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Abstract 
 
The development of yielded or failure zone due to an engineering construction is a subject of study in 
different disciplines. In Petroleum engineering, depletion from and injection of gas into a porous rock can 
cause development of a yield zone around the reservoir. Studying this phenomenon requires elasto-plastic 
analysis of geomaterial, in this case the porous rocks. In this study, which is a continuation of a previous 
study investigating the elastic behaviour of geomaterial, the elasto-plastic responses of geomaterial were 
studied. A 3D finite element code (FEM) was developed, which can consider different constitutive 
models. The code features were explained and some case studies were presented to validate the output 
results of the code. The numerical model was, then, applied to study the development of the plastic zone 
around a horizontal porous formation subjected to the injection of gas. The model is described in detail 
and the results are presented. It was observed that by reducing the cohesion of rocks the extension of the 
plastic zone increased. Comparing to the elastic model, the ability to estimate the extension of the yield 
and failure zone is the main advantage of an elasto-plastic model.  
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1. Introduction 
Development of plastic zones in porous materials 
such as soils and rocks, due to an Engineering 
activity, is a topic of study by many researchers 
[1]. An example of this research interest is 
production from a porous reservoir formation or 
injection into a depleted reservoir for 
underground storage purposes. The permanent 
deformation as a result of plastic deformation is 
irrecoverable, contrary to elastic behaviour if the 
material is unloaded. The plastic zone represents 
the extent of the yield of the geomaterial and can 
be mathematically determined using appropriate 
constitutive models of plasticity theory [1]. The 
plastic shear failure could be characterised using 
Mohr-Coulomb type plasticity constitutive 
models [2]. Drucker-Prager constitutive model, 
for example, is also used to determine the plastic 
zone, due to gas injection into a reservoir 
formation, which was considered in this study. 
While both constitutive models are pressure 
sensitive, the Drucker-Prager model has no 
singularities and, therefore, is a superior model in 
this regard. This assumption has been supported 
by different studies, some of which are discussed 
here. 

 Fredrich and Fossum (2002) carried out several 
case studies using elsato-plastic and viscoplastic 
constitutive models [3]. They discussed the 
advantages of continuous surface yielding 
criterion against traditional cap plasticity models, 
suggesting that the traditional cap plasticity 
models have indeterminacy at the point of 
intersection between shear failure surfaces and 
hardening cap surface. They further argued that 
the horizontal tangency of cap hardening surface 
at the intersection point makes it impossible that 
the model dilatants before final failure. The 
continuous surface yielding criteria have not 
these two disadvantages. Fredrich and Fossum 
(2002) discussed the effects of production and 
reservoir depletion on the surrounding rocks, 
surface subsidence and casing damages [3]. They 
also performed several case studies using the 
new continuous surface elasto-plastic models for 
geomaterial. They estimated the pore pressure 
using the black-oil model reservoir simulator 
which was used as the input into the 
geomechanical model in the form of external 
loads. Fredrich and Fossum (2002) considered a 
highly porous diatomaceous formation (a 
porosity of 45%) located in San Joaquin Basin,  
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named Belridge diatomite, and Lost Hill fields 
where numerous casing damage had been 
reported [3]. They studied two sections in 
Belridge Diatomite and one at the Lost Hill field 
using three-dimensional nonlinear finite element 
code JAS3D. The results of their modelling 
revealed that the sliding surface and bedding 
surface between reservoir and upper formations 
are the main sources for large horizontal 
deformation of casing. They also reported that 
the horizontal displacement is negligible in the 
first 10 years while production switches to 
waterflood processes and injection, which shows 
high shear displacement in the sample well. The 
results also indicated the tendency of rotation of 
principle stresses in the field during the course 
of production, as the minimum principle stress 
rotates from horizontal to vertical direction.  

Minkoff et al. (2003) described 
comprehensively the advantages and 
disadvantages of fully coupled, loosely coupled 
and one-way coupled methods between fluid 
flow and geomechanical equations [4]. Despite 
the perfectness of fully coupled models, they 
stated that it is extremely hard to set up the set 
of simultaneous equations for multiphase flow 
and nonlinear geomechanical behaviour. 
However, the one-way coupled method does not 
possess this perfectness of simultaneous solution 
of fluid flow and geomechanical set of 
equations, but the method makes it easier to use 
advanced and sophisticated fluid flow and 
geomechanics code to handle the problem. This 
allows capturing features in advanced problems 
such as multiphase fluid flow or nonlinear 
elasto-plastic behaviour of geomaterial. They 
argued that the loosely coupled method, in 
between the other two way of coupling, 
enhances the capability of one-way coupling 
method, since it allows the updated data transfer 
between two simulators in order to increase the 
degree of coupling of the solution. 

Nevertheless, the loosely coupled method 
permits the use of highly progressed and 
advanced simulators, as they run independently. 
Using the loosely coupled method, they coupled 
two advanced simulators of IPARS as a 
reservoir simulator that is capable of handling 
multiphase flow and faults and JAS3D, an 
advanced geomechanics simulator that handles 
nonlinear complicated constitutive models for 
geomaterial. In these coupled programs, pore 
pressure is determined using a reservoir 
simulator and it is applied as an external load to 
geomechanical simulator. 

 After some iteration in time, reservoir 
properties (i.e. porosity and permeability) are 
updated using newly determined stress, strain 
and displacement fields. Using this approach, 
Minkoff et al. (2003) simulated a single layer of 
Belridge field, California, where the initial oil in 
place is estimated to be 500 Mm3 [4]. The field 
contains two reservoirs, one in Tulare sand and 
the other in diatomite layer. The Tulare sand is a 
shallow reservoir but the diatomite reservoir has 
the extension of about 305m deep, deeper than 
Tulare sand. The diatomite reservoir has high 
porosity (40%-70%) but low permeability (0.1 
mD), which requires the use of hydraulic 
fracturing to produce economically. In their 
modelling, they focused on the one layer of 
diatomite reservoir at a depth of 361m with the 
initial pore pressure of 3.76 MPa. Their model 
extended 106m in x and y direction and 44m in z 
direction. The modified Sandler-Rubin cap 
plasticity constitutive model was used for the 
geomaterial behaviour. At the four corners of the 
model there were four wells. Using loosely 
coupled between IPARS/JAS3D after five years 
of production, they compared the simulations of 
flow separately. The results showed that using 
the IPARS itself the reservoir pressure changes 
40% after five years of production, whereas this 
reservoir pressure increases to 50% for the 
coupled simulation. After five years of 
production, the surface subsidence was 
calculated to be 0.15m. Also, coupled simulation 
revealed that the permeability decreased from 0.1 
to 0.001 mD.  

Fredrich et al. (2000) carried out an 
investigation on surface subsidence, well casing 
damage and failure in Belridge diatomite 
reservoir, Bakersfield, California where in 
around 20 years of production about 1000 wells 
experienced casing damage [5]. Despite high 
thickness (about 1000 ft), porosity (45-70%) and 
high estimated original oil in place (about 2 
billion bbl), three-quarter of the produced oil 
came from the overlying Tulare sand. The 
production from the diatomite layer was 
restricted, since the permeability was too low 
(about 0.1mD) but it improved later using 
hydraulic fracturing technique. The 
geomechanical modelling was carried out using 
nonlinear large deformation finite element code 
of JAS3D. They modelled two sections of the 
field: sections 33 and 29. The pore pressure 
determined from reservoir simulator was sent to 
the geomechanics simulator as an external load. 
The reservoir, including diatomite and porcelanit  
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layers, was discritized into nine layers for section 
33 and ten layers for section 29. Underburden is 
Lower porcelanite and discritized into six 
elements vertically but since reported casing 
damage located mostly in overburden, the 
refinement was done within the overburden layer 
and was discritized into 10 elements vertically. 
The depth of underburden and overburden are 
about 2200 and 650 ft, respectively. There are 
also three contact surfaces in the numerical 
model. The models contained eight-noded 
Lagrangian elements. Two classes of plasticity 
models were used for the entire model: Drucker-
Prager and generalized cap plasticity model. The 
former was used for the overburden and the 
lowermost reservoir layer and underburden and 
the latter for eight layers of reservoir. Three 
aspects of the modelling results are of particular 
importance: surface subsidence, deformation 
along vertical profiles (well damage) and changes 
of in-situ stress field. Surface subsidence was 
estimated as 7 and 5 ft for sections 33 and 29, 
respectively. The shear deformation was 
predicted to be ±0.5 ft/year. 

Settari and Walters (2001) discussed the effect 
of coupling on the analysis of producing 
reservoirs [6]. They compared three types of 
coupling: uncoupled, partially coupling and fully 
coupling, explaining how partially coupling is 
beneficial when using the advanced reservoir and 
geomechanics simulators in the sense that they 
run separately but information is transferred 
between the two simulators at any certain time 
step. They also discussed the importance of 
elastoplastic constitutive models for compaction 
analysis. They referred to Drucker-Prager cap 
plasticity model and hyper-elastic nonlinear 
model and expressed that the first model is useful 
for post-failure analysis, whereas the second 
model is good for pre-failure analysis. Yet, both 
models are capable of modelling nonlinear stress-
strain behaviour. Comparing the two constitutive 
models, they concluded that the run time of the 
elastoplastic model is nearly as twice as the 
nonlinear hyperbolic elastic model. 

In this study, we developed an especial 3D 
FEM code which is capable of elastic analysis of 
porous material for elasto-plastic analysis. The 
main purpose was to investigate the effect of 
injection on plastic zone development around a 
porous formation. There are several commercial 
finite element programs available for this type of 
analysis; yet, neither of them is capable of being 
coupled with reservoir simulators. 

 That is the objective of the developed code for 
coupling analysis as it supports certain 
predefined constitutive models. However, having 
access to the source code is an advantage that 
allows adding any other constitutive models 
suitable for any type of geomaterials.  

The developed code was validated against 
some simple case studies and then was used for 
analysis of stress and displacements due to 
injection into a porous reservoir. 
 
2. Theory of plasticity  
There are many textbooks which explain the 
mathematical aspects of plasticity theory in 
detail. Below is a brief introduction to the 
plasticity theory. It is to be noted that most of the 
materials presented in this section were taken 
from Owen and Hinton [2].  

Elaso-plastic solids behave in such a way that 
when stress exceeds a limited threshold (the 
yield stress) an irreversible straining will happen. 
Three basic fields of mathematical subjects are 
needed in order to completely cover the elasto-
plastic behaviour [2]: 
 explicit relationship between stress and strain 

for elastic condition i.e. before yielding starts; 
 a yield criterion showing the stress level at 

which plastic flow starts; and 
 stress-strain relationship for post yield 

behaviour. 
These concepts and related aspects of plastic 

behaviour are explained in brief in the following 
sub-sections. 
 
2.1. Elastic condition 
Before plastic yielding starts the stress-strain 
relationship is generalized Hook's law i.e. 
 

klijklij C    (1) 

 
For isotropic material: 
 

jkiljlikklijijklC    (2) 

 
where λ and µ are Lame's Constants and δij is 
Kronecker delta. 
 
2.2. Yield Criterion 
Yield criterion describes the relationship of 
stresses level at which the plastic deformation 
starts. Generally, it is written as: 
 

    kf ij   (3) 
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where f  is a function, k is a material parameter 
determined experimentally and   is a hardening 
parameter. J1 , J2 and J3 are invariant of stress 
field. Some yield criteria are independent of the 
hydrostatic pressure and, therefore, they are 
functions of deviatoric stress invariant J´2  and  J´3 

.The mostly used yield criteria are explained 
below. 
 
The Von Mises yield criterion (1913) 
This yield criterion is based on the fact that when  
the value of the second invariant of deviatoric 
stress field reaches the threshold the yielding 
starts: 

 kJ 2  (4) 

 
The Mohr-Coulomb yield criterion 
This yield criterion was first defined by Coulomb 
(1773) as the straight line in (σn,τ) space as: 
 

 tannc   (5) 
 
where τ is the shear stress, σn  is the normal stress 
and c and Φ are cohesion and internal friction 
angle, respectively. It is notable that tensile stress 
is positive. By some mathematical manipulation, 
the form of yield criterion suitable for plasticity 
computation is driven as: 
 

 cos.sinsin
3

1cossin
3
1

21 cJJ 









 (6) 

 
The Drucker-Prager yield criterion 
This criterion is a modification of Von Mises yield 
criterion which is also an approximation to Mohr-
Coulomb criterion. In mathematical form, this 
criterion is expressed as: 
 

  21 JJ  (7) 

 
in which α and k´ reflect the fact that the Drucker-
Prager yield criterion coincide with the outer 
apices of the Mohr-Coulomb hexagon and 
therefore are represented as: 
 

 




sin33
sin2


  
 




sin33
cos6



c   

(8) 
 
Or coincide with the inner apices of the Mohr-
Coulomb hexagon, in which case are calculated 
as: 

 




sin33
sin2


  
 




sin33
cos6



c   

(9) 
 

 2.3. Work hardening 
After initial yielding, the yield surface may be a 
function of degree of plastic strain that the 
material has experienced. 

If the yield surface does not depend on the 
plastic straining occurring in the material, the 
material is known as an elastic-perfectly plastic 
material. If the yield surface keeps its original 
shape but continues in expanding, the material is 
called an isotropic hardening material. Finally, if 
the yield surface keeps its original shape and 
orientation but translates in the stress space, it is 
known as a kinematic hardening material. In this 
study, we only considered elastic perfectly 
plastic and isotropic hardening behaviours.  

The hardening parameter can be a function of 
the work which is done during the plastic 
deformation and, therefore, is said to be a work 
hardening phenomenon. Mathematically: 

 
pW  (10) 

where 
 

p
ijijp dW    (11) 

 
If f < k, then the material is in the elastic 

domain but for f =k plastic deformation initiates. 
After initiation of plastic  behaviour, the 
increment change in the yield surface is 
dependent on the stress change: 

ij

ij

d
f

df 



  

 
(12) 

Where three cases may be considered: 
 if df < 0  it is elastic unloading and the stress 

state returns back inside the yield surface; 
 if df = 0 it is neutral loading and the stress 

point remains on the yield surface; and 
 if df > 0 it is plastic loading and the yield 
surface expands and the stress point remains on 
expanded yield surface. 
 
2.4. Elasto-plastic stress-strain relationship 
Outside the yield surface, the material behaviour 
is elasto-plastic and the strain is part elastic, part 
plastic. In mathematical terms, the total strain 
can be represented as: 

   
pijeijij ddd    (13) 

For the elastic part the stress- strain 
relationship is: 

   
kkij

ij

eij d
E

d
d 








21
2





  

(14) 

where dσ´ij is the deviatoric stress field.  
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The plastic strain increment is a function of the 
plastic potential, Ǫ , gradient, i.e.: 
 

 
ij

pij

Q
dd






  

 
(15) 

 
where dλ is the plastic multiplier. The above 
equation is named the flow rule. Ǫ , like f  is a 
function of the deviatoric stress invariants but its 
determination is a very complicated experimental 
task. Therefore, for many cases in the field of 
mathematical theory of plasticity it is assumed 
that f ≡ Ǫ and it is named the associated flow 
rule and normality condition since the ∂f / ∂σij is 
normal to the yield surface. 
 
3. 3D FEM code 
We previously developed a 3D FEM program for 
linear elastic analysis. Here, we have expanded 
our program for elasto-plastic analysis, including 
the von Mises, Drucker-Prager and Mohr-
Coulomb models. For the Von Mises model, 
which has hardening effect stress, the controlled 
mode was considered in the analysis. However, 
for the other two models displacement control 
mode was considered. Both stress and 
displacement control modes were integrated in 
the written code.  

The developed 3D FEM is capable of elastic 
analysis of porous material for elasto-plastic 
analysis. It supports three dimensional 
isoparametric hexahedron elements with variable 
nodes from 8 to 20 nodes; however, in this study 
we used 8-noded isoparametric hexahedron. The 
storage method was skyline method with 
removing the fixed degree of freedom in order to 
increase the speed and decrease runtime. The 
solver was the Gauss elimination method based 
on skyline storage.  

Having access to the source of the code allows 
coupling it with other reservoir simulators, which 
is a further objective of this study. Also, it 
enables us to integrate any other constitutive 
models in the analysis where is needed.  

 
4. Validation Examples 
To validate the results of our developed FEM 
code, in this section we present the results of 
some simple case studies for which the analytical 
solutions are available.  

The first three examples consider the 8-noded 
unit cubic element shown in Figure 1 subjected 
to three sequential steps of displacements as 
following: 

a. load step 1: +0.2 unit of tensile displacement; 

 b. load step 2: -0.4 unit of compression 
displacement; and  

c. load step 3: +0.1 unit of tensile displacement.  
Each step is divided into 40 sub-steps and 

large displacement effect is neglected. The 
behaviour of this cube is studied using three 
different constitutive models introduced in the 
previous sections. 

 

 
Figure 1. A unit cubic element under displacement 

loading 
 
4.1. Von Mises Constitutive model 
In this example, the material of the cubic element 
shown in Figure 1 is assumed to be elastic-
perfectly plastic with hardening parameter of zero 
and a unit yield stress. It is also assumed to have a 
Young's modulus of 1.0 MPa and a Poisson's ratio 
of 0.3 for demonstration purposes. The material 
behavior under the above three loading and 
unloading steps is shown in Figure 2.  
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Figure 2. Material behaviour under three loading 

steps considering Von Mises constitutive model 
without hardening (perfectly plastic) 

 
The loading path corresponding to each step is 

indicated in this figure. As shown in the figure, 
the material yields in a similar manner in both 
tension and compression. This is an expected 
result as there is no Buschinger effect for Von 
Mises behavior.   
 
4.2. Mohr-Coulomb Constitutive model  
In this example, the behavior of the cubic material 
In    Figure 1   is  studied   when  its  behaviour  is  
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assumed to be according to Mohr-Coulomb 
constitutive model. For computation purposes, the 
following material parameters are assumed for 
compression and tension loading modes: 
 

MPafc 3.0  (16.a) 

MPaf t 1.0  (16.b) 
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(16.c) 
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(16.d) 

 
In above equations, fc, ft, Φ and c are uniaxial 

compression strength, uniaxial tensile strength, 
internal friction angle and cohesion. Figure 3 
presents the material behaviour under three 
loading and unloading steps, similar to previous 
example. Contrary to the previous example, the 
material behaves differently under tension and 
compression. 

This is a valid result as the material yielded in a 
tensile stress of equivalent to 0.1 MPa and in a 
compressive stress of equivalent to 0.3 MPa. 
Since there is no hardening effect in perfectly 
plastic behaviour, the material yielded again at 
0.1 MPa under the third loading step. 
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Figure 3. Material behaviour under three loading 

steps considering Mohr-Coulomb constitutive 
model 

 
4.3. Drucker-Prager Constitutive Model 
In this example, the behaviour of the cubic 
material in Figure 1 is studied assuming Drucker-
Prager constitutive model. The input parameters 
to this model are (α,k´) but the program uses 
cohesion and friction angle parameters similar to 
Mohr-Coulomb criteria. As explained in sub-
section 2.2, there are two types of similarity 
between these two models: one   is   in   tensile   
meridian   and   another  in compression meridian. 

 Figure 4 shows the material behaviour under 
three loading and unloading steps. The material 
behaviour is in such a manner that the Drucker-
Prager envelope is identical to the Mohr-
Coulomb envelope at the tensile meridian. 
Therefore, it was observed that the material 
yielded at a tensile stress of 0.1 MPa which is 
identical to that of Figure 3 under tensile 
loading. 
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Figure 4. Material behaviour under three loading 

steps considering Drucker-Prager constitutive 
model at the tensile meridian 

 
The resemblance of Figure 3 and Figure 4 under 
tensile behaviour is notable.  

In Figure 5, the material behaviour is set in 
such a way that the Drucker-Prager envelope is 
identical with Mohr-Coulomb envelope at the 
compressive meridian. Therefore, it is observed 
that the material yielded at a compressive stress 
of -0.3 MPa which is equivalent to that of Figure 
3 under compressive loading. Similarly, the 
resemblance of Figure 3 and Figure 5 under 
compressive behaviour is considerable.  

 

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

-0.40 -0.20 0.00 0.20

S
tr

e
s
s
 (

M
P

a
)

Displacement (m)

Load Step 1

Load step 2

Load step 3

 
Figure 5. Material behaviour under three loading 
steps considering Drucker-Prager constitutive 

model at the compression meridian 
 

 
 

Int J Min & Geo-Eng (IJMGE), Vol. 47, No. 1, Jun. 2013, pp. 81-90 



A 3D elasto-plastic FEM program developed for reservoir Geomechanics simulations … 87 

 

 

4.4. A cylindrical hole in Mohr-Coulomb media 
In this final example, we considered a cylindrical 
hole in a Mohr-Coulomb media. Figure 6 shows 
the geometry of the problem: this is a quarter of 
the whole model due to its symmetry. 

 

 
Figure 6. Model geometry of a cylinder in a Mohr-

Coulomb media (after FLAC user's manual, Version 
4.0, 2000) 

 
Figure 7 presents a 2D section of the model 

mesh, which in fact is 3D. 
 

 
Figure 7. Mesh generated for geometry of Figure 6 
 

The closed form solution for this problem was 
proposed by Salencon (1969). The plastic zone 
radius, R0, is given analytically as: 
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(17) 

 

 where a is the radius of the hole, Po is the 
magnitude of the initial in-situ stress, and Pi is the 
internal pressure inside the hole. Also, 
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The radial stress at the elastic-plastic interface 

is: 
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(20) 

 
and the radial and tangential stresses at a distance 
r from the center of hole within the plastic zone 
are: 
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The stresses outside the plastic zone, i.e. within 

the elastic zone are: 
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(24) 

 
The radial and tangential stresses were 

calculated using the above closed form solutions 
and also obtained from the FEM code numerically. 
The results are compared in Figures 8 and 9. The 
results show a very good agreement between the 
results of the two models. 

0

10

20

30

40

1 3 5 7 9 11 13

R
a
d
ia

l 
S

tr
e
s
s
 (

M
P

a
)

Distance from cylinder wall

Analytical Solution

Numerical Results

 
Figure 8. Comparison between FEM program and 

closed form solution for radial stress 
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Figure 9. Comparison between FEM program and 

closed form solution for tangential stress and plastic 
zone extension 

 
The above examples demonstrate the applicability 
of the developed FEM code for the plastic analysis. 
In the following section, the program is used to 
analyze the stress and strain changes due to 
injection into a porous zone considering elasto-
plastic behavior for the formation. 
 
5. Injection into Elasto-plastic media 
A 2D section of the model in XZ plane at Y=2.0 m 
is shown in Figure 10. The porous formation has a 
rectangular cross-section in XZ-plane with a length 
of 80 m in X-direction, a height of 40 m in Z-
direction and strike of several hundreds of meter 
aligned in Y-direction. 

The midpoint depth of the porous formation in 
Z-direction is 500 m and the height of the porous 
formation is from 80.0 to 120.0 m from the 
bottom of the model.  

 In Z-direction, the model extends to the 
surface. 

This allows investigating the surface-induced 
incidences such as probable uplift or subsidence 
due to reservoir injection/depletion. 

The width of the porous formation in X-
direction is from 160.0 to 240.0m from the left 
side of the model. The model extends 200 m in 
both sides (overaly 400m) in X-direction to 
ensure that it reaches to the out of the influenced 
zone. This model consists of 5936 nodes and 
2860 isoparametric8-noded finite elements.  

A formation Young’s modulus of 10GPa was 
assumed for the porous zone in this study. This 
value was used in the entire model within the 
reservoir section and also across the overburden 
and underburden. This represents a moderate 
stiffness for the rock. The simulation started by 
allowing the model to consolidate under 
gravitational force and, then, injecting into the 
porous formation up to 5.6 MPa (800 psi). 

In particular, we were concerned with 
determining the extension of the plastic zone 
due to injection into the porous zone. 

This is important from a practical point of 
view    in    various    applications   of   reservoir 
Geomechanics such as casing collapse and 
fracture reactivation. We performed sensitivity 
analysis on Cohesion assuming a constant value 
of 30° for the internal friction angle. The 
injected pressure was assumed to be 5.6 MPa 
which was applied at five sub steps. The 
iteration number to converge the model is 
tabulated in Table 1. 

 

 
Figure 10. A 2D section in XZ plane at Y=2.0 m and the location of the injected zon 
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Table 1. Iterations number to convergence for each model at five different sub-steps 

Cohesion 
(MPa) 

 
Total  Number of Iteration 

for each model 
0.3 71 
0.4 58 
0.5 49 
0.6 44 
0.7 36 
0.8 33 
0.9 30 
1 24 

1.1 22 
1.2 21 
1.3 16 
1.4 15 
1.5 14 
1.6 10 

 

The extension of plastic zone for different 
values of cohesions is shown in Figure 11. The 
results of this figure show how the extension of 
the plastic zone reduces as material cohesion 
increases. At cohesion of approximately above 
1.6 MPa, no plastic zone develops. Also, as 
illustrated in the figure, two spots at the corners 
of the injection zone are the nucleation zone for 
the plastic zone.  

  As the cohesion reduces, the plastic zone 
increases and at low values of cohesion the two 
plastic zones develop at the two sides of the 
porous zone intersect and generate a large 
plastic zone which further extends into the 
overburden and underburden formations. For 
cohesion values of smaller than 300 KPa, the 
model do not converge, suggesting that the 
degree of plastification is too high. 

 

  

C=0.30 MPa C=0.40 MPa 

  

C=0.50 MPa C=0.70 MPa 

  

C=1.00 MPa C=1.60 MPa 

  
Figure 11. Reduction in plastic zone around the injected zone due to an increase in cohesion. 
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Conclusions 
As a subsequent study to a recent one on elastic 
analysis of geomaterial, this study investigated 
the elaso-plastic behaviour of geomaterials. A 
3D FEM code was developed for elasto-
plasticanalysis, which can use different 
constitutive models. The features of the code 
were explained and its validity was checked by 
analysing some simple case studies. Comparing 
to elasto-plastic analysis, the elastic analysis 
was used to calculate the stress, displacement 
and strain fields, which are useful in predicting 
the high stress concentration zones and the 
direction of minor and major stresses. This 
information is used for wellbore stability design 
and to identify the propagation direction of a 
hydraulic fracture. However, the elastic analysis 
does not provide any information about failure 
or yielded zones. In this study, as one example, 
the elasto-plastic analysis was applied to study 
the yielded and failure zone development due to 
gas injection into a porous zone. The results 
indicated that for geomaterials with cohesion of 
less than 1.6 MPa the failure zones developed 
according to Drucker-Prager yield criterion. The 
lower the cohesion of the geomaterial, the 
larger the volume of the failure zones will be. 
For cohesion values of less than 300 kPa, the 
entire model proved  to be unstable. 
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