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Abstract 

The helicopter-borne electromagnetic (HEM) frequency-domain exploration method is an airborne 

electromagnetic (AEM) technique that is widely used for vast and rough areas for resistivity imaging. 

The vast amount of digitized data flowing from the HEM method requires an efficient and accurate 

inversion algorithm. Generally, the inverse modelling of HEM data in the first step requires a precise 

and efficient technique provided by a forward modelling algorithm. The exact calculation of the 

sensitivity matrix or Jacobian is also of the utmost importance. As such, the main objective of this 

study is to design an efficient algorithm for the forward modelling of HEM frequency-domain data for 

the configuration of horizontal coplanar (HCP) coils using fast Hankel transforms (FHTs). An attempt 

is also made to use an analytical approach to derive the required equations for the Jacobian matrix. To 

achieve these goals, an elaborated algorithm for the simultaneous calculation of the forward 

computation and sensitivity matrix is provided. Finally, using two synthetic models, the accuracy of 

the calculations of the proposed algorithm is verified. A comparison indicates that the obtained results 

of forward modelling are highly consistent with those reported in Simon et al. (2009) for a four-layer 

model. Furthermore, the comparison of the results for the sensitivity matrix for a two-layer model with 

those obtained from software is being used by the BGR Centre in Germany, showing that the proposed 

algorithm enjoys a high degree of accuracy in calculating this matrix. 

Keywords: fast Hankel transforms, forward modelling, frequency domain data, HCP coils 

system, HEM method, sensitivity matrix.  

1. Introduction 

Helicopter-borne electromagnetic (HEM) 

methods are used in the exploration of 

subsurface resistivity distributions across wide 

areas. Under such methods, an alternating 

current within the transmitter coil generates an 

intense primary magnetic field (Hp) directed 

towards the ground. This alternating magnetic 

field in turn generates eddy currents in the 

conductive earth structures which themselves 

generate a secondary magnetic field (Hs) 
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which can be detected by a receiver coil. 

Finally, the real and imaginary components of 

these normalized secondary (with respect to 

the primary magnetic field, i.e., Z=Hs/Hp) 

magnetic fields are measured in parts per 

million (ppm) at several frequencies by 

receiver coils. By the processing and inversion 

of these data, some information regarding the 

resistivity distribution of the area can be 

gathered [1]. Many people have studied the 

inversion of multi-frequency HEM data, 

including the research work of Sengpiel and 

Siemon (2000), Zhang et al. (2000), 

Farquharson et al. (2003), Huang and Fraser 

(2003), Siemon et al. (2009a), Arab-Amiri et 

al. (2010), Shirzaditabar et al. (2010 and 2011) 

and Abedi et al. (2013) [2,3,4,5,6,7,8,9,10]. 

During the process of inverse modelling, the 

data will be converted to a model described by 

a set of unknown parameters. The main idea 

behind this process is to find a model whereby 

its responses (forward calculated data) fit the 

observed data in a least squares sense. Thus, 

the first step in this process involves finding 

an accurate and reliable tool for generating 

data from the proposed models. This condition 

is satisfied through forward modelling. If the 

forward calculation is not sufficiently 

accurate, then approaching the final model 

such that its response will fit adequately with 

the real field data will not be possible. Since 

forward modelling is needed in each iteration 

of inversion, so the high speed of its 

calculation is required to perform the 

inversion of data rapidly. Thus, the algorithm 

that is used for forward modelling must 

simultaneously exhibit an adequate speed and 

accurate computation. 

The EM response of a layered half-space 

earth model for dipole source excitation is 

provided by Frischknecht (1967), Ward 

(1967), Wait (1982) and Ward and Hohmann 

(1997). The integral within the response of 

this model is solved numerically by the 

Laplace transform [11], an extension of the 

Bessel function [1] and the method of fast 

Hankel transforms (FHTs) [12]. The solution 

of this complex integral has been investigated 

by a few researchers using the above methods, 

although no comprehensive explanation of the 

methodology has been addressed in the 

published literature. In this study, the usage 

and formulation of the FHTs method to solve 

this integral in order to acquire the secondary 

field components of the measurement is 

explicitly explained. As the relation of the 

observed data with the model parameters is 

nonlinear, the derivatives of the forward data 

with respect to the model parameters are 

required in an iterative solution. These 

derivatives form elements of a matrix (which 

is known as the ‘sensitivity matrix’) which 

again has not been explained comprehensively 

in the relevant published literature as regards 

how these elements are calculated. In this 

study, an attempt is made to comprehensively 

explain all the steps and details of the 

calculation of these derivatives. In attaining 

higher precision forward calculations, analytic 

differentiation is used to calculate the 

sensitivity matrix. 

In addition to the greater speed of forward 

modelling, the computation of the integral and 

the sensitivity matrix are being done 

simultaneously.   Ultimately, the precision of 

the forward calculation is evaluated with the 

synthetic data provided by a published paper 

[6] for a four-layered model. The sensitivity 

matrix for a two-layered model is also derived 

and is then compared with that obtained by the 

software used at the BGR
1
 Centre. 

2.  Forward modelling of HEM data 

As was stated, the first step in converting the 

data into a model closely resembling the 

conditions underground is forward modelling. 

Under this process, a hypothetical model with 

known parameters will be used to find the 

synthetic data at any specific location of the 

receiver. The relation between the model’s 

parameters and the measured data can 

generally be obtained through the following 

relation. 

(1) d = f (m) 

in which, assuming M data and P model 

parameters, d= (d1,d2,d3, …,dM) is the data 

vector, m= (m1,m2,m3, …,mP)  is the model 

parameters vector, and f is the forward 

function under investigation. In one-

dimensional modelling for a N-layered earth 

model, as can be seen in Figure 1, i  and ti, 
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respectively, denote the resistivity (ohm. 

meter) and thickness of the earth layers 

(metres), comprising a model parameter 

vector. Thus, the number of the model’s 

parameters is P=2N-1. The data vector is also 

composed of the real part (R) and the 

imaginary part (Q) of the ratio of the 

secondary magnetic field to the primary 

magnetic field in ppm
1
. Hence, 

(2) m = [1, 2, 3,…, N,t1, t2, t3,…. tN-1]
r  

also  

(3) d = [Z1, Z2, Z3,…. ZM]T 

in which 

(4) Z = R+iQ 

 

Fig. 1. A basic diagram of a one-dimensional N-layer 

half-space earth model. 

Among the various configurations of 

transmitter and receiver coils, three of them - 

namely horizontal coplanar (HCP), vertical 

coplanar (VCP) and vertical coaxial (VCA) 

systems - are frequently used in practical 

HEM surveys [13]. In this paper, however, the 

HCP coil system is considered as providing 

the most reliable modelling work on a multi-

layered earth model (e.g., Huang and Fraser 

(2003) and Siemon et al. (2009a)) and as such 

this configuration is used. The EM response of 

a layered half-space earth model for dipole 

source excitation in the form of a HCP system 

at a height h above the layered half-space is 

given by the forward operator in the following 

relation [14].  

                                                            
1. Parts per million 

0

s

p

s 2 A h3
0 00

0

Z
Z ( r )[ ppm ] R iQ

Z

r R ( , , ,t ) e J ( r )d
A

 

   

    
 

(5) 

in which Zs and Zp are secondary and primary 

magnetic fields, respectively, at the receiver 

coil location, h is the bird’s height from the 

ground, R and Q are in-phase (real) and out-

of-phase (imaginary) components of data,  

i 1   is the imaginary number, r is the 

distance between the transmitter and the 

receiver coils,  is the integral’s variable,J0  is 

a zero-order Bessel function of the first kind, 

and  is the angular frequency. A0 can be 

calculating by the following formula. 

(6) 
2 2 1/ 20

0 0 0 r1
0

i
A ( )


     


 

in which 0 , 0, and 0, are, respectively, the 

resistivity, magnetic permeability and electric 

permittivity of the free space, and r1=1/0 is 

the relative magnetic permeability of the first 

layer that has its own magnetic permeability 

(1) .If the area under investigation has no 

noticeable magnetic anomaly, it can be 

assumed that 0 n  or, in other words, that 

the relative magnetic permeability of all the 

layers of the model is equal to one [5]. To find 

the parameters of the layered earth, we need 

the reflection coefficient  R0, which can be 

obtained through the following relation [14]. 

 (7) 
0 1 1 0 1 r1 0

0
0 1 1 0 1 r1 0

B A B A
R

B A B A

  
 
  

 

The parameter B1 and - following that - the 

reflection coefficient  R0 are then given by the 

following recursive relation. 

(8) 
2 1 1 1

1 1
1 2 1 1

B A tanh( A t )
B A

A B tanh( A t )





 

In addition, for the nth layer 

(9) 
n 1 n n n

n n
n n 1 n n

B A tanh( A t )
B A

A B tanh( A t )








 

(10) 
2 2 1/ 20

n 0 0
n

i
A ( )


    


 

While for the last layer 



Asadian et al./ Int. J. Min. & Geo-Eng., Vol.48, No.1, June 2014 

 

4 

 

(11) 
2 2 1/ 20

N N 0 0
N

i
A B ( )


     


 

Using Relations 8-11, one can accurately 

determine the reflection coefficient R0 of 

Relation 7. However, the forward equation in 

Relation 5 is a form of Hankel integral, which 

follows from the general form below [15]. 

(12) n0
f ( r ) k ( )J ( r )d


     

In this integral, k() is the transformed 

kernel function and Jn(r) is the nth-order 

Bessel function of the first kind. Various 

numerical methods have been proposed for 

solving this integral form. In this study, the 

FHTs method with 120-fold weighted 

coefficients introduced by Guptasarma and 

Singh (1997) is used to solve Equation 5. 

Using these coefficients, the above-mentioned 

integral can be written as a sum of multiple 

products. 

(13) 
n

i i
i 1

1f ( r ) k ( )W
r 

   

Using this method, the forward equation in 

Relation 5 would become, 

(14) 
120

2
i

i 1
Z R iQ r k ( )W


     

By comparing Relation 13 with Relation 5, 

the kernel function  k()  is given as follows.  

(15) 0
3 2 A h

0
0

k ( ) R e
A

   

Next, using Relation 14, we will be able to 

find the forward modelling response of the 

model. 

3. Sensitivity matrix calculations 

In most geophysical problems, the relation 

between the data and the model’s parameters 

is a nonlinear one. In a problem with M data 

and P parameters, the relation between each 

datum di with the model’s parameters mi is 

described using a nonlinear function fi . 

(16) di = fi (m1,m2,m3,…,mp) = fi(m) 

Relation 5 shows that the forward equation 

under investigation is fully nonlinear. The 

main idea in solving this kind of problem 

would be to use a Taylor series expansion of 

the forward function fi (m) around an initial 

guess to linear the equation in the 

neighbourhood of this initial model. In the 

next step, by improving on this model and 

repeating a similar operation, we will obtain a 

model whose response fits with the observed 

data in a least squares sense. Thus, by 

neglecting derivatives of the second-order and 

higher, we will have the Taylor expansion of 

the following equation [16]. 

(17) d = J.m 

where d  is a vector of difference between 

the measured (real) data and the response of 

the initial model, m is the model’s 

improvement in each iteration (i.e., the 

difference between the updated and initial 

model parameters) and  is the Jacobian partial 

derivative or sensitivity matrix, which can be 

obtained through the following relation. 

(18) 
i

ij
j

f ( m )
J , i 1,2 ,3 ,...M , j 1,2 ,3 ,...P

m


  



 

Or, in other words 

(19) 

1 1 1

1 2 p

2 2 2

1 2 pM P

M M M

1 2 p

f f f
...

m m m

f f f
...

m m mJ

f f f
...

m m m



   
   
 
   

   
 
 
   
   
 

 

As can be observed in Relation 18, the 

elements of the sensitivity matrix comprise the 

partial derivatives of the forward equation with 

respect to the model’s parameters. The 

inversion methods based on the linearization of 

nonlinear functions critically depend on the 

ability to estimate the Jacobian matrix. In most 

inverse modelling problems, an approximation 

technique, such as the finite-difference method, 

is usually used to calculate sensitivity matrix 

elements. It has been shown that these 

techniques not only produce errors but also that 

they are computationally intensive [5]. As such, 

in order to avoid these problems, in this study 

an analytical differentiation method is used to 

compute the partial derivatives and to attain 
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higher accuracy. As an N-layer earth model 

(Fig. 1) is considered, all of fi s are the same 

and are derived from Relation 5. By looking at 

this relation, it should be clear that the only 

term dependent on the model’s parameters is 

the reflection coefficient R0 Hence. 

(20) 0
3 2A h3 0i

0 00
i i 0

Rf
r ( ) e J ( r )d

m m A

    
   

Furthermore, with consideration to 

Relation 4, we have 

(21) 
0 0 1

j 1 j

R R B
.

m B m

  


  
 

(22) 0 0
2

1 1 0

R 2A

B ( B A )




 
 

in which mj could be either j or tj
 
. Using 

Relations 8-11 and the chain differentiation 

rule, we have 

(23) 
j 1 j j31 1 2

j 2 3 4 j j j

B B ABB B B
. . ... . .

B B B B A

    


      
 

(24) 
j 1 j31 1 2

j 2 3 4 j j

B BBB B B
. . ... .

t B B B B t

   


     
 

For the calculation of the derivatives of 

type n

n 1

B

B 




 that appear in the above relations, 

and with respect to Relations 9 and 10, one 

can show that 

(25) 

2
n n

2 2 2
n 1 n n n n n

B A

B cosh ( A t )[ A tanh ( A t )]




 

 

and also 

(26)  

2 2
j j 1 j j j j j j j

j

2
j j 1 j j

2

B [ B 2A tanh( A t ) A t sec h ( A t )]

A V

[1 t B sec h ( A t )]U

V





  







 

where  

(27) V = Aj + Bj+1 Aj tanh(Ajtj) 

(28) 2
j j 1 j j j jU A B A t tan( A t )   

It must be noted that in the last layer 

BN=AN, and hence when j=N, we have 

(29) 
j

j

B
1

A





 

For calculating the last terms of Relations 

23 and 24, using Relations 9 and 10, we have 

(30) 
j 0

j j j

A i

2 A

  


 
 

(31) 3 2 2
j j j j j 1 j j1

2
j

[ A sec h ( A t )]V [ A B sec h ( A t )]UB

t V





 

Finally, using the recursive Relations 21-

31, 0

j

R

m




 could be obtained and substituted in 

Eq. 20. The integral in Relation 20 is also in 

the form of Hankel integrals of Relation 12. 

Hence, in calculating it, the FHTs with 120-

fold weighted coefficients introduced by 

Guptasarma and Singh (1997) are used. With 

respect to Relation 13, we will have the 

following: 

(32) 
120

2i
i

j i 1

f
r k ( )W

m 


 


  

where its Kernel function is 

(33) 
0

3 2 A h0

j 0
0

R
k ( ) e

m A

     


 
 

4. An algorithm for the simultaneous 

calculation of the forward modelling and 

sensitivity matrix 

Considering the huge amount of data involved 

in the HEM method, time conservation is an 

important factor in computations. Since, in 

practice, many parameters in the calculation of 

the sensitivity matrix and forward modelling 

are the same as in inverse modelling and the 

approach for solving both of them employs 

FHTs, an efficient algorithm for the 

simultaneous calculation of both of them (Fig. 

2) is proposed and its related computer codes 

are written in the MATLAB environment. 
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In this algorithm, as Figure 2 illustrates, 

first all of the required input parameters, 

including the number of layers, the resistivity 

and thickness of each layer, the frequencies 

being used, the flight altitude, the coils 

distance and the Hankel coefficients are 

recalled. Next, using Relations 15 and 33, the 

kernel functions must be calculated for the 

selected frequency. Finally, using the 

multiplication sigma of Relations 14 and 32, 

the values of the forward (synthetic) data and 

the elements of the sensitivity matrix will be 

computed and saved. The process will be 

applied to all the functional frequencies. 

 

Start

Inputs

Selecting the first frequency

Calculating the Kernels of 
Forward equation and 

Sensitivity Matrix

Calculating the series of Kernels multiplied by 
Hankel coefficients

Have all the frequencies 
been used? 

Selecting 
the next 

frequency

No

End

Yes

 

Fig. 2. A simple flowchart of the proposed algorithm 

for the simultaneous calculation of the forward 

modelling and sensitivity matrix. 

5. Results and discussion 

In this section, the results of the proposed 

algorithm are compared with those obtained 

by the BGR Centre’s software using two 

synthetic models. First, the results of the 

forward modelling for the model in Figure 3 

will be investigated.  

 

Fig. 3. A sketch of the layering of a four-layered 

synthetic model. 

The synthetic data of this model has been 

considered by Siemon and his colleagues [6]. 

The aforementioned model is a four-layered 

model with a respective specific resistivity of 

200, 100, 5 and 1,000 ohm-meter. The first, 

second and third layers have each a thickness of 

20, 30 and 10 metres, respectively. The 

functional frequencies are 387, 1,820, 8,225, 

41,550 and 133,200 Hz. The distance between 

the coils and the helicopter’s flight altitude, 

respectively, are 8 and 30 metres. In Table 1, 

we have outlined the results of 1D forward 

modelling for the proposed algorithm and those 

provided by the BGR Centre software [6] at a 

site located on the left part of the model. 

Table 1. The results of 1D forward modelling for the 

proposed algorithm and those produced by the BGR 

software. 

Forward 

modeling 

Data of the 

proposed algorithm 

Data of the BGR 

Software 

Frequency(Hz) R(ppm) Q(ppm) R(ppm) Q(ppm) 

387 21.8 68.36 21.8 68.36 

1820 129.1 164.35 129.1 164.4 

8225 280.42 291.45 280.4 291.5 

41550 734.95 747.46 734.7 747.4 

133200 1506.18 1046.81 1506 1047 
 

Figure 4 another way of comparing the real 

and imaginary components of the synthetic 

data which have been computed by the 1D 

forward modelling of the proposed algorithm 

and from the BGR Centre software.  

With respect to Table 1 and Figure 4, one 

can conclude that the results of the proposed 

algorithm are in close agreement with those of 

the BGR Centre software. 

To study the accuracy of the results 

sensitivity matrix, we performed calculations 

for a two-layered model as in Figure 5. In this 

model, the resistivity of the first and second 
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layers, respectively, is 100 and 20 ohm-meter. 

The thickness of the first layer is 40 metres. 

The flight altitude and the distance between 

the coils have been set to 30 and 8 metres, 

respectively. It has also been supposed that the 

data have been surveyed in five frequencies: 

900, 1,800, 7,200, 57,600, 133,200 Hz. 

 
Fig. 4. Comparison of the 1D forward data from the proposed algorithm and the BGR software: a) real data, and b) 

imaginary data. 

Fig. 5. A sketch of the layering of the two-layered model. 

The proposed algorithm produced the sensitivity matrix as Relation 34. In addition, the BGR Centre 

software gives the  sensitivity matrix as Relation 35. 

34) 

 
0.168630052 2.307556506 1.233126203

0.382572998 2.817244513 2.310850482

1.774434761 1.695683674 4.461238981

8.093572747 0.322332069 1.667932774

8.364728 0.045660611 0.093729348

0.622167035 0.83915142
J

  

  

 

  








 1.505919931

1.076951435 0.126277744 1.711578762

2.75713792 1.796732719 0.562416015

1.942099699 0.155828341 0.53428438

0.24964686 0.028788255 0.387795832

 
 
 
 
 
 
 
 
 
 
 
 
 
 




  



  





  

(35) 

 
0.168630043 2.307556368 1.233126056

0.38257298 2.817244316 2.310850236

1.774434695 1.695683537 4.461238644

8.09357294 0.322332169 1.667933246

8.364727538 0.04566057 0.093729256

0.622167018 0.83915147
J

  
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 










 

 5 1.505919817

1.076951407 0.126277799 1.711578662

2.757137865 1.796732616 0.56241588

1.942099815 0.155828423 0.534284438

0.249646814 0.02878823 0.387795493

 
 
 
 
 
 
 
 
 
 
 
 
 
 




  



  





  
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Since there are 10 data in five frequencies 

(comprising five real and five imaginary 

components) and the number of parameters is 

three, the resulting matrix is a 10×3 matrix 

whose first and second columns are, 

respectively, the derivatives of each resistivity 

of 100 and 20 ohm-meter, and its third column 

is the derivative of the 40 metre thickness of 

the first layer. Furthermore, the first five rows 

of the matrix are the derivatives of the real 

parts, and the second five rows those of the 

imaginary parts. A comparison of the two 

resulting matrices shows that the results from 

the proposed algorithm are in high conformity 

with those of the BGR Centre software. 

6. Conclusion 

In this study, first, the relations of the 1D 

forward modelling of helicopter-borne frequency 

domain electromagnetic data were investigated. 

As there is no analytic solution for the integrals 

in these relations, the fast transforms using 

Guptasarma and Singh’s (1997) digital linear 

filter coefficients have been used to solve them 

numerically. Next, by the analytic calculation of 

the partial derivatives of the forward equation 

with respect to the model’s parameters and the 

FHTs method, the required relations for 

constructing the sensitivity matrix were 

obtained. Following this, an efficient algorithm 

for the simultaneous calculation of the two parts 

was elaborately designed to speed up the 

required computation. Finally, the obtained 

results of this study were compared with those of 

the BGR Centre software for two synthetic 

models. This comparison has shown that the 

results of the proposed algorithm for the 1D 

forward modelling and sensitivity matrix 

calculations are in strong agreement with those 

of the BGR software.  
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