Birgenhake [24] who 

proposed the minimization of weighted average 

kriging variance (WAKV) with respect to the 

estimated grades of the blocks as follows:  
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The result of this change in the objective 

function was more tendency towards 

additional drill holes in the high-grade zones. 

Sample locating depends not only on the 

initial sampling pattern, but also on the 
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variogram model parameters. Since this is 

generally impossible due to insufficient data 

or the experimental semi-variogram behavior 

(difficult fit), to exactly fit a variogram model 

with no epistemic uncertainties necessitates 

considering the effects of uncertainties in the 

sample locating procedure using the fuzzy 

kriging method. Bardossy et al. [17] model the 

uncertain variogram parameters with fuzzy 

numbers 𝑎̂ = {𝑎̂𝑗،𝑗 = 1،… ،𝑝} and calculated 

the membership function of 𝑧∗(𝑣) as follows: 
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They defined the “width of the fuzzy 

number” parameter as follows to show the 

effects of the parameters’ uncertainties on the 

estimated value at any point [19]: 
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Since the fuzzy width depends on both the 

arrangement as well as the grade of the 

samples, it is an appropriate parameter to be 

used in locating additional samples and 

therefore the objective function of the studies 

of locating the additional drillholes’ can be 

rewritten as follows: 
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2.3. Developing a genetic algorithm (GA) 

for the optimally locating the additional 

drill holes under the quadratic model 

A genetic algorithm is used to optimally locate 

additional drillholes. The optimization 

objective is so defined as to find the optimal 

decision variable vector DV= {(xi,yi); 

i=1,…,T} in such a way that it maximizes the 

objective function (Eq.7).The objective is to 

find the optimal set "S" containing the collars 

of additional drillholes, but optimal set DV 

containsthe horizontal projection (xi, yi) of 

additional drill holes. The grade distributions 

along the additional drill holes could be 

determined based on the DV, block model 

boundary, composite length and Azimuth and 

dip of additional drill holes [11]. 

GA is a general-purpose search strategy for 

generating useful solutions to optimization 

problems; it uses recombination and selection 

strategies, improves the solutions and produces 

better results [27]. Problem variables in GA are 

represented as genes in chromosomes which are 

evaluated according to their fitness values using 

a fitness function. This algorithm starts with a 

set of randomly selected chromosomes as the 

initial population that encodes a set of possible 

solutions. The optimization chromosomes 

consist of genes twice as many as the number 

(T) and corresponding to two easting/ northing 

directions of the additional drillholes; each 

gene is represented by 20 bits of binary codes, 

hence each chromosome is represented by 40T 

bits. Two genetic operators, crossover and 

mutation, alter the composition of genes to 

create a new chromosome called the offspring. 

The selection operator is an artificial version of 

the natural selection to create populations from 

generation to generation and chromosomes 

with better fitness values have higher 

probabilities of being selected in the next 

generation; after several generations, GA can 

converge to the best solution. A GA pseudo 

code is shown in Figure 1. 

 

 

Fig. 1. Flowchartofa GA procedure for optimally 

locating additional drill holes 
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3. Case study 

Jajarm Zu 2, an Iranian bauxite deposit, was 

selected for the purpose of validating the 

efficiency of the proposed algorithm. The 

deposit could be divided into 4 separate zones; 

lower Kaolin, shale bauxite, hard bauxite, and 

upper Kaolin; with hard bauxite being 

economically the most important zone. As a 

result of drilling 72 exploratory drillholes, a 

sum of 4439 m of core has been obtained but 

the geological and assaying data are available 

only for 574 m. Due to its economic 

importance, mineral resource evaluation is 

determined only based on the hard bauxite 

zone. For geostatistical analyses, samples 

should have equalsize. Therefore, the assay 

values have been composited into a constant 

length of 8 m. Figure 2 shows the frequency 

distribution of the regional variables of the 

grade of Al2O3 in hard bauxite zone of Zu 2. 

Deposit revealing that the distribution can be 

considered as Gaussian. For the structural 

analysis of Al2O3, the directional and 

directionless experimental semivariograms 

were drawn, and since the data were not much, 

it was not possible to fit the model to 

directional ones and therefore, the deposit was 

assumed to be isotropic and the model fitted to 

only the directionless ones (Fig. 3). Figure 3 

shows the spherical model fitted to Al2O3 

directionless experimental semivariograms. 

 

 

Fig. 2.Grade frequency distribution of composited cores in the HB zone  

 

 
B 

 
a  

Fig. 3. Models fitted to experimental semivariograms a) crisp, b) fuzzy  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

5

10

15

20

25

30

35

40

45

15 19 23 27 31 35 39 43 47 51 55 59 63 67 71

C
u

m
u

la
ti

ve
 F

re
q

u
e

n
cy

 (
%

) 

Fr
e

q
u

e
n

cy
 (

%
) 

Frequency

Cumulative %



Soltani-Mohammadi & Soltani / Int. J. Min. & Geo-Eng., Vol.49, No.1, June 2015 

 

71 

As shown, conformity of a crisp variogram 

model has many ambiguities, specifically 

regarding its parameters; therefore, using a 

fuzzy variogram model can be beneficial in 

such a case. For this purpose, three lower, 

medium, and upper limit models were fitted to 

the experimental semivariogram instead of 

only one deterministic one (Fig. 3b) and the 

nugget effect, range and sill were defined for 

each model (Table 1). Triangular membership 

functions was used mainly because of the 

simplicity of the approach and the fact that it 

could easily be computationally implemented 

and also because it is sufficiently flexible to be 

able to adequately reflect the available 

information [28]. The parameters of the fitted 

fuzzy variogram model are defined by three 

triangular fuzzy numbers 𝜃̃1= (2.3,5.5,8.5), 

related to the nugget effect, 𝜃̃2= (11.3, 21, 36), 

sill 𝜃̃3= (187,245,378), and range. To avoid 

more complexities, the upper and lower limit 

models were fitted spherically. A block model 

was constructed using block sizes of 5m ×5m 

× 5 m. Then the fuzzy grade of Al2O3 was 

calculated based on Bardossy’s fuzzy kriging 

method (Eq. 5 and 6) using the Fuzzy Krig 

program. The “FuzzyKrig” program was 

prepared using the MATLAB (2013a) 

software at Kashan University, Kashan city, 

Iran (Fig. 4). The width of kriged values were 

interpreted as an uncertainty measure 

originating from variogram uncertainty and 

depending on actual measurement values 

[16,17]. Figure 5 shows the width of the fuzzy 

estimated Al2O3 grade. 

 

 

Fig. 4. Main GUI for the FuzzyKrig program 

 

Table 1. Parameters of the fuzzy variogram model 

Nugget effect Range Sill  

2.3 187 11.3 Lower limit 
5.5 245 21 Crisp value 
8.5 378 36 Upper limit 

 

Fig. 5. Block model for the width of the fuzzy estimated Al2O3 grade 

 

3.1. Points proposed for additional drillholes 

The SamOptLoc program was developed 

using MATLAB (2013a) for optimally 

locating additional drillholes in Zu2 deposit. It 

is capable of calculating additional drillholes’ 

optimal locations (K) in two different cases: 1) 

the variogram model parameters are assumed 

to be crisp and the objective is to minimize the 

estimation variance, and 2) effects of the 
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epistemic uncertainties of the variogram 

model parameters and weighting with respect 

to grade are taken into account. Figures 5 and 

6 show the results of the algorithm 

implementation for locating 20vertical 

additional drillholes. The number of additional 

drillholes is determined based on the scatter 

plot of the number of additional drillholes 

against the best objective function value. As 

shown in Figure 5, the result of the optimally 

locating drillholes based on the objective 

function of the AKV minimization is the 

drillholes’ distribution in places where its 

initial frequency is less. In the southern parts, 

where the initial drillholes’ spacing from one 

another is low (15 m), no additional drillholes 

have been suggested. However, after adding 

the suggested ones in the northern parts, 

spacing has considerably decreased (from 50 

to 25 m). Results of the implementation of the 

second algorithm (Fig. 7) are much farther 

from those of the first algorithm. As shown in 

the second algorithm, the drillholes do not 

have a uniform distribution in the region and 

lie in places where, in addition to a reduced 

estimation variance, the ore’s grade and the 

width of the fuzzy estimated grade are more 

compared to other places.  

Therefore, an advantage of the proposed 

objective function (compared with the usual 

ones), is that in addition to having a direct 

relationship with the kriging variance, it 

depends highly on the width of the fuzzy 

estimated grade. This modification causes the 

additional drillholes’ optimal pattern to have 

more concentration (instead of a uniform 

distribution) in places where ambiguities in 

the estimated grade are high. This therefore, 

causes the gathering of complementary 

information from these drillholes to have more 

influence on the mine’s future decision 

making and a reduction in related risks.   
 

 

 

Fig. 6. Locations of the additional drillholes suggested based on the objective function of the estimation variance 

minimization 

 

Fig. 7. Locations of the additional drillholes suggested based on the WKAV minimization 
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4. Conclusions 

Different methods proposed for the optimal 

locating of additional samples and drillholes 

are appropriate tools, the inputs of which 

include the variogram model parameters, 

locations of the initial samples, and the 

geological block model. All these methods try 

to minimize the estimation variance (or the 

weighted estimation variance) as a criterion 

for uncertainties. Their capability is limited 

because their only criterion for uncertainty is 

the grade estimation variance, whereas the 

uncertainty caused by that of the model fitted 

to the experimental variogram is also 

considered.The theory of fuzzy sets can be 

used in kriging to show the uncertainties of the 

variogram model parameters which can be 

extracted (as the fuzzy subsets) from the 

experimental semivariogram.;The uncertainty 

effects of the fitted model are modeled in the 

deposit using the fuzzy kriging method. One 

of the outputs of this method is a criterion 

called the width of the fuzzy number which 

can be used as a weighting criterion in 

calculating the deposit’s weighted estimation 

variance as the objective function in the 

optimization studies of drilling points. This 

modification in the objective function will 

cause the additional drillholes’ optimal pattern 

to have more concentration (instead of a 

uniform distribution) in places where 

ambiguities in the estimated grade are high 

and therefore,  cause the gathering of 

complementary information from these 

drillholes to have more influence on the 

mine’s future decision making and a reduction 

in related risks.   
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