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Abstract 

Three-dimensional surface geometry of rock discontinuities and its evolution with shearing are of 

great importance in understanding the deformability and hydro-mechanical behavior of rock masses. 

In the present research, surfaces of three natural rock fractures were digitized and studied before and 

after the direct shear test. The variography analysis of the surfaces indicated a strong non-linear trend 

in the data. Therefore, the spatial variability of rock fracture surfaces was decomposed to one 

deterministic component characterized by a base polynomial function, and one stochastic component 

described by the variogram of residuals. By using an image-processing technique, 343 damaged zones 

with different sizes, shapes, initial roughness characteristics, local stress fields, and asperity strength 

values were spatially located and clustered. In order to characterize the overall spatial structure of the 

degraded zones, the concept of ‘pseudo-zonal variogram’ was introduced. The results showed that the 

spatial continuity at the damage locations increased due to asperity degradation. The increase in the 

variogram range was anisotropic and tended to be higher in the shear direction; thus, the direction of 

maximum continuity rotated towards the shear direction. Finally, the regression-kriging method was 

used to reconstruct the morphology of the intact surfaces and degraded areas. The cross-validation 

error of interpolation for the damaged zones was found smaller than that obtained for the intact 

surface. 

 

Keywords: Rock fracture roughness, Spatial structure, Variography, Degraded zones, Regression-
kriging, Image processing 

 

1. Introduction 

Small changes in properties of rock fractures 

may lead to significant changes in the safety 

factor of rock structures such as surface and 

underground excavations, dam foundations, 

and geothermal reservoirs. Of parameters 

influencing, the morphology of rock fracture 

surface is of particular importance in studying 

the mechanical and hydraulic behavior of rock 

masses. Therefore, many methods have been 

proposed to characterize the roughness of rock 

discontinuities. Most of the available methods 

have summarized the surface roughness in 

terms of empirical parameters, such as joint 

roughness coefficient (JRC) [1], statistical 

parameters, such as the root mean square of 

first derivatives (Z2) [2], or fractal parameters, 

such as fractal dimension (D) [3,4], which 

have been usually calculated for two-

dimensional profiles along the fracture surface. 

However, rock fracture morphology could be 

studied using a comprehensive three-

dimensional modeling of the surface geometry 

[5-7]. To this end, some attempts have been 

made to describe the roughness of rock 

discontinuities and reconstruct their 

topography using geostatistical tools [5,6]. 

Results show that the application of kriging 

could reasonably increase the resolution of the 

measured topography of rock fractures and fill 

the gaps in the point cloud. Variogram, which 

forms the basis of geostatistics, describes the 
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spatial variability and provides a description of 

the surface structure in any direction. 

The roughness of a fracture surface can be 

generally characterized by two components: a 

large-scale undulation, or waviness, and small-

scale roughness, or unevenness [8]. The 

waviness controls the initial direction of shear 

displacement relative to the mean discontinuity 

plane, while the unevenness plays an important 

role in mobilizing the shear strength. 

Therefore, these two aspects of rock fracture 

roughness should be distinguished in studying 

and describing the spatial structure of rock 

fracture surfaces. 

Asperity degradation leads to the evolution 

of the spatial structure of rock fracture surfaces 

and formation of damage areas during 

shearing. Ladanyi and Archambault proposed 

the ratio of the degraded asperities area, ɑs, for 

quantifying the degree of surface evolution and 

presented a relationship for estimating this 

parameter [9]. The main drawback of this 

model is that the initial roughness effect is 

ignored in estimating the damaged area. 

Kwafniewski and Wang developed a 

relationship for predicting the changes of 

fractal dimension of 2D profiles of the rock 

fracture surface with shearing as functions of 

the plastic work [10]. Asadi et al. simulated the 

asperity degradation of synthetic and natural 

rock fracture profiles during the direct shear 

test using a two-dimensional bonded particle 

model [11]. Homand et al. proposed a 

degradation model based on 3D measurements 

of fracture surfaces before and after shearing 

[12]. Using image-processing tools, Gentier et 

al. were able to investigate the dependence of 

size and location of damaged areas on the local 

geometry of the fracture surface [13]. Grasselli 

supposed that only the asperities steeped 

against the shear direction with an apparent dip 

greater than a threshold value involved in 

mobilization of the shear strength [7,14]. The 

spatial distribution of damaged zones predicted 

by the Grasselli’s model showed a close 

agreement with the experimental results 

obtained from direct shear tests. He argued that 

this phenomenon can only be understood by 

studying the full 3D geometry of the fracture 

surface instead of considering a number of 

individual profiles [7,14].  

The objective of this research is to compare 

the spatial structure in intact and degraded 

areas of rock fracture surfaces. To do end, the 

morphology of plaster replicas of three natural 

rock fractures with different roughness 

characteristics was considered before and after 

the shear test. The topography of surfaces was 

measured using the advanced topometric 

sensor technique at a high data density and 

precision. In addition to different surface 

geometries, the plaster fractures had different 

strength properties and were subjected to shear 

stress under different levels of the constant 

normal load. The damaged areas were 

identified and clustered by image-processing 

analyses of the sheared surface image. Finally, 

we evaluated the efficiency of the regression-

kriging method in reconstructing the 

topography of the intact surfaces and degraded 

areas using a cross-validation procedure. 

 

2. Topography data 

In this research, the surface topography of 

three natural rock fractures was studied 

before/after shearing. The natural rock 

fractures, taken from the Gol-e-Gohar iron ore 

mine (Iran), had surfaces of high, medium, and 

low roughness that are respectively referred to 

as S1, S2, and S3 hereafter. Silicon molds of 

the parent rock fractures were first prepared 

and then cylindrical plaster replicas with the 

diameter of 60 mm were constructed [15]. 

Since the fracture replicas were produced with 

different ratios of plaster to water (P/W), they 

had different strength values. Surfaces of the 

plaster replicas were painted red so that even 

small degree of damage during the shearing 

process could be easily detected.  

      The morphology of the surfaces was 

scanned using an advanced topometric sensor 

(ATS) system. ATS systems provide an optical 

method based on a combination of white light 

fringe projection, triangulation, and phase 

shifting for fast and accurate calculation of 

high-dense 3D point clouds [7,14,16]. The 

resolution of the collected topography data was 

0.05 mm in x- and y-directions with an 

elevation (z) measurement accuracy of up to 2 

m. Figure 1 shows the triangulated surfaces 

obtained from the 3D measurements along 

with the corresponding estimated JRC values. 
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Figure 1. Triangulated surfaces obtained from 3D measurements. 

 

The fracture replicas were subjected to 

direct shear tests with different values of 

normal stress. Each test was conducted under 

constant normal load (CNL) condition and 

ended after a shear displacement of 8 mm [15]. 

Table 1 represents values of the parameters 

P/W, JRC, uniaxial compressive strength (σc) 

of the fracture wall, and applied normal stress 

(σn). After cleaning the sheared surfaces from 

gouge material created during the shearing, 

they were scanned for a second time. 

 
Table 1. Characteristics of the plaster replicas and 

conducted direct shear tests [15]. 

σn ) MPa  (  σc ) MPa  (  JRC P/W Surface 

1.30 52.122.14 19 4 S1 

2.00 41.591.18 12 3 S2 

0.57 17.243.78 7 2 S3 

 

3. Initial spatial structure of rock fractures 

3.1. Geostatistics in brief 

The first step in geostatistical analysis is to 

identify the spatial structure of a regionalized 

variable (here the elevation of the surface 

points) . Continuity and variability of fracture 

surfaces were described using the variogram 

(originally named semivariogram). The value 

of variogram () for the lag vector of h is 

defined as follows [17]: 

 

   
( )

2

1

1
γ   [ ( )]

2 ( )

N h

h z X h z X
N h

  
(1) 

 

where z is the elevation; X is the vector of 

spatial coordinates (X =(x,y) in this case); N(h) 
is the number of pairs of points separated by h. 

A plot of (h) versus h is known as the 

variogram. A variogram is isotropic if its value 

depends only on the magnitude of h; it can be 

considered anisotropic when the direction of h 

influences the value of the variogram as well. 

Theoretically, when h approaches zero, the 

value of the variogram must be minimized to 

zero, but variograms usually do not comply 

with such conditions in reality. The value of 

the variogram at the origin is called the nugget 

effect (C0), indicating the amount of the non-

spatial noise whose typical source is the 

measurement error. Beyond a certain lag 

distance, known as the range (a), the values of 

the regionalized variable are uncorrelated, and 

the variogram does not change significantly. A 

wide range indicates a broad-scale spatial 

structure and high continuity [18]. The value 

of the variogram at the distance of the range, 

minus the value of C0, is considered as the sill 

(C). In the structural analysis, the experimental 

variogram cannot be directly used and must be 

replaced by a fitted function called the 

theoretical variogram. Three of the most 

commonly used variogram models are the 

spherical, exponential, and Gaussian models 

defined as follows: 
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     For the theoretical variograms that reach 

their sills asymptotically, like the exponential 

and Gaussian models, the ‘effective range’ is 

defined as the distance at which the variogram 

value achieves 95% of the sill. The values of 

the effective range for the exponential and 

Gaussian models are 3a and 3a , respectively 

[19]. 

The term ‘kriging’ refers to a variety of 

geostatistical methods of unbiased estimation 

based on linear interpolation so that the 

estimation variance could be minimized. All 

kriging estimators are variants of the following 

basic equation [18]: 

   (3) 
1

ˆ( ) ( )][
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where ẑ is the estimated value of an attribute 

at the point of interest at the location of X; zi is 

the observed value at the sampled point; μ is 

the mean, μ(X) is the average of samples 

within the search neighborhood; n represents 

the number of sample points contributing to 

the estimation, and; λi is the weight assigned to 

the sample point. The kriging weights are 

obtained from the solutions of the following 

n+1 linear simultaneous equations with n+1 

unknowns [17]: 
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where  is the value of the theoretical 

variogram, and  is a Lagrange multiplier 

which ensures that the estimated weights have 

minimum variance. The weights calculated 

from the system above are a function of the 

distance of sample points from one another and 

from the estimation point. 

If the regionalized variable has a known 

constant mean over the whole domain, the 

simple kriging is considered; in this case, the 

parameter μ(X) in equation (3) is replaced by 

the stationary mean μ Because such an 

assumption is often too restrictive, the ordinary 

kriging is most often used, in which case the 

mean is considered constant but unknown. If a 

trend, or drift, exists in the data, the variogram 

does not stabilize or stabilizes beyond a large 

distance. In this case, the mean is unknown 

and non-stationary and the universal kriging 

model, which incorporates the trend, must be 

considered [18]. 

  

3.2. Variogram fitting 

Figure 2 shows directional experimental 

variograms of the three fracture surfaces along 

with the corresponding best-fitted models. The 

direction angle of variogram (β) is measured 

counter-clockwise from the positive x-axis. 

The spherical, exponential, and Gaussian 

models were fitted to the experimental 

variograms using the weighted least-squares 

method. The method of weighted nonlinear 

least squares has been found to be the most 

robust and reliable method of fitting variogram 

models [20]. This procedure minimizes the 

weighted sum of squared residuals (RSS) of the 

experimental variogram data by optimizing 

different parameters: nugget effect, sill, and 

range. Each point of the experimental 

variogram was weighted by N(h)/2(h). In such 

case, greater weights are given to the 

variogram points with smaller variance (or 

lower lag distances) and a larger number of 

pairs [18,20]. The model with the smallest RSS 

166 



Babanouri et al./ Int. J. Min. & Geo-Eng., Vol.47, No.2, Dec.2013 
 
value was automatically chosen as the 

theoretical variogram. 

 

3.3. Decomposition of spatial variability of 

      surface roughness 

As observed in Figure 2, the directional 

variograms of all the surfaces either do not 

reach a sill or stabilize over very long 

distances. This suggests that there is a trend in 

the topography of the surfaces. The trend 

needs to be identified before the structural 

analysis. The trend is typically modeled by a 

regression surface with the equation of a 

polynomial of the coordinates, called the base 

function, as follows [17]: 
 

,

0 0

n m
i j

t i j
j i

z a x y
 


                             (5)

 

 

where zt is the trend value; ai,j are polynomial 

coefficients; and m and n are the orders of the 

polynomial for the x- and y-coordinates, 

respectively. 

The trend surface was initially considered 

to be planar (i.e., m=n=1). Figure 3a shows a 

portion of the planar trend surface fitted to the 

surface S1. To better display the trend in 

Figure 3, the scale of z-axis was chosen larger 

than the x- and y-axes scale. The presence of a 

planar trend means that the fracture surface is 

not horizontally aligned. 

 

 (a)  (b) 

 
(c) 

Figure 2. Directional variograms of elevation of the surfaces: S1 (a), S2 (b), and S3 (c) 

 

By subtracting the trend value at each 

location from the elevation, residual values 

were computed. Variograms of residuals of S1, 

S2, and S3 after removing the planar trend are 

shown in Figure 4. In this case, little changes 

are observed compared to the variograms of 

the row data, because the deviations of the 

measured fracture surfaces from the horizontal 

are very small. 
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Since the stationarity conditions were not 

met by removing the planar trend, polynomial 

surfaces of higher orders were considered. 

Figure 3-b shows some parts of a fourth-order 

surface (m=n=4) fitted to S1. Such polynomial 

surfaces can represent the large-scale 

roughness of fracture surfaces, and residuals 

present the small-scale roughness. In such 

case, the spatial structure of the fracture 

surface is described as a polynomial function 

of order n, and the variogram of residuals (Fig. 

5). The trend, which is defined by the base 
function, is in fact the deterministic component 

of the spatial variability (m(X)), while residual 

value is a random variable representing the 

stochastic component of the spatial variability 

(e(X)). 

With each increase in the order of the base 

polynomial, variograms of residuals stabilized 

at smaller ranges. As observed in Figure 6, no 

trends exist in the variograms of residuals after 

removing the fourth-order trend. The smaller 

the range (i.e., the less the spatial continuity, 

and the more independent the elevation of 

nearby points) and the greater the sill (i.e., the 

 (a) (b) 
Figure 3. Part of point cloud of S1 and the fitted polynomial surfaces of order: one (a), and four (b). 

 

 

 (a) (b) 

 
(c) 

Figure 4. Directional variograms of residuals of the surfaces: S1 (a), S2 (b), and S3 (c), after removing the planar 

trend. 

174 
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Figure 5. Decomposition of the spatial variation into the deterministic and stochastic components (showed for the 

standard profile No. 9 of roughness). 

 

higher the variability), the rougher the rock 

fracture surface. Figure 7 shows the values of 

the range and peak (C0+C) of omnidirectional 

variograms of the fracture surfaces versus the 

order of the base polynomial increased up to 

five. In order to indicate changes of the range 

and peak together on one graph, they were 

normalized by their maximum values. With 

increasing the order of the base function, the 

peak value of variograms decreased as well in 

a way similar to the range decrease. In the 

following analyses, the fourth-order 

polynomial was considered as the base 

function. Values of the variograms range lie 

within the scale of surface asperities (micro-

roughness) of rock fractures which mainly 

control the mobilization of the shear strength.

 

 (a)  (b) 

(c) 
Figure 6. Directional variograms of residuals of the surfaces: S1 (a), S2 (b), and S3 (c), after removing the fourth-

order trend. 
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(a) 

(c) 

(b) 
Figure 7. Normalized values of the range and peak of omnidirectional variogram of the surfaces: S1 (a), S2 (b), and S3 

(c) versus the order of base polynomials. 

 

3.4. Roughness anisotropy 

As observed in Figure 6, the variograms of 

each surface have different ranges and nearly 

the same sills in different directions after 

removing the trend. This is typical of the 

geometric anisotropy of the fracture roughness 

which can be modeled by the ellipse of ranges. 

Figure 8 shows the anisotropy ellipses fitted to 

ranges of the variograms of the residuals. An 

anisotropy ellipse is characterized by three 

parameters: maximum range (amax), the 

direction of maximum continuity (α) measured 

counter-clockwise from the positive x-axis, 

and the anisotropy ratio (Rani) defined as the 

ratio of the maximum range to the minimum. 

Residuals of the three surfaces have almost 

identical Rani and amax values, but different 

values of α, C, and/or model types. 

 

3.5. Regression-kriging estimation 

In this section, the regression-kriging (RK) 

method is employed for interpolating the 

topography of rock fracture surfaces. The RK 

method is a spatial interpolation technique that 

combines a regression of the regionalized 

variable with kriging of the residuals. It is 

similar to a universal kriging method in which 

a regression function of coordinates is 

considered as the trend. In this method, trend 

values at desired locations obtained from the 

regression function (a fourth-order polynomial, 

in here) are added to the values of kriged 

residuals in order to provide an estimate of the 

elevation. The leave-one-out cross-validation 

(LOOCV) technique was used to evaluate the 

performance of the RK method. In each 

iteration of the LOOCV procedure, one of the 

measured points is left out temporarily, and its 

elevation is estimated using the neighboring 

points [21]. The LOOCV error was calculated 

as the root mean square of the differences 

between the estimated values of elevation and 

the real elevation values. The cross-validation 

of the RK method was carried out over a grid 

with a size of 1 mm for the three measured 

topographies. The directional variograms (Fig. 

8) and elliptical search neighborhoods equal to 

2/3 of the range ellipses of each surface were 

170 

http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/Kriging
http://en.wikipedia.org/wiki/Regression_analysis


Babanouri et al./ Int. J. Min. & Geo-Eng., Vol.47, No.2, Dec.2013 
 

 

used in the kriging estimation of residuals. The 

calculated root mean square error (RMSE) of 

the RK estimation was 0.14, 0.11, and 0.06 

mm for the surfaces S1, S2, and S3, 

respectively (Fig. 9). Figure 10 shows a real 

profile from each surface along with the 

corresponding profile reconstructed by the 

above-mentioned procedure. The application 

of kriging was resulted in smoothing of the 

roughness profiles. As a result, the efficiency 

of the RK method was improved with 

decreasing the surface roughness. 

 

4. Detection of damaged zones 

In order to study the spatial structure of 

damaged areas, it is required to identify their 

locations. Two approaches can be found in the 

previous studies for detecting damaged zones, 

both of which are based on considering a 

threshold. The first approach is comparing the 

3D topography of the initial and sheared 

fracture surfaces and detecting the damaged 

zones as the points having a height reduction 

greater than a specified threshold [7,14]. In this 

method, the fracture surface before and after 

shearing needs to be scanned. selection of an 

appropriate threshold is a challenging stage. 

The second approach is to detect the damaged 

zones by image-processing of the sheared 

surface photograph in which the intact and 

degraded zones have different colors [13]. In 

this method, there is no need for scanning the 

fracture surface after the shear test. Moreover, 

this approach provides a visual comparison 

which ensures whether the value of the 

segmentation threshold is properly chosen. 

      In this study, an image-processing 

technique was employed to locate the damaged 

zones on the topography of the fracture 

surfaces before/after shearing. First, the 

painted surfaces were digitally photographed 
 

 

 

 
Figure 8. Anisotropy ellipses for variograms of residuals of the surfaces: S1 (a), S2 (b), and S3 (c).

(b) (a) 

(c) 
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Figure 9. Cross validation plots for RK interpolation of the surfaces: S1 (a), S2 (b), and S3 (c) 

 
Figure 10. Profiles reconstructed by the RK method along with the corresponding real profiles. 

 

(a) 
(b) 

(c) 
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after shearing such that the optical axis was 

parallel to the z-axis (the camera lens parallel 

to the xy-plane). Figure 11a shows the image 

of the surface S1 after shearing in which the 

light color represents the damaged areas. By 

comparing pixel values in the corresponding 

gray-level image with a threshold value, a 

binary (black and white) image is obtained in 

which degraded zones having white pixels are 

completely separated from black intact areas 

(Fig. 11b). This process is known as the 

threshold-based segmentation of the image 

[22]. An image-processing code was written in 

MATLAB to perform the segmentation of the 

sheared surface image. The choice of the 

appropriate threshold value depends on the 

color intensity of the intact and degraded areas. 

Filters and morphological operators can be 

applied to the binary image for removing 

noises and tiny artifacts. The parameter of ɑs 

can be calculated as the ratio of the number of 

white pixels to the total number of pixels 

(blacks and whites) of the fracture surface in 

the binary image. The estimated values of ɑs 

were 7.5%, 18%, and 7% for S1, S2, and S3, 

respectively. Each connected component of 

white pixels was then considered as one 

damaged zone. Figure 11-c indicates the 

zoning map of the damaged areas of S1. For 

the studied surfaces, 46, 263, and 34 zones of 

degradation were respectively detected (in 

total, 343 zones) with different sizes and 

shapes. As can be seen, a damaged zone may 

not be fully filled with white pixels, and an 

island of intact areas may exist within it. 

      Now, the 2D binary image containing 

information of the location of the damaged 

zone must be superimposed onto the 3D 

topography of the fracture surface. To do this, 

both grids of the topography and image pixels 

need to have the same size. The diameter of 

the fracture surface comprises 2205 pixels on 

the digital image, taken by a compact camera 

with a resolution of 7.5 megapixels. As a 

result, pixel size is equal to 60/2205=0.027 

mm that is smaller than the grid size of the 3D 

measurement (i.e., 0.05 mm). Therefore, image 

dimensions need to be decreased 

0.027/0.05=1.85 times so that both the grids 

are of the same size. The superposition of the 

2D binary image and the initial topography of 

the fracture surfaces is shown in Figure 12. In 

this case, x- and y-coordinates of all the 

damaged zones are determined, and the 

corresponding z-coordinate can be obtained 

using elevation data of the surface topography 

before or after shearing, depending on which 

one is intended. 

 

5. Spatial structure in damaged zones 

Prior to investigating the spatial structure of 

damaged zones, the global trend of sheared 

surfaces was examined, and polynomials of 

different orders were again fitted over the 

fracture surfaces after shearing. Comparing the 

trend surfaces before and after shearing 

showed almost no difference. This 

demonstrates that the surface degradation 

occured within small-scale asperities not over 

large-scale undulations.  

 

 

               (a)              (b)             (c) 

 
 

Figure 11. Original image of the sheared S1 (a), binary image obtained from segmentation (b), and zoning map of 

damaged areas (c).
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5.1. Variography of damaged zones before 

shearing  

In order to understand the evolution of spatial 

structure with shearing, zonal variograms of 

residuals before the shear test need to be 

calculated at the locations corresponding to the 

damaged zones. Due to the heterogeneity of 

the surface roughness, the zonal variograms 

are not necessarily identical and can be 

different in range, sill, and anisotropy 

properties (Figure 12). The issue of modeling 

the zonal variograms suggests that many of the 

damaged zones are so small that their 

variograms cannot be plotted up to a 

sufficiently large distance. Therefore, the 

concept of ‘pseudo-zonal variogram’ is 

introduced and used in the followings. The 

value of the pseudo-zonal variogram at a given 

h, is defined as the average of the term 

[z(X+h)-z(X)]
 2

 calculated for every damaged 

zone with a size greater than 2h. Thus, the 

pseudo-zonal variogram of a fracture surface 

before/after shearing is formulated as below: 

where M is the number of damaged zones; and 

Nj(h) is the number of pairs of points with a 

distance of h in the j-th zone. The overall 

spatial structure of discrete target zones 

distributed in a global surface can be 

characterized. The pseudo-zonal variograms 

can be also calculated in different directions. 

Ellipses of the directional global, pseudo-

zonal, and zonal variograms of the residuals 

prior to the shear test are shown in Figure 13. 

The global variogram has a higher range and 

lower sill, compared with the pre-shearing 

pseudo-zonal and zonal variograms. This 

means that the damaged zones have an initial 

roughness greater than the average roughness 

of the surface. 

 

5.2. Evolution of spatial structure with 

shearing 

Figure 14 shows the three pseudo-zonal 

variograms and several zonal variograms of 

damaged zones before and after shearing. The 

spatial continuity at the damaged zones has 

increased due to asperity degradation. It is 

observed that the increase of variogram range 

is greater in the shear direction (x-axis) such 

that the direction of maximum continuity leans 

toward the shear direction. Therefore, if the 

range ellipse of a damaged zone was initially 

elongated toward the shear direction, the 

anisotropy would increase with shearing (for 
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Figure 12. Superposition of the binary image and the initial 

topography of the fracture surfaces: S1 (a), S2 (b), and S3 

(c). 
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Figure 13. Ellipses of the directional global, pseudo-zonal, and zonal variograms of residuals of: S1 (a), S2 (b), and S3 

(c), before shearing. 
 

example, in Fig. 14-g), and if the minor semi-

axis of continuity was originally oriented along 

the shear direction, the anisotropy would 

decrease (for example, in Fig. 14-a). The sill of 

the variograms of damaged zones indicates 

only a slight reduction with asperity 

degradation. This reveals that the roughness 

reduction caused by shearing was mainly 

reflected as increasing the spatial continuity, 

instead of decreasing the variability. 

 

5.3. Kriging of degraded zones 

The RK method was used to reconstruct the 

topography of areas degraded by shearing. For 

the damaged zones having a sufficient breadth 

(4, 13, and 4 zones in S1, S2, and S3, 

respectively), their directional zonal 

variograms after shearing were used for 

kriging the residuals, and the directional 

pseudo-zonal variogram of each surface was 

considered for its small zones. The kriged 

residuals at the damaged zones were then 

added to the value of the global trend surface 

to provide an estimate elevation. It is worth 

noting that for kriging the residual value at a 

location falling in a given damaged zone, only 

the neighboring sample points were considered 

that belonged to the same zone. The LOOCV 

(a) (b) 

(c) 
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Figure 14. Comparison of variograms of damaged zones before and after shearing: the pseudo-zonal variogram ellipse 

for S1 (a), two zonal variogram ellipses for S1 (b, c), the pseudo-zonal variogram ellipse for S2 (d), two zonal 

variogram ellipses for S2 (e, f), the pseudo-zonal variogram ellipse for S3 (g), and two zonal variogram ellipses for S3 

(h, i). 

 

method was again used to comprehensively 

evaluate the spatial estimation in each 

degraded zone, considering a grid size of 1 

mm. The calculated values of RMSE were 

respectively 0.08, 0.07, and 0.05 mm for 

interpolating the damaged zones of S1, S2, and 

S3 which are smaller than the RMSE values of 

the pre-shear surface interpolations. One 

reason for this accuracy increase is that the 

asperity degradation results in smoothing of 

the geometry at damaged areas of the surface, 

and makes them better suited for being kriged. 

Application of the zonal/pseudo-zonal 

variograms instead of using the global 

variogram is in turn another reason for 

increasing the accuracy of interpolation of 

damaged areas compared to the whole initial 

surface.  

 

6. Conclusions 

The variogram analysis of fracture surface 

allows the full 3D description of the roughness 

instead of summarizing it into a single 

roughness parameter. The variography of the 

surfaces suggested that they have a notable 

non-linear trend in their geometries and are not 

stationary. After eliminating fitted polynomial 

trends, residuals indicated further stationarity 

with increasing the polynomial order up to 

five. Both the sill and range of variograms 

decreased with removing the non-linear trend. 

In fact, the spatial structure of rock fracture 

surfaces can be decomposed to one 

deterministic component characterized by a 

base polynomial function and representing 

large-scale undulations, and one stochastic 

component described by the variogram of 

residuals and representing the small-scale 

roughness. The decomposition of the spatial 

structure of rock fracture surfaces with such an 

approach, which has not been formerly 

addressed, is absolutely necessary from both 

the geostatistical and mechanical point of 

view. 

In total, 343 zones of degradation in a 

variety of sizes, shapes, initial roughness 

characteristics, local stress fields, and asperity 

strength values were identified and analyzed. 

Since many of the damaged zones were so 

small, only a limited number of zonal 

(g) (h) 

(i) 
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variograms could be modeled in practice. In 

order to characterize the overall spatial 

structure of the damaged zones, the concept of 

pseudo-zonal variogram was proposed which 

takes the information of every damaged zone 

into account. 

The comparison of the trend surfaces before 

and after shearing did not show any difference. 

This indicates that the surface degradation has 

occurred within small-scale asperities. The 

results show that the spatial continuity at the 

damage location increases due to asperity 

degradation. The increase of variogram range 

is anisotropic and tends to be higher in the 

shear direction; as a result, the direction of 

maximum continuity rotates towards the shear 

direction. Therefore, the anisotropy in damage 

locations may increase or decrease with 

shearing, depending on how the range ellipse 

was initially oriented relative to the shear 

direction. The sills of variograms of damaged 

zones indicate only a slight reduction with 

asperity degradation. This demonstrates that 

the roughness reduction due to shearing is 

mainly reflected as increasing the spatial 

continuity, instead of decreasing the 

variability. 

Finally, the regression-kriging method was 

used to interpolate the morphology of the 

intact surfaces and degraded areas. The 

geometry of the fracture surface reconstructed 

by this method was found to be smoothed 

compared with the real geometry. The 

interpolation error for the damaged zones was 

smaller than for the intact surface. One reason 

for this increase in the accuracy is that the 

asperity degradation results in smoothing of 

the geometry at degraded areas of the surface, 

and makes them better suited for being kriged. 

On the other hand, application of the zonal and 

pseudo-zonal variograms instead of using the 

global variogram is in turn another reason for 

increasing the accuracy of interpolation of 

damaged areas compared to the whole initial 

surface. 

The modeling of the evolution of the 

variogram of fracture surface with shearing 

can be considered as the subject of future 

work. As such, a methodology may be 

established to predict the 3D geometry of the 

sheared surface after the direct shear test. 
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