
IJMGE 
Int. J. Min. & Geo-Eng.  

Vol.49, No.1, June 2015, pp.1-18. 

1 

3D Inversion of Magnetic Data through Wavelet based Regularization 

Method 

Maysam Abedi1*, Hamid-Reza Siahkoohi2, Ali Gholami3 and Gholam-Hossain Norouzi4 

1 
Department of Mining Engineering, College of Engineering, University of Tehran, Iran, E-mail: maysamabedi@ut.ac.ir 

2 
Institute of Geophysics, University of Tehran, Iran, E-mail: hamid@ut.ac.ir 

3
 Institute of Geophysics, University of Tehran, Iran, E-mail: agholami@ut.ac.ir 

4
 Department of Mining Engineering, College of Engineering, University of Tehran, Iran, E-mail: norouzih@ut.ac.ir 

Received 23 Aug 2014; Received in revised form 10 Apr 2015; Accepted 21 Apr 2015 
*Corresponding Author  Email: maysamabedi@ut.ac.ir, Tel: +98 9173124132 

Abstract 

This study deals with the 3D recovering of magnetic susceptibility model by incorporating the 
sparsity-based constraints in the inversion algorithm. For this purpose, the area under prospect was 
divided into a large number of rectangular prisms in a mesh with unknown susceptibilities. Tikhonov 
cost functions with two sparsity functions were used to recover the smooth parts as well as the sharp 
boundaries of model parameters. A pre-selected basis namely wavelet can recover the region of 
smooth behaviour of susceptibility distribution while Haar or finite-difference (FD) domains yield a 
solution with rough boundaries. Therefore, a regularizer function which can benefit from the 
advantages of both wavelets and Haar/FD operators in representation of the 3D magnetic susceptibility 
distributionwas chosen as a candidate for modeling magnetic anomalies. The optimum wavelet and 
parameter β which controls the weight of the two sparsifying operators were also considered. The 
algorithm assumed that there was no remanent magnetization and observed that magnetometry data 
represent only induced magnetization effect. The proposed approach is applied to a noise-corrupted 
synthetic data in order to demonstrate its suitability for 3D inversion of magnetic data. On obtaining 
satisfactory results, a case study pertaining to the ground based measurement of magnetic anomaly 
over a porphyry-Cu deposit located in Kerman pr of Iran ow  Chun deposit was presented to 
be 3D inverted. The low susceptibility in the constructed model coincides with the known location of 
copper ore mineralization. 

Keywords: Magnetic anomaly, Sparsity constraints, Wavelet transform, 3D modeling. 

 

1. Introduction  

One of the most important topics in applied 
geophysics is the inversion of non-unique 
problems. Inversion of geophysical data is 

often non-unique meaning that the solution 
might not depend solely on the data and 
additional information is required to determine 
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an appropriate solution. Many attempts have 
been made in the geophysical context to find a 
unique and stable solution for geophysical 
inverse problems suffering from under-
determined and instability of solutions [1-4].  

Many researchers have studied the 
inversion of magnetic data to determine the 
magnetic properties and geometry of 
subsurface causative sources. Li and 
Oldenburg (1996) proposed a comprehensive 
technique for 3D inversion of magnetic data 
[5]. Their approach is based on the 
minimization of a global objective function 
composed of a model regularizer function and 
a data misfit. They introduced a depth-
weighting function to counteract the spatial 
decay of the kernel function with depth by 
giving more weight to rectangular prisms as 
depth increases. Depth weighting has also 
been applied in other inversion algorithms ([1-
2, 6-16]). A comprehensive approach to large-
scale magnetic data inversion has also been 
presented by Li and Oldenburg (2003) [17].         

Algorithms based on a smooth model 
recovering causes a distorted model in regions 
where sharp discontinuities exist [5-6, 17]. To 
tackle this limitation, non-linear methods such 
as edge-preserving techniques have been 
proposed in various fields including electrical 
and medical engineering [18-19] and 
geophysics [14, 20-25]. Edge-preserving 
inversion is sensitive to the presence of noise 
in data [3, 18, 26], but appropriately preserves 
sharp discontinuities in model parameters. 
Sparsity based inversion is stable against noise 
[26-30]. It recovers the regions of smooth 
behaviour properly but leads to some extent 
smoothed edges and the solution will be 
oscillatory in the vicinity of sharp 
discontinuities [3]. Thus, a combination of 
different regularization methods can be 
considered to recover model parameters 
preserved from both smooth and rough 
boundaries. The sparseness constraints by 
means of the Cauchy norm have also been 
applied to model the magnetic data by 
Pilkington (2009) [6].   

In this study sparsity constraints method 
was implemented as applied by Gholami and 
Siahkoohi (2010) in seismic data modeling, to 
invert a model of magnetic susceptibility in 
copper exploration [3]. Therefore, the 
commonly wavelet-based sparsity inversion as 

a smooth edge-preserving technique was 
added to Tikhonov cost function while both 
Haar and FD operators were included to 
preserve the roughness of the recovered 
solution. In addition, based on the measure of 
smoothness and roughness of the recovered 
solution, the optimum wavelet function and 
parameter  which controls the weight of the 
sparsifying operators were determined.     

To this end, after a brief introduction of 
inverse procedure, a noisy synthetic multi-
source magnetic anomaly was simulated to 
demonstrate the capability of the applied 
method. The L-curve as a function of the norm 
of the regularized solution versus the norm of 
the data misfit is used as an appropriate 
method to choose an optimum regularization 
parameter in magnetic data inversion. In what 
follows, real data pertaining to the Now Chun 
porphyry copper deposit located in Kerman, 
central Iran is presented to be 3D inverted. A 
comparison with Cu concentration distribution 
of the Now Chun is also provided.   

2. Methodology 

To perform inverse modeling, an ensemble of 
rectangular prisms provides a simple way to 
approximate a volume of mass. If small 
enough, each rectangular prism can be 
assumed to have constant susceptibility. For 
low susceptibility values, a linear relationship 
between susceptibility and magnetic anomaly 
intensity can be assumed; therefore, the 
inverse problem reduces to solving a linear 
system of equations [14].  For simplicity, this 
study assumes that there is no remanent 
magnetization in modelling and subsequently 
for such cases the observed data are solely 
generated by the induced magnetization 
effects. A comprehensive set of approaches to 
deal with remanent magnetization has been 
studied by Lelièvre and Oldenburg (2009) and 
Li et al. (2010) [31-32].  

2.1. Forward modeling 

Forward modeling of magnetic data were first 
presented by Bhattacharyya (1964) and later 
simplified into a form more suitable for fast 
computer implementation [33-34]. Here, the 
formulation of Rao and Babu (1991) was used 
to compute magnetic response of each prism.  
If the observed anomalies are caused by m 
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prisms, the equation for the magnetic anomaly 
at the field point (x, y, 0) is given by  

   1
, ,0 , ,0m

rr
T x y T x y C


     (1) 

where T  denotes total magnetic observation 
and C represents a regional constant [34]. In 
the matrix notation, considering that there are 
n observed field data and m rectangular 
prisms, Equation (1) can be written as 

1 1n n m mT G X    (2) 

where T is the data vector (residual magnetic 
data by removing the constant C), G is the 
forward operator matrix that maps from the 
physical parameter space to the data space, 
and X is the unknown model parameter vector 
containing susceptibility of the prisms.  

2.2. Inverse Modeling 

The linear operator G has a multidimensional 
null-space. Indeed, the solution has to be 
regularized [4]. It is supposed that data are 
contaminated with white Gaussian noise of zero 
mean and finite variance 2. The unknown 
susceptibility vector can be estimated by 
optimizing a multi-term cost function as, 

      

  

2
12

1

min . 1opt X ii

ii

f X T G X S X

S X

 



     


 (3) 

Here, α>0 and 0≤β≤1 are regularization 
parameter. The parameter β controls the 
relative weight of the two sparsity terms S1 
and S2 which are two suitable sparsifying 
operarors. The sparsifying operators were 
firstly applied by Gholami and Siahkoohi 
(2010) to inverse seismic traveltime 
tomography while they attempted to recover 
model parameters preserving both smoothness 
and roughness [3]. The operator S1 is chosen 
as a suitable wavelet operator which provide 
sparse representation of geological models. 
The wavelet transform expands a function on 
the bases formed by the translation and 
dilation of a single function called the mother 
wavelet. Let y(x) be the function and ψ(x) be 
the mother wavelet. Then the wavelet 
transform ω(a, b) is defined by 

     ,, a ba b y x x dx 



   (4) 

where 

 ,
1

a b

x b
x

aa
 

 
  

 
 (5) 

and a and b are the dilation and translation 
variables, respectively. The wavelet transform 

ω(a, b) describes the frequency or scale 
content (measured by a) at different locations 
(measured by b), that is, it provides resolution 
in both the spatial and frequency domains. For 
practical applications, the dilation and 
translation variables have a set of discrete 
values which are typically dyadic. The wavelet 
is then expressed as a double-indexed 
function, 

   2 2
, 2 2j j

j d x x d     (6) 

where j and d are integers. A class of wavelets 
are constructed by solving the two-scale 
difference equation, 

   
1

0
2 2

K

dd
x h x d 




   (7) 

   
1

0
2 2

K

dd
x g x d 




   (8) 

where    is the scaling function. The wavelet 
 x  is defined by a set of filter coefficients 

dh  and dg called the quadrature mirror filters. 
Daubechies (1988) constructed a class of such 
wavelets that has several important properties 
[35]. These wavelets are orthogonal to the 
dyadic translation and dilation of the original 
version,  have compact support,are localized 
both in space and in frequency domain and are 
constructed to have M vanishing moment: 

  0 , 0,..., 1mx x dx m M



    (9) 

where M is an integer. When M=1, the Haar 
wavelet is obtained and when M=2, 
Daubechies-4 (db4) wavelet defined by a 
quadrature mirror filter of length 4 is obtained. 
As an illustration, both wavelets are shown in 
Figure 1 [17]. 

In addition, the operator S2 as one of the 
Haar or FD operators provides sparse 
representation of models not suffering from 
smoothed edges and the pseudo-Gibbs 
phenomenon. These operators are referred to as 
roughening matrices with discrete χ for the 
purposes of regularization and could effectively 
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(a) 

 

(b) 

Fig. 1. Wavelet-basis operators, (a) the Haar wavelet which has 1 vm, (b) the db4 wavelet with 2 vm 

 
retrieve sharp boundaries of model parameters 
χ by providing sparse representation of the 
model. For instance S2χ when operator 
corresponds to FD is a finite-difference 
approximation that is proportional to the first 
derivative of χ. By minimizing  2 i

S X ,  
solutions would be favor  relatively 

sharp. Consequently, by imposing sparsity 
constraints jointly on magnetic data in such 
domains, this study aims to combine the 
advantages of both operators to obtain high-
resolution solution of susceptibilities 
distribution in magnetic prospect. Interested 
readers are referred to Aster et al. (2003) for 
further information about constructing a FD 
operator in 1D, 2D and 3D domains. The 
wavelet transform of geological models is 
generally sparse with many small coefficients; 
therefore, the sparsity regularization will 
remove small coefficients based on the 
amount of regularization parameter α which is 
determined by L-curve method in this study. 

This results in smooth edges and put some 
oscillations near the discontinuities of the final 
solution. It is assigned a non-zero value for 
 , 0 1  , to enforce the model to be 
jointly sparse in the domain defined by 2S . 
This will typically recover small coefficients 
to eliminate such ripples while preserving 
edges. This arises from the fact that 2S  does 
provide sparse representations of models 
without generating smoothed edges and the 
pseudo-Gibbs phenomenon.    

Magnetic data have no inherent depth 
resolution. As a result, structures tend to 
concentrate near the surface when a simple 
model is produced, regardless of the true depth 
of the causative magnetic anomaly sources. In 
terms of model construction, the kernel 
function decreases with depth so that surface 
data are not sufficient to generate significant 
structures at depth. To overcome this lack of 
sensitivity in magnetic data inversion, depth 
weighting has been introduced by Li and 

it 

that are 
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Oldenburg (1996) to cancel the natural decay 
and give cells at different depths equal 
probability of entering the solution with a non-
zero susceptibility value [5, 15]. The proposed 
depth weighting function is of the form  

   W z z


    

where   is close to 1.5 and  depends on the 
observation of height level. The parameter  
can be selected equal to a small value to prevent 
singularity when z is close to 0 [10]. The 
calculated depth weighting coefficients make the 
diagonals of a matrix   Z diag W z  to be 
introduced to the original system of equations 
(3) by setting 1

zG GZ   and k ZX  and 
solving the problem for . After this procedure, 
the final susceptibility model is obtained as 

1X Z k  [17]. The split Bregman technique 
described in the following section is used to 
solve equation (3).  

2.3. Solution by the split Bregman method  

The Bregman splitting method, which is 
derived using Bregman distance, is very 

efficient in terms of convergence and 
numerical stabilities [37]. Equation (3) in 
terms of matrix representation is calculated,  

 

    

1k 1 T T T
1 1 2 2

T T k k T k k
1 1 1 2 2 2

χ G G S S S S

G T S p q S p q

 

 


   

   

 (10) 

Parameters   and   are positive numbers 
which are the split parameters, and 1kX   is 
the constructed model parameters at iteration 

1k   which is uniquely determined from the 
vectors k

ip , k
iq , where 1,2i  . The algorithm 

is started by setting 0 0 0i ip q  , then at the 
next iterations they are constructed from the 
solution of L1-norm subproblems computed 
easily using shrinkage operators applied on the 
coefficients of 1kX  . For the computations of 

ip  and iq , we refer to Bregman splitting 
algorithm summarized in Table 1 for more 
details. In the algorithm,   ,shrink x   is the 
so-called soft thresholding operation [38]; 

 

                   
, 0                       

                

x x

shrink x x

x x

 

 

 

 


 
   

 (11) 

Table 1. The Bregman splitting algorithm for minimization of the cost function  in equation 3 [3] 

Chose           ,   and     

Set:                 1 1
1 21 ,               

                     T
2 2

T    B G G I S S  

Initialize       0 T 0 0 0 0
1 2 1 2;    0;    χ G d p p q q  

                      0;k   

While           
k k 1

k 



χ χ

χ
 

     k 1 1 T T k k T k k
1 1 1 2 2 2      χ B G T S p q S p q  

            k 1 k 1 k
1 1 1
  c S χ q   

            k 1 k 1 k
2 2 2
  c S χ q  

             k 1 k 1
1 1 1shrink ,τ p c       

             k 1 k 1
2 2 2shrink ,τ p c         

            k 1 k 1 k 1
1 1 1
   q c p        

            k 1 k 1 k 1
2 2 2
   q c p  

            1;k k   
End       
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The computational cost of the algorithm is 
largely depended on how fast the system of 
equation (10) can be solved, the application of 
the sparsifying operators, and their transposes. 
In the case of transformation operators with  

ITS Sx x  , the application of operator and its 
transpose simply are the discrete decomposition 
and reconstruction schemes [3]. When  2S  is 
the Haar operator, the left-hand side matrix 
reduces to   TB G G I      and when it is 
FD operator  TB G G I Δ     , where  is the 
identity matrix and T

2 2Δ S S  is a sparse matrix.   
 In the case of large-scale problems, it is 

difficult to explicitly solve the central system of 
Equation (10) using direct solvers; instead, 
iterative methods such as conjugate gradients 
(CG) algorithm can be used to solve it 
approximately. The convergence rate of CG 
algorithm can be improved by using pre-
conditioner. Preconditioning is a procedure to 
incorporate a transformation in mathematics, 
that is, the preconditioner, by which a problem 
changes into a form that is more suitable to be 
solved using variety of numerical methods. 
Preconditioning mostly correspond to reducing a 
condition number of the preconditioned problem 
which is then usually solved by iterative 
methods. The Jacobi preconditioner is one of the 
simplest and prevalent forms of preconditioning, 
in which the preconditioner is chosen to be the 
diagonal of the desired matrix. It only increases 
the speed of convergence to the final solution. Li 
and Oldenburg (2003) have used a Jacobi-like 
pre-conditioner to treat large scale data [17]. In 
this paper, a diagonal pre-conditioner is used 
[14]. Thus, when S2 is Haar operator, the 
diagonal pre-conditioner M is   

    TM diag G G I diag A      (12) 

and when S2 is FD operator, M is   

   TM diag G G I Δ diag A      (13) 

where   Adiag  is calculated by setting off-
diagonal elements of matrix A to zero. The 
total number of iterations and the running time 
of algorithm depend on parameters    and   . 
In  this study, we choose  max    , where 

max  is the largest singular value of the 
forward operator G. It is found that this 

assumption results to reasonable convergence 
of both CG and split Bregman method. 

2.4. Optimal selection of wavelet function 

and regularization parameters 

The main goal of joint-sparsity constraints is 
to recover the smooth and rough edges of 
model parameters. Both wavelet function and 
 impact on the performance of the joint-
sparsity regularizer function and must be 
chosen appropriately. Optimal value of  
chosen at an interval 0 1    balances the 
effect of the two constraints to recover the 
smooth as well as the rough part of the model 
parameters. Generally, the wavelet operator, 
which leads to the orthonormal wavelet 
operator S1, should provide a sparse 
coefficient vector [39-40]. Therefore, the 
recovered model can be considered as a 
function of  and wavelet function [3].         

A function considered by Gholami and 
Siahkoohi (2010) is used to determine optimal 
parameters for joint-sparsity constraints. It used 
the L2-norm of the second derivative of the 
regularized solution,    2

2D χ β, vm  as a 

measure of smoothness and L1-norm of its first 
derivative,    1

1D χ β,vm as a measure of 

roughness (where  iD  is the ith-order derivative 
operator), and defined an information function as 
follows; 

         1 2
1 2I β, vm D χ β,vm D χ β,vm   (14) 

where vm  is the vanishing moments of 
Daubechies wavelets. The main advantage of 
this information function is that the algorithm 
does not need to the true model ( realχ ), 
especially when real data inversion is being 
studied. The selected  and vm  should 
minimize   ,I vm . The applicability of this 
function is compared to the result norm of 
model error   real2χ β,  vm χ  in synthetic data 
inverse problem to evaluate its performance. It 
is shown that the information function can be a 
good method for choosing optimum  and vm  
in case of real data inversion when we have no 
access to of realχ  values. 

3. Application to the synthetic data 

To evaluate the capability of the proposed 
method in magnetic data modeling, a synthetic 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Condition_number
http://en.wikipedia.org/wiki/Iterative_method
http://en.wikipedia.org/wiki/Iterative_method
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magnetic anomaly consisting of two different 
bodies involving a step-shape and a block 
model is simulated with susceptibility values 
of 0.08 and 0.1 in SI unit, respectively (Figs. 2 
and 7a). A non-susceptible background is 
considered. The 3D domain is divided into 
32 32 32 32768    prisms with dimension 
25 25 12.5   m. The inducing magnetic field 

has direction  50I  ,  2D  and a strength of 
47,000 nT  . Residual magnetic field is shown 
in Figure 3a. Random Gaussian noise with a 
standard deviation of 3% of the data amplitude 
has been added to the data. It consists of 1024 
data points over a grid of 800 800  m spacing 
to implement inverse approach.  

 

Fig. 2. 3D visualization of the synthetic magnetic sources comprising of two separated anomalies 

 
  

(a) (b) 

 
(c) 

Fig. 3. Synthetic data modeling, a) the synthetic magnetic data to be inverted, b) the predicted response from the inverted 

model, and c) the residual magnetic data that show the difference between the predicted and the observed data   
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The parameters  and vm  should be 
optimized to plot 3D distribution of 
susceptibility model. To select the optimum 
wavelet function and , the data set by joint-
sparsity inversion was inverted using different 
choices of vanishing moment and 0 1   
with small increments of . Then both 
information function and model error as a 
function of  and increasing orders of the 
vanishing moments of the wavelet function 
were plotted. The results of S2 as Haar and FD 
operators are shown in top and bottom rows of 
Figure 4, respectively. In the lower panels, the 
information function considering the FD 
operators causes lower values compared to the 
Haar operator. The rectangular areas for both 
the information function and the model error 
function provide acceptable values of the  
and vm . It shows that the information function 
causes similar results like the model error 

function and it can be used in real data 
inversion. Since the FD operator provides 
lower error, 3D inversion of magnetic data 
considering this operator is applied. The db7 
wavelet with 0.3   are chosen as appropriate 
values to this aim. The optimum value of the 
regularization parameter  2000   was 
acquired from L-curve plot (Fig. 5) in which 
the a maximum value at this 

. Figure 6 shows the results of the method 
for four different depth levels of 75, 125, 175 
and 225m, respectively. As shown, multi-
source location is reported to be properly 
associated with locations of synthetic 
rectangular bodies. The predicted magnetic 
anomalies of synthetic example shown in 
Figure 3b are acceptably close to synthetic 
magnetic data. A residual map of the predicted 
and real magnetic data shown in Figure 3c 
also confirms low misfit data of the 3D model.  

 

Fig. 4. Maps of the norm of model error   2, realvm    (left-hand column) and information function 

       1 2
1 2, ,D vm D vm     (right-hand column) for inverted model from joint-sparsity inversion using 

Haar (top row) and FD (bottom row) operators. In the panels, the information function considering the FD 

operators causes lower values compared to the Haar operator. The rectangular areas for both the information 

function and the model error function provide acceptable values of  and vm.   

 

 
 

curvature attains to 
amount 
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Fig. 5. L-curve plot of synthetic magnetic data by joint-sparsity method assuming the FD operator in the inversion 

algorithm. Here, the misfit norm ( 2
2T G.χ ) versus the solution norm (   1 2i i

i i

1 S χ S χ         
) of Eq. 3 

has been plotted. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6. The inversion results obtained from synthetic data. Horizontal location at (a) depth 75 m, (b) depth 125 m, (c) depth 

175 m, (d) depth 225 m. The rectangular borders indicate real location of synthetic models at each plan-section. 
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Inversion results along x direction at 
Y=400 is shown in Figure 7b. Compared to 
real sources (Fig. 7a), satisfactory results are 
acquired. The point  to be considered in 3D 
inversion of magnetic data is that recovering 
the dipping structure by use of solely surface 
magnetic data is an under tackling issue in 
magnetic inverse problem. To recover dipping 
structures in potential method prospect, 
boreholes magnetic data also have significant 
impact on improving inverse problems [10, 
41]. Another point is that the depth weighting 
function by Li and Oldenburg (1996) assumes 
a sphere model structural index, i.e. =1.5. 

Indeed, this depth weighting function tends to 
recover a sphere model. It recommended using 
appropriate values of the structural index to 
recover proper models. Interested readers are 
referred to a paper by Cella and Fedi (2012) 
for using the structural index as weighting 
function [16]. In summary, two factors 
including boreholes data and appropriate value 
of the structural index can increase the 
resolution of recovered susceptibility model. 
The authors have no access to borehole 
magnetic data to implement them in the 
inversion algorithm.   

 

Fig. 7. A cross section view of inverted synthetic magnetic susceptibility at Y= 400 m. a) Real locations of two 

synthetic bodies, and b) Sparsity-based inversion of magnetic data using depth weighting function by Li and 

Oldenburg (1996)  

4. Geological background of the study area 

The case study is located within the Urumieh-
Dokhtar (Sahand-Bazman) magmatic arc 
subdivision of the Central Iran zone where 
extensive Tertiary to Plio-Quaternary 
extrusive and intrusive units are exposed in a 
NW-SE trend (Fig. 8). In general, the main 
lithological units exposed in the Now Chun 

area comprise of volcanic-subvolcanic 
complexes and intrusive bodies. Volcanic 
rocks cover most parts of the study area and 
consist of Eocene and esitic, dacitic to rhyo-
dacitic lavas and associated breccias tuffs. The 
intrusive bodies consist of granite to diorite 
distributed in the South to Southwest of the 
area [42].   
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Most of the geological units have been 
altered hydrothermally with the most intensive 
alteration occurring in the subvolcanic rhyo-
dacitic bodies. The general trend of altered 
rhyo-dacitic units and hydrothermal 
dissemination is Northeast-southwest [42]. 
Since there is comprehensive correlation 
between hydrothermal zones and faults, it is 
assumed that alteration zones are controlled by 
major faults and fractures. However, Cu-
bearing mineralization zones are mainly 
associated with azurite and malachite 
stockwork veins with minor chalcopyrite as 
inclusions within quartz. Some copper 
mineralized outcrops are also shown on the 
detailed geological map (Fig. 8). 

The primary control of the bulk magnetic 
properties of the host rock and magnetic 

intrusions is the partitioning of iron between 
oxides and silicates [43]. However, sulphide 
minerals associated with hydrothermal 
alteration also provide localized geophysical 
targets [44]. Simple models for porphyry-Cu 
deposits involve contrasting zones of 
alteration centered on the deposit. Magnetic 
anomalies, at least in principle, reflect the 
location of these zones: weak local magnetic 
highs occur over the potassic zone; low 
magnetic intensity occurs over the sericitic 
zones; and magnetic intensities increase 
gradually over the propylitic zone [45]. 
Inversion of magnetic data has also been used 
to model a copper gold porphyry deposit at 
Mt. Milligan with satisfactory comparison 
between constructed susceptibility model and 
known anomaly source [46].   

 

 

Fig. 8. Detailed geological and mineral occurrence map of Now Chun copper deposit located in Kerman province of 

Iran with scale 1:5,000 (reproduced from [42, 48]) 
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5. Real data inversion 

A ground-based magnetic survey was 
performed in the area in which the distances 
between profiles and stations were 50 and 20 
m, respectively. The geomagnetic field is 
46,000 nT (inclination= 46° and declination= 
2.5° from IGRF). After removing the effect of 
the regional geomagnetic field based on the 
surface data, residual magnetic data are shown 
in Figure 9a. The study area was divided into 

32 32 32 32768    rectangular prisms with 
dimensions 41 31 19   m. The total number of 
data points was 1235. Analysis of various 
porphyry deposits indicates that susceptibility 
values vary over interval (0.0002, 0.2) in SI 
unit with an average of 0.06 [47]. Since the 
average value of susceptibility in porphyry 
deposit prospects is low, a linear magnetic 
equation can be used in the inverse problem.  

 
(a) 

 
(b) 

 
(c) 

Fig. 9. The anomalous magnetic data modeling at Now Chun porphyry copper deposit, a) the real magnetic data from 

the field observation, b) the predicted responses from the inverted model, and c) the residual magnetic data which 

shows difference between the predicted and the observed data    
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The information function plot of both the 
Haar and the FD operators result in lower 
error values of the FD operator shown in 
Figure 10. Therefore, the FD operator, db5 
wavelet and =0.95  are chosen as appropriate 
values to invert real magnetic data. The 
optimum value of the regularization parameter 
=20000 was acquired from L-curve plot 
shown in Figure 11 to be considered as an 
appropriate value in the inversion algorithm. 
Figure 12 shows the 3D plot of the 
susceptibility distribution for a cut off value of 

0.015 in SI. Figure 9b shows the data 
prediction for the real data inversion and the 
predicted data compared well with the 
observed magnetic anomaly shown in Figure 
9a. A residual map shown in Figure 9c 
indicates the insignificant differences. 
Magnetic susceptibility values acquired from 
inversion shown in Figure 13 (histogram map) 
indicates that most values are less than 0.06 in 
SI unit (M+3SD=0.06) which is well in 
agreement with the values of porphyry 
deposits at 0.0002-0.2 interval.  

 

Fig. 10. Maps of the information function 
       1 2

1 2
, ,D vm D vm     for inverting real data by joint-sparsity 

method, a) using Haar operator, b) using FD operator. The FD operator which causes lower values of the 

information function is selected as S2 operator 
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Fig. 11. L-curve plot of real magnetic data by joint-sparsity method assuming the FD operator in the inversion 

algorithm. Here, the misfit norm ( 2
2T G.χ ) versus the solution norm (   i i

i i

S Sβ β1 21 χ χ         ) of Eq. 3 

has been plotted. 

 
Fig. 12. 3D view of magnetic susceptibility model for Now Chun copper deposit (a cut off value of 0.015 SI)  
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Fig. 13. Histogram of the magnetic susceptibility values with its statistical summary 

The 3D view of Cu concentration for an 
economical cut off of 0.3 % is shown in 
Figure 14. Compared to the 3D susceptibility 
model shown in Figure 12, it indicates that 
higher values of Cu concentration correspond 
to lower values of the susceptibility model. 
The main part of Cu mineralization is 
surrounded by high magnetic anomalies, that 

is higher values of susceptibilities. Indeed, it 
reflects the effect of propylitic alteration 
which is around the main mineralization 
source. It shows that low magnetic 
susceptibilities at Now Chun deposit contain 
mainly Cu distribution. Since sericitic 
alteration depletes magnetite content, it yields 
low magnetic anomaly over this zone.  

 

 

Fig. 14. 3D view of Cu concentration for an economical cut off 0.3% 
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6. Conclusion 

This study presents an efficient algorithm for 
3D inversion of magnetic data over a 
porphyry-Cu deposit located in Kerman 
Province of Iran. The main characteristic of 
this study is the implementation of joint-
sparsity constraints for simultaneously 
preserving smooth and rough edges of model 
parameters. The Daubechies wavelets and the 
finite difference (FD) operator were used as 
appropriate prior information to recover 
magnetic susceptibility model. An interesting 
result from this study was obtained by 
comparison of the 3D magnetic susceptibility 
model to the Cu concentration distribution. It 
showed that the higher Cu concentration zone 
corresponded to the lower magnetic 
susceptibility in the recovered model. It is 
clearly in agreement with sericitic alteration 
which shows a high potential for Cu ore body 
occurrences with geochemically depleted Fe-
bearing minerals like magnetite ore (that is 
low magnetic anomaly).    
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