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Abstract  
       Correct estimation of water inflow into underground excavations can decrease safety risks and 

associated costs.  Researchers have proposed different methods to asses this value. It has been proved that 

water transmissivity of a rock joint is a function of factors, such as normal stress, joint roughness and its 

size and water pressure therefore, a laboratory setup was proposed to quantitatively measure the flow as a 

function of mentioned parameters. Among these, normal stress has proved to be the most influential 

parameter. With increasing joint roughness and rock sample size, water flow has decreased while 

increasing water pressure has a direct increasing effect on the flow. To simulate the complex interaction 

of these parameters, neural networks and Fuzzy method together with regression analysis have been 
utilized. Correlation factors between laboratory results and obtained numerical ones show good 

agreement which proves usefulness of these methods for assessment of water inflow.  
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Introduction  

Joints play an important role in geo-

mechanical projects in different ways. One 

of those is creating conduits to cross the 

rock mass which decreases it’s integrity and 

affects the hydro-mechanical properties [1, 

2]. Although it is difficult to accurately 

predict water inflow into tunnels at the 

design stage, but it is very essential to make 

a realistic estimation of that at early stages.  

Numerical methods have extended their 

boundaries to the field of water inflow 

prediction but due to the complex 

phenomenon of interacting parameters, it is 

more realistic to perform laboratory tests 

with setups as close as possible to the real 

site conditions.  

A combination of data production in the 

laboratory and utilizing powerful analytical 

methods such as regression analysis, neural 

networks and Fuzzy logics, as indicated in 

the present paper, has proved to be a 

powerful integral tool to predict water 

transmissivity of rock joints. 

 

Stress Dependency of Transmissivity of 

Jointed Rocks 

           Joint aperture can change due to 

stress changes, therefore transmissivity also 

changes accordingly.  

There are well established field methods 

available to determine transmissivity, but 

they are usually time consuming and costly. 

An alternative solution for this is to perform 

laboratory tests which can provide a more 

versatile estimation of transmissivity and 

the effect of interacting parameters. This 

needs to be extended somehow to the field 

conditions in the next stage.   

 

Research Background 

          Water flow through joints in rock 

masses is usually controlled by three main 

factors: fluid characteristics, joint properties 

and fluid pressure. Normal closure of joints 

due to confining stresses and dilation due to 

shear displacement changes water 

transmissivity in joints. Min et al. studied 

changes of permeability around 

underground openings due to such stress 

changes. They emphasized on stress 

relaxation as the main cause for 

permeability changes in tunnels [3].  

Gang and Sanderson reported successful 

results in performing numerical analysis for 
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fluid flow and deformability of jointed rock 

masses versus normal stress [4].  

Decreasing permeability of sandstone due 

to increasing overburden pressure was 

studied by Fatt and Davis in 1952. Gray et 

al. in 1963 applied an axial force and lateral 

pressure on jointed rock samples 

simultaneously and studied the resulting 

changes in permeability. Holt also found 

similar trend during his tests on Triassic 

sandstones under three dimensional 

confining pressure conditions [5].  

Most of the above mentioned research has 

been focused on stress dependent 

permeability of sandstone samples which is 

a porous media, but studies on joint 

transmissivity which is an important 

parameter in fluid flow in rock masses, has 

also been studied by other researchers.  

The first comprehensive test on open joints 

was probably done by Lomize in 1951 who 

used rough parallel glass planes and proved 

the cubic power law rule for joint 

transmissivity [5].  

This subject has recently found more 

attention by other researchers among which 

the tests by Muralidharan can be mentioned 

[5]. He studied fluid flow through joints on 

rock cores in the laboratory under different 

stress conditions. To simplify the case, it 

was assumed that the core is under no 

external pressure axially but it is confined 

laterally by a hydraulic jack. Fluid was 

injected into the sample at different flow 

rates and permeability was determined. The 

same test was done but with hydrostatic 

pressure conditions. The results show that 

with increasing normal pressure on joints, 

transmissivity is reduced due to reduction 

in joint aperture.  

This research proves the relation between 

jointed rock mass permeability and stress 

condition due to overburden loads although 

the effect of joint geometry is neglected in 

this study.  In the present paper, joint 

transmissivity is studied under different 

confining stresses and its dependency on 

joint roughness, sample size and fluid 

pressure is also determined. 

 

Test Procedure 
Instruments  

        A simple normal loading device is 

used for tests. A number of core samples 

from limestone blocks are selected with a 

rough joint in it. The samples had a variety 

of diameters ranging between 48 to 75 mm. 

The joint was normal to the axis of the core 

which was loaded by a hydraulic jack. 

Water is injected into the joint plane under 

pressure and water flow is measured. Figure 

1 depicts the used laboratory setup.  

   

 
 

Figure 1:  a) Schematic of the jointed rock sample 

surrounded by a cover subjected to the axial load   

b) The picture of the laboratory setup  
 

Test Procedure 

        A number of samples were taken from 

limestone of Ilam formation in southern 

Iran with a horizontal natural joint. The rest 

of the samples were broken to create a new 

rough joint. The JRC coefficient proposed 

by Barton 1974 was determined for each 

joint. The diameter of each sample was also 

recorded. Joint roughness in this study was 

categorized in 5 classes to reduce test 

numbers. To convey water to the joint 

plane, a hole was drilled in the upper platen 

and further extended into the upper part of 

the sample. The following figure shows a 

close view of the two sides of the joint and 

the whole assembled sample. 

 


a 

b 
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Figure 2: A sample with two sides of the joint 

             
 Stress-dependent permeability for rock cores with variable diameter

(Pw=1 bar , JRC=0 -4) 
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 Stress-dependent permeability for rock cores with variable diameter

(Pw=7 bar , JRC=0 -4) 
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 Stress-dependent permeability for rock cores with variable diameter

(Pw=7 bar , JRC=16 -20) 
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Figure 3:  Volume of passed water as a function 

of normal stress for different joint roughness 

a) JRC=0-4, water pressure=1bar 

b) JRC=0-4, water pressure=7bar 

c) JRC=16-20, water Pressure=7bar 

 

All of the samples were loaded uni-axially 

via the upper platen. Water reached the 

joint plane and exited radialy from the 

rough joint surface and is collected by a 

surrounding robber bladder and conducted 

into a volume measuring unit.  

For each test, the diameter of the sample, 

joint roughness, water pressure, normal 

confining pressure and volume of passed 

water are measured. 

After data collection, graphs of water 

transmissivity are plotted versus pressure 

for different conditions (Figure 3). In these 

graphs, a and b correspond to1 and 7 bars 

water pressure respectively. In these tests, 

joint roughness coefficient is between 0 and 

4. Part c is for joint roughness coefficient 

between 16 and 20 at 7 bar water pressure. 

Comparing a and b shows that increasing 

water pressure increases water flow which 

results in higher permeability of the sample. 

With comparison between graphs b and c 

under constant size and water pressure, 

reduction of water flow is depicted as a 

function of JRC increase. 

Figure 4 shows dependency of water flow 

to variable water pressure for similar joint 

size and roughness. For this test, a change 

in water pressure from 1 to 7 bars has 

resulted in water flow increase to more than 

five times. 

The increase in joint roughness and size in 

a water flow test under 5 bars water 

pressure results in water flows reversely 

related to normal pressure on the joint 

(Figure 5). 

 
 Stress-dependent hydraulic transmissivity for rock cores 

(d=75 mm , JRC= 8-12 ) 
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Figure 4: Effect of water pressure variation on 

stress dependent transmissivity in 48 mm 

diameter and roughness coefficient between 8 

and 12 
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 Size-dependent flow rate for rock cores with variable JRC

(Pw=5 bar , P=10 bar)
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 Size-dependent flow rate for rock cores with variable JRC

(Pw=5 bar , P=40 bar)
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 Size-dependent flow rate for rock cores with variable JRC

(Pw=5 bar , P=100 bar)

0.0

0.5

1.0

1.5

2.0

2.5

45 50 55 60 65 70 75
Core Diameter (mm)

Q
 (

C
m

^
3
 /

 S
)

JRC (0-4)

JRC (4-8)

JRC (8-12)

JRC (12-16)

JRC (16-20)

 
Figure 5:  Effect of joint roughness on water 

flow rate versus diameter in 5 bars water 

pressure under a) low, b) medium and c) high 

stress condition 
 

For low normal pressure (part a) when joint 

roughness increases, water flow decreases. 

However a different trend is observed at 

higher pressures (part c). It means at higher 

stresses better transmissivity is obtained for 

rougher joints. This can be explained by a 

good joint closure for smoother ones while 

rougher joints do not close as much under 

the same normal pressure. Part b at 

moderate pressure is an intermediate 

condition. 

Figure 6 shows three stages of joint 

roughness effect on transmissivity under 

various normal pressures at 5 bar water 

pressure and 48 mm diameter. For better 

representation, a log axis is chosen for 

transmissivity. 
 

Hydraulic stress-dependent transmissivity (Pw=5 bar ,d=48mm)
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Figure 6: Three stages of joint roughness effect 

on stress dependent hydraulic transmissivity in 

48 mm diameter and 5 bars water pressure 

 

Fracture Flow Rate Estimation by 

Indirect Methods 

       Although experimental tests usually 

have properly responded to encountered 

problems in science, but they are costly and 

time consuming. This fact holds true for all 

laboratory activities related to geosciences 

especially in hydrogeomechanic activities. 

Therefore, new estimation methods such as 

statistical methods, artificial neural 

networks and Fuzzy logic systems have 

been used for solving these problems. in the 

present study, these new methods have been 

employed to estimate the laboratory 

pressure dependent flow rate in fractured 

rock masses by taking into account the 

effect of joint roughness coefficient, sample 

size and water pressure.  

 

Artificial Neural Networks ( sANN , ) 

    In general, neural networks are nonlinear 

mathematical systems. The network is 

simulated to human brain functioning. A 

neural network is a parallel and big 

processor comprising of simple processing 

units. These networks are capable of 

solving problems which do not have a 

precision mathematical relationship 

between their input and output parameters.   
 
Back Propagation Neural Network (BPNN) 

     A Back Propagation (BP) neural 

network is a multilayer perceptron feed 

forward which uses back/reverse error 

c 

b 

a 
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propagation algorithm for training. This 

algorithm is a general and applicable 

technique. A BPNN consists of one input 

layer, one or more hidden layers and one 

output layer. This Network is considered as 

a feed forward tool, because there is no unit 

internal connection between output of a 

processing and inputs of a node in previous 

layers. [6] 

 
Training of Back Propagation Neural 

Network  

    Training is a phenomenon which through 

known input and output data, releases 

optimum weight for inputs of any single 

cell of the neural network. The network 

learns the patterns after several runs. The 

error decreases as the number of runs 

increases and comes to its minimum in a 

proper round of running. In this study 60% 

out of 450 total data sets were used for 

training and 10% for validation and the rest 

for testing.  
 

Data Preparation and ANN Structure 

      Data Preparation is usually the most 

complicated part of sANN ,  application. 

Part of this complication is due to selection 

of actual occurred cases which provide 

proper patterns. Another part is due to the 

changing the scales of training data (i.e. 

normalizing the input and output data). For 

this purpose, the values are normalized in 

the interval (-1, 1) using Eq. (1).  

12
minmax

min 





pp

pp
pn

                            (1)  

The main reason for normalization of the 

data to the two above intervals is that active 

functions such as sigmoid ones are not able 

to differentiate between two large values. In 

other words the network would go wrong 

when the huge amounts are concerned. In 

such cases the training process will face 

difficulties. This is called “network 

saturation”. [7] 
In order to determine the optimum neural 

network, their performances were tested 

with the help of two parameters namely 

correlation coefficient (R) and Root of 

Mean Square Errors (RMSE). For this 

purpose, neural networks with different 

number of hidden layers and neurons, 

different activation functions and training 

functions were tried and the best of them 

was selected. The best network is the one 

with higher correlation coefficient and 

lower RMSE. For estimation of water 

seepage value (Q) an optimized model of 

neural network was build after several 

executions. This model has seven neurons 

in its hidden layer with sigmoid tangent 

activation function. Such a model contains 

four input neurons representing pore 

pressure, normal loading pressure, joint 

roughness coefficient and sample size. The 

output would be a single neuron 

representing the volume of water seepage 

(Q). Figure 7 depicts a simple view of the 

model used for estimation of the value of Q.  

Figure 8, illustrates the correlation between 

measured values in laboratory and predicted 

values by neural network for training and 

test data. The correlation coefficients for 

training and test data are 97.1% and 95.7% 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7: Back propagation neural network used 

for flow rate estimation 

 
Fuzzy Logic Method 

        The Fuzzy logic is based on Fuzzy set 

theory in which a Fuzzy collection is 

considered as a collection that has no 

certain boundary and any of its members 
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has a relative degree of membership. 

Specification of type and number of 

parameters related to membership functions 

is the most important problem in Fuzzy 

logic. The membership function is a 

function which fuzzifies the input space. In 

other words, each input value is normalized 

in the [0, 1] interval. There are many Fuzzy 

membership functions such as triangular 

shaped, Trapezoidal-shaped, Gaussian 

curve and sigmoid-shaped [7]. 

 

 

 
 

Figure 8: Correlation between measured and 

predicted values for training (a) and test data(b) 
 

Fuzzy Inference System 

     In Fuzzy inference system, a set of 

conditional rules are used to relate input 

and output membership functions. A simple 

example of the “if-then” condition is as 

follows: 

If x is A and y is B then z is C 

       In general, there are five steps for 

constructing the Fuzzy inference process: 

[7] 
1. Fuzzification of input variables, 

2. Application of the Fuzzy operator (AND 

or OR) in the antecedent, 

3. Implication from the antecedent to the 

consequent, 

4. Aggregation of the consequents across 

the rules,       

5. Defuzzification of outputs. 

There are two methods in Fuzzy inference 

system, Mamdani method and Sugeno 

method. In Sugeno Fuzzy method of 

inference system which used in this study 

on the contrary of Mamdani method, the 

output membership functions are either 

linear or constant [8]. 

 

Fuzzy Model Construction by ANN 

     Definition of membership function and 
Fuzzy rule is the most important parts of 
Fuzzy model construction. Researchers 

mostly apply the try and error method for 
adjustment of these parameters, but this 
method is often a time consuming process 

which needs much experiment. Therefore, 
the idea of applying learning algorithms for 
Fuzzy systems was considered. These 
algorithms are the same as those used in 

neural networks. These models are called 
neuro-Fuzzy systems. Actually the ANN 
provided properly ways for adjustment the 

Fuzzy models parameter by existing data 
and makes the manual way possible in 

shorter time [9]. 
In this study triangle membership function 
was used for each input parameter. The 
applied model is the Sugeno model which 
applies the liner membership function for 
output parameter. The data used for 
determining the Fuzzy rules and 
membership function were the same data 
used for training the ANN. Initially a Fuzzy 
model was built through try and error 
process. Then the parameters of this model 
were used for training in neural network. 
The introduced membership functions 
defined by neural network after training are 
shown in Figure 9. 

b 
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Figure 9: Membership function for input 

parameters after training by neural network 
 

Correlation between measured values and 

the values predicted by neuro-Fuzzy model 

built up in this study, before and after 

training, is shown in Figure 10. In these 

graphs “a“ represents the graph related to 

training and “b“ represents the graph related 

to testing of the model. Correlation 

coefficient between predicted and measured 

data for training and test data is 99.3% and 

98.3%. It is noticeable that correlation 

coefficient (R) for neuro-Fuzzy model is 

higher than that of Fuzzy model. The 

difference is much higher in the case of test 

data 

 
Figure 10: Correlation between measured values 

in laboratory and predicted values by neuro-

Fuzzy model for training (a) and test data (b). 
 

Multivariate Regression 

       Regression analysis defines relation 

between depended variable (Y) and 

predictor parameters (X1, X2, …, Xn). 

Commonly, linear regression model is used 

to predict this relation and can express it in 

the following form: [10] 

b 

a 


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nn xxy   ....221
                           (2) 

Where   is unspecified parameter, X is the 

predictor parameter, Y is depended 

variable. If the variance of Y is constant we 

can approximate the unspecified parameters 

with least square method until the error 

between measured and predicted values is 

minimized. In this study, multivariate linear 

regression was applied to estimate the 

relation between core seepage (Q) as 

depended parameter and values of sample 

size (D), joint roughness coefficient (JRC), 

pore pressure (Pw), and normal pressure 

( ) as predictor parameters. 

The twin-logarithmic model has been used 

in multivariate nonlinear regression 

analysis for predicting Q in this study. The 

equation representing this model can be 

written in the following form: 
nb

n

bb
XXXaY ...21

21                                  (3)  

where Y is the predicted value 

corresponding to the dependent variable 

(response), a is the intercept, X1, X2, and Xn 

are the independent variables and b1, b2, 

and bn are the regression coefficients of X1, 

X2, and Xn. Taking logarithms of both sides 

of Eq. (3) converts the model into the 

following linear form: 

nn XbXbXbaY log...loglogloglog 2211         

(4) 

Eq. (4) can be written as the linear 

regression function as follows: 

nn XbXbXbaY  ...2211
               (5)  

where, Y  is the logarithm of the predicted 

value, 1X  , 2X  , and nX   are the logarithms 

of the independent variables where a is the 

logarithm of value a. [11] 

 
Results Obtained from Multivariate Linear 

Regression 

To determine the unknown regression 

coefficients the data used for training neural 

network were employed. According to  

Eq. (2) and the results which obtained from 

multivariate linear regression: 

)(274.0)(326.2

)(293.0)(387.003.33





Pw

JRCDQ
          (6) 

where, Q= core seepage, /scm3  

Pw= water pressure, bar 

D= core diameter, mm 

JRC= joint roughness coefficient   
 = normal pressure applied on joint, bar 

To verify the capability of generalization of 

regression model the new data set was used. 

For this purpose the test data of neural 

network and neuro-Fuzzy model were 

employed. The results of calculating the 

regression coefficients for both data used 

for determining regression coefficient and 

new data are shown in Figure 11. 

Correlation coefficient between predicted 

values by multivariate liner regression and 

experimental data are 78.3% and 75.8% 

respectively. These coefficient values are 

within the accepted range for engineering 

purposes. 

 

 
 

Figure 11: Correlation between measured values 

in lab and predicted values by regression for data 

set using in determined of unknown coefficient 

(a) and new data (b) 
 

a 

b 
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Results Obtained from Multivariate 

Nonlinear Regression 

      Multivariate linear regression is capable 

of estimating stress dependent flow. Since 

any single parameter affecting flow has a 

nonlinear relationship the following 

multivariate nonlinear equation is proposed 

to enhance the accuracy: 

)7(                        
1.105.09.3

8.0

56



JRCD

Pw
Q 

where, Q= core seepage, lit/s 

Pw= water pressure, bar 

D= core diameter, cm 

JRC= joint roughness coefficient   

 = normal pressure applied on joint, bar 

 

 
 

Figure 12: Correlation between measured values 

in lab and predicted values by regression for data 

set using in determined of unknown coefficient 

(a) and new data (b). 

 

In order to determine the regression 

coefficient of Eq. (4) and to evaluate its 

accuracy all already used for testing and 

training have been employed. The Results 

of calculating the multivariate nonlinear 

regression coefficients are shown in Figure 

12. The coefficient of correlation between 

the values estimated by multivariate 

nonlinear regression and laboratory values 

with training and test data are 92.6% and 

91.1% respectively. 
 

Summary 

       According to the test results, higher 

water pressure causes higher water flow. 

On the other hand, following parameters 

result in transmissivity reduction:  

1. Increase in normal pressure  

2. Higher joint roughness at low-moderate 

normal pressure  

3. Increase in core diameter (or area of 

water flow) which causes more resistance to 

the flow. 

The results obtained from prediction of core 

flow rate value by four methods (artificial 

neural network, neuro-Fuzzy logic and 

multivariate linear and nonlinear 

regression) are presented in table (1). In this 

table coefficient of correlation (R) and root 

of mean square error (RMSE) are also 

shown. Clearly the model which has the 

higher coefficient of correlation and lower 

RMSE is preferred. 

 
Table 1: A comparison between results obtained 

from different methods used in this study 
 

      RMSE 
  (test) 

     RMSE 
   (train) 

R% 
(test) 

R% 
(train) MODEL 

   0.0026     0.0019 95.7 97.1 Neural network 

   0.0041     0.0029 98.3 99.3 Neuro- Fuzzy 

   0.0058     0.0053 75.8 78.3 
Multivariate 

linear regression 

   0.0046     0.0038 91.1 92.6 

Multivariate 

nonlinear 

regression 

 

The reason for a better result by neuro-

Fuzzy model might be the uncertainty of 

input measurement values and outputs. It is 

believed that Fuzzy method has a better 

b 

a 
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capacity in dealing with these problems. 
 

Conclusions 

- Increasing water pressure from 1 to 7 bars 

causes five times increase in water flow 

volume. This dependency is also not linear. 

- In low normal stresses, water flow is 

inversely related to joint roughness. 

However, at high stress levels, higher JRC 

values cause more flow. This effect is more 

pronounced for bigger core sizes.  

- Water flow through joint was never 

dropped to zero even at high normal 

stresses. This is due to the fact that a joint 

never closes completely.  

- Among used methods in this study, 

Neuro-Fuzzy approach causes higher 

accuracies. Coefficient of correlation 

between predicted and measured lab results 

for training and testing stages are 99.3% 

and 98.3% respectively. This drops to 

97.1% and 95.7% for neural network 

method and to 92.6% and 91.1% for 

nonlinear multivariable regression analysis. 

For linear multivariable regression method 

these values are as low as 78.3% and 75.8% 

percent respectively.  
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