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Abstract  
       Correct estimation of water inflow into underground excavations can decrease safety risks and 
associated costs.  Researchers have proposed different methods to asses this value. It has been proved that 
water transmissivity of a rock joint is a function of factors, such as normal stress, joint roughness and its 
size and water pressure therefore, a laboratory setup was proposed to quantitatively measure the flow as a 
function of mentioned parameters. Among these, normal stress has proved to be the most influential 
parameter. With increasing joint roughness and rock sample size, water flow has decreased while 
increasing water pressure has a direct increasing effect on the flow. To simulate the complex interaction 
of these parameters, neural networks and Fuzzy method together with regression analysis have been 
utilized. Correlation factors between laboratory results and obtained numerical ones show good 
agreement which proves usefulness of these methods for assessment of water inflow.  
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Introduction  
Joints play an important role in 

geo-mechanical projects in different ways. 
One of those is creating conduits to cross 
the rock mass which decreases it’s 
integrity and affects the hydro-mechanical 
properties [1, 2]. Although it is difficult to 
accurately predict water inflow into tunnels 
at the design stage, but it is very essential 
to make a realistic estimation of that at 
early stages.  
Numerical methods have extended their 
boundaries to the field of water inflow 
prediction but due to the complex 
phenomenon of interacting parameters, it is 
more realistic to perform laboratory tests 
with setups as close as possible to the real 
site conditions.  
A combination of data production in the 
laboratory and utilizing powerful analytical 
methods such as regression analysis, neural 
networks and Fuzzy logics, as indicated in 
the present paper, has proved to be a 
powerful integral tool to predict water 
transmissivity of rock joints. 
 
Stress Dependency of Transmissivity of 
Jointed Rocks 
           Joint aperture can change due to 

stress changes, therefore transmissivity 
also changes accordingly.  
There are well established field methods 
available to determine transmissivity, but 
they are usually time consuming and 
costly. An alternative solution for this is to 
perform laboratory tests which can provide 
a more versatile estimation of 
transmissivity and the effect of interacting 
parameters. This needs to be extended 
somehow to the field conditions in the next 
stage.   
 
Research Background 
          Water flow through joints in rock 
masses is usually controlled by three main 
factors: fluid characteristics, joint 
properties and fluid pressure. Normal 
closure of joints due to confining stresses 
and dilation due to shear displacement 
changes water transmissivity in joints. Min 
et al. studied changes of permeability 
around underground openings due to such 
stress changes. They emphasized on stress 
relaxation as the main cause for 
permeability changes in tunnels [3].  
Gang and Sanderson reported successful 
results in performing numerical analysis 
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for fluid flow and deformability of jointed 
rock masses versus normal stress [4].  
Decreasing permeability of sandstone due 
to increasing overburden pressure was 
studied by Fatt and Davis in 1952. Gray et 
al. in 1963 applied an axial force and 
lateral pressure on jointed rock samples 
simultaneously and studied the resulting 
changes in permeability. Holt also found 
similar trend during his tests on Triassic 
sandstones under three dimensional 
confining pressure conditions [5].  
Most of the above mentioned research has 
been focused on stress dependent 
permeability of sandstone samples which is 
a porous media, but studies on joint 
transmissivity which is an important 
parameter in fluid flow in rock masses, has 
also been studied by other researchers.  
The first comprehensive test on open joints 
was probably done by Lomize in 1951 who 
used rough parallel glass planes and 
proved the cubic power law rule for joint 
transmissivity [5].  
This subject has recently found more 
attention by other researchers among 
which the tests by Muralidharan can be 
mentioned [5]. He studied fluid flow 
through joints on rock cores in the 
laboratory under different stress 
conditions. To simplify the case, it was 
assumed that the core is under no external 
pressure axially but it is confined laterally 
by a hydraulic jack. Fluid was injected into 
the sample at different flow rates and 
permeability was determined. The same 
test was done but with hydrostatic pressure 
conditions. The results show that with 
increasing normal pressure on joints, 
transmissivity is reduced due to reduction 
in joint aperture.  
This research proves the relation between 
jointed rock mass permeability and stress 
condition due to overburden loads although 
the effect of joint geometry is neglected in 
this study.  In the present paper, joint 
transmissivity is studied under different 
confining stresses and its dependency on 
joint roughness, sample size and fluid 
pressure is also determined. 

Test Procedure 
Instruments  
        A simple normal loading device is 
used for tests. A number of core samples 
from limestone blocks are selected with a 
rough joint in it. The samples had a variety 
of diameters ranging between 48 to 75 
mm. The joint was normal to the axis of 
the core which was loaded by a hydraulic 
jack. Water is injected into the joint plane 
under pressure and water flow is measured. 
Figure 1 depicts the used laboratory setup.  
 

  
 

Figure 1:  a) Schematic of the jointed rock 
sample surrounded by a cover subjected to the 

axial load   b) The picture of the laboratory 
setup  

 
Test Procedure 
        A number of samples were taken from 
limestone of Ilam formation in southern 
Iran with a horizontal natural joint. The 
rest of the samples were broken to create a 
new rough joint. The JRC coefficient 
proposed by Barton 1974 was determined 
for each joint. The diameter of each sample 
was also recorded. Joint roughness in this 
study was categorized in 5 classes to 
reduce test numbers. To convey water to 
the joint plane, a hole was drilled in the 
upper platen and further extended into the 
upper part of the sample. The following 
figure shows a close view of the two sides 
of the joint and the whole assembled 
sample. 
 


a b 
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Figure 2: A sample with two sides of the joint 
             

 Stress-dependent permeability for rock cores with variable diameter
(Pw=1 bar , JRC=0 -4) 
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 Stress-dependent permeability for rock cores with variable diameter
(Pw=7 bar , JRC=0 -4) 
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 Stress-dependent permeability for rock cores with variable diameter
(Pw=7 bar , JRC=16 -20) 
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Figure 3:  Volume of passed water as a 
function of normal stress for different joint 

roughness 
a) JRC=0-4, water pressure=1bar 
b) JRC=0-4, water pressure=7bar 
c) JRC=16-20, water Pressure=7bar 

 
All of the samples were loaded uni-axially 

via the upper platen. Water reached the 
joint plane and exited radialy from the 
rough joint surface and is collected by a 
surrounding robber bladder and conducted 
into a volume measuring unit.  
For each test, the diameter of the sample, 
joint roughness, water pressure, normal 
confining pressure and volume of passed 
water are measured. 
After data collection, graphs of water 
transmissivity are plotted versus pressure 
for different conditions (Figure 3). In these 
graphs, a and b correspond to1 and 7 bars 
water pressure respectively. In these tests, 
joint roughness coefficient is between 0 
and 4. Part c is for joint roughness 
coefficient between 16 and 20 at 7 bar 
water pressure. Comparing a and b shows 
that increasing water pressure increases 
water flow which results in higher 
permeability of the sample. With 
comparison between graphs b and c under 
constant size and water pressure, reduction 
of water flow is depicted as a function of 
JRC increase. 
Figure 4 shows dependency of water flow 
to variable water pressure for similar joint 
size and roughness. For this test, a change 
in water pressure from 1 to 7 bars has 
resulted in water flow increase to more 
than five times. The increase in joint 
roughness and size in a water flow test 
under 5 bars water pressure results in water 
flows reversely related to normal pressure 
on the joint (Figure 5). 
 

 Stress-dependent hydraulic transmissivity for rock cores 
(d=75 mm , JRC= 8-12 ) 
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Figure 4: Effect of water pressure variation on 
stress dependent transmissivity in 48 mm 

diameter and roughness coefficient between 8 
and 12 
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 Size-dependent flow rate for rock cores with variable JRC
(Pw=5 bar , P=10 bar)
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 Size-dependent flow rate for rock cores with variable JRC
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 Size-dependent flow rate for rock cores with variable JRC

(Pw=5 bar , P=100 bar)
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Figure 5:  Effect of joint roughness on water 
flow rate versus diameter in 5 bars water 

pressure under a) low, b) medium and c) high 
stress condition 

 
For low normal pressure (part a) when 
joint roughness increases, water flow 
decreases. However a different trend is 
observed at higher pressures (part c). It 
means at higher stresses better 
transmissivity is obtained for rougher 
joints. This can be explained by a good 
joint closure for smoother ones while 
rougher joints do not close as much under 
the same normal pressure. Part b at 
moderate pressure is an intermediate 
condition. 
Figure 6 shows three stages of joint 
roughness effect on transmissivity under 
various normal pressures at 5 bar water 
pressure and 48 mm diameter. For better 

representation, a log axis is chosen for 
transmissivity. 
 

Hydraulic stress-dependent transmissivity (Pw=5 bar ,d=48mm)
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Figure 6: Three stages of joint roughness effect 
on stress dependent hydraulic transmissivity in 

48 mm diameter and 5 bars water pressure 
 

Fracture Flow Rate Estimation by 
Indirect Methods 
       Although experimental tests usually 
have properly responded to encountered 
problems in science, but they are costly 
and time consuming. This fact holds true 
for all laboratory activities related to 
geosciences especially in 
hydrogeomechanic activities. Therefore, 
new estimation methods such as statistical 
methods, artificial neural networks and 
Fuzzy logic systems have been used for 
solving these problems. in the present 
study, these new methods have been 
employed to estimate the laboratory 
pressure dependent flow rate in fractured 
rock masses by taking into account the 
effect of joint roughness coefficient, 
sample size and water pressure.  
 
Artificial Neural Networks ( sANN , ) 
    In general, neural networks are 
nonlinear mathematical systems. The 
network is simulated to human brain 
functioning. A neural network is a parallel 
and big processor comprising of simple 
processing units. These networks are 
capable of solving problems which do not 
have a precision mathematical relationship 
between their input and output parameters.   
 
Back Propagation Neural Network (BPNN) 
     A Back Propagation (BP) neural 

c 

b 

a 
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Pw 

  

)/( 3 scmQ

network is a multilayer perceptron feed 
forward which uses back/reverse error 
propagation algorithm for training. This 
algorithm is a general and applicable 
technique. A BPNN consists of one input 
layer, one or more hidden layers and one 
output layer. This Network is considered as 
a feed forward tool, because there is no 
unit internal connection between output of 
a processing and inputs of a node in 
previous layers. [6] 
 
Training of Back Propagation Neural 
Network  
    Training is a phenomenon which 
through known input and output data, 
releases optimum weight for inputs of any 
single cell of the neural network. The 
network learns the patterns after several 
runs. The error decreases as the number of 
runs increases and comes to its minimum 
in a proper round of running. In this study 
60% out of 450 total data sets were used 
for training and 10% for validation and the 
rest for testing.  
 
Data Preparation and ANN Structure 
      Data Preparation is usually the most 
complicated part of sANN ,  application. 
Part of this complication is due to selection 
of actual occurred cases which provide 
proper patterns. Another part is due to the 
changing the scales of training data (i.e. 
normalizing the input and output data). For 
this purpose, the values are normalized in 
the interval (-1, 1) using Eq. (1).  

12
minmax

min 





pp
pppn                             (1)  

The main reason for normalization of the 
data to the two above intervals is that 
active functions such as sigmoid ones are 
not able to differentiate between two large 
values. In other words the network would 
go wrong when the huge amounts are 
concerned. In such cases the training 
process will face difficulties. This is called 
“network saturation”. [7] 
In order to determine the optimum neural 
network, their performances were tested 
with the help of two parameters namely 

correlation coefficient (R) and Root of 
Mean Square Errors (RMSE). For this 
purpose, neural networks with different 
number of hidden layers and neurons, 
different activation functions and training 
functions were tried and the best of them 
was selected. The best network is the one 
with higher correlation coefficient and 
lower RMSE. For estimation of water 
seepage value (Q) an optimized model of 
neural network was build after several 
executions. This model has seven neurons 
in its hidden layer with sigmoid tangent 
activation function. Such a model contains 
four input neurons representing pore 
pressure, normal loading pressure, joint 
roughness coefficient and sample size. The 
output would be a single neuron 
representing the volume of water seepage 
(Q). Figure 7 depicts a simple view of the 
model used for estimation of the value of 
Q.  
Figure 8, illustrates the correlation between 
measured values in laboratory and 
predicted values by neural network for 
training and test data. The correlation 
coefficients for training and test data are 
97.1% and 95.7% respectively.  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 7: Back propagation neural network used 
for flow rate estimation 
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Figure 8: Correlation between measured and 
predicted values for training (a) and test data(b) 
 
Fuzzy Logic Method 
        The Fuzzy logic is based on Fuzzy set 
theory in which a Fuzzy collection is 
considered as a collection that has no 
certain boundary and any of its members 
has a relative degree of membership. 
Specification of type and number of 
parameters related to membership 
functions is the most important problem in 
Fuzzy logic. The membership function is a 
function which fuzzifies the input space. In 
other words, each input value is 
normalized in the [0, 1] interval. There are 
many Fuzzy membership functions such as 
triangular shaped, Trapezoidal-shaped, 
Gaussian curve and sigmoid-shaped [7]. 
 
 

Fuzzy Inference System 
     In Fuzzy inference system, a set of 
conditional rules are used to relate input 
and output membership functions. A 
simple example of the “if-then” condition 
is as follows: 
 
If x is A and y is B then z is C 
       In general, there are five steps for 
constructing the Fuzzy inference process: 
[7] 
1. Fuzzification of input variables, 
2. Application of the Fuzzy operator (AND 
or OR) in the antecedent, 
3. Implication from the antecedent to the 
consequent, 
4. Aggregation of the consequents across 
the rules,       
5. Defuzzification of outputs. 
There are two methods in Fuzzy inference 
system, Mamdani method and Sugeno 
method. In Sugeno Fuzzy method of 
inference system which used in this study 
on the contrary of Mamdani method, the 
output membership functions are either 
linear or constant [8]. 
 
Fuzzy Model Construction by ANN 
     Definition of membership function and 
Fuzzy rule is the most important parts of 
Fuzzy model construction. Researchers 
mostly apply the try and error method for 
adjustment of these parameters, but this 
method is often a time consuming process 
which needs much experiment. Therefore, 
the idea of applying learning algorithms 
for Fuzzy systems was considered. These 
algorithms are the same as those used in 
neural networks. These models are called 
neuro-Fuzzy systems. 
Actually the ANN provided properly ways 
for adjustment the Fuzzy models parameter 
by existing data and makes the manual way 
possible in shorter time [9]. 
In this study triangle membership function 
was used for each input parameter. The 
applied model is the Sugeno model which 
applies the liner membership function for 
output parameter. The data used for 
determining the Fuzzy rules and 

b 

a 
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membership function were the same data 
used for training the ANN. Initially a 
Fuzzy model was built through try and 
error process. Then the parameters of this 
model were used for training in neural 
network.    

  

  

  

  
 

Figure 9: Membership function for input 
parameters after training by neural network 

The introduced membership functions 
defined by neural network after training 
are shown in Figure 9. 
        

 
Figure 10: Correlation between measured values 

in laboratory and predicted values by neuro-
Fuzzy model for training (a) and test data (b). 

 
Correlation between measured values and 
the values predicted by neuro-Fuzzy model 
built up in this study, before and after 
training, is shown in Figure 10. In these 
graphs “a“ represents the graph related to 
training and “b“ represents the graph 
related to testing of the model. Correlation 
coefficient between predicted and 
measured data for training and test data is 
99.3% and 98.3%. It is noticeable that 
correlation coefficient (R) for neuro-Fuzzy 
model is higher than that of Fuzzy model. 
The difference is much higher in the case 
of test data. 

b 

a 
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Multivariate Regression 
       Regression analysis defines relation 
between depended variable (Y) and 
predictor parameters (X1, X2, …, Xn). 
Commonly, linear regression model is used 
to predict this relation and can express it in 
the following form: [10] 

nn xxy   ....221                            (2) 
Where   is unspecified parameter, X is the 
predictor parameter, Y is depended 
variable. If the variance of Y is constant 
we can approximate the unspecified 
parameters with least square method until 
the error between measured and predicted 
values is minimized. In this study, 
multivariate linear regression was applied 
to estimate the relation between core 
seepage (Q) as depended parameter and 
values of sample size (D), joint roughness 
coefficient (JRC), pore pressure (Pw), and 
normal pressure ( ) as predictor 
parameters. 
The twin-logarithmic model has been used 
in multivariate nonlinear regression 
analysis for predicting Q in this study. The 
equation representing this model can be 
written in the following form: 

nb
n

bb XXXaY ...21
21                                (3)  

where Y is the predicted value 
corresponding to the dependent variable 
(response), a is the intercept, X1, X2, and 
Xn are the independent variables and b1, b2, 
and bn are the regression coefficients of X1, 
X2, and Xn. Taking logarithms of both 
sides of Eq. (3) converts the model into the 
following linear form: 

nn XbXbXbaY log...loglogloglog 2211         
(4) 

Eq. (4) can be written as the linear 
regression function as follows: 

nn XbXbXbaY  ...2211              (5)  
where, Y  is the logarithm of the predicted 
value, 1X  , 2X  , and nX   are the logarithms 
of the independent variables where a is 
the logarithm of value a. [11] 
 
Results Obtained from Multivariate Linear 
Regression 
To determine the unknown regression 

coefficients the data used for training 
neural network were employed. According 
to Eq. (2) and the results which obtained 
from multivariate linear regression: 

)(274.0)(326.2
)(293.0)(387.003.33




Pw
JRCDQ            

(6)  
where, Q= core seepage, /scm3  
Pw= water pressure, bar 
D= core diameter, mm 
JRC= joint roughness coefficient   
 = normal pressure applied on joint, bar 
 

 

 
 

Figure 11: Correlation between measured values 
in lab and predicted values by regression for 

data set using in determined of unknown 
coefficient (a) and new data (b) 

 
To verify the capability of generalization 
of regression model the new data set was 
used. For this purpose the test data of 
neural network and neuro-Fuzzy model 
were employed. The results of calculating 

a 

b 
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the regression coefficients for both data 
used for determining regression coefficient 
and new data are shown in Figure 11. 
Correlation coefficient between predicted 
values by multivariate liner regression and 
experimental data are 78.3% and 75.8% 
respectively. These coefficient values are 
within the accepted range for engineering 
purposes. 
 
 

 
 

Figure 12: Correlation between measured values 
in lab and predicted values by regression for 

data set using in determined of unknown 
coefficient (a) and new data (b). 

 
Results Obtained from Multivariate 
Nonlinear Regression 
      Multivariate linear regression is 
capable of estimating stress dependent 
flow. Since any single parameter affecting 
flow has a nonlinear relationship the 

following multivariate nonlinear equation 
is proposed to enhance the accuracy: 
 

 (7)                      
1.105.09.3

8.0

56



JRCD
PwQ 

 
where, Q= core seepage, lit/s 
Pw= water pressure, bar 
D= core diameter, cm 
JRC= joint roughness coefficient   
 = normal pressure applied on joint, bar 
 In order to determine the regression 
coefficient of Eq. (4) and to evaluate its 
accuracy all already used for testing and 
training have been employed. The Results 
of calculating the multivariate nonlinear 
regression coefficients are shown in Figure 
12. The coefficient of correlation between 
the values estimated by multivariate 
nonlinear regression and laboratory values 
with training and test data are 92.6% and 
91.1% respectively. 
 
Summary 
       According to the test results, higher 
water pressure causes higher water flow. 
On the other hand, following parameters 
result in transmissivity reduction:  
1. Increase in normal pressure  
2. Higher joint roughness at low-moderate 
normal pressure  
3. Increase in core diameter (or area of 
water flow) which causes more resistance 
to the flow. 
The results obtained from prediction of 
core flow rate value by four methods 
(artificial neural network, neuro-Fuzzy 
logic and multivariate linear and nonlinear 
regression) are presented in table (1). In 
this table coefficient of correlation (R) and 
root of mean square error (RMSE) are also 
shown. Clearly the model which has the 
higher coefficient of correlation and lower 
RMSE is preferred. 

 
 
 
 
 
 

b 
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Table 1: A comparison between results obtained 
from different methods used in this study 

 

     RMSE 
  (test) 

     RMSE 
   (train) 

R% 
(test) 

R% 
(train) MODEL 

   0.0026     0.0019 95.7 97.1 Neural network 

   0.0041     0.0029 98.3 99.3 Neuro- Fuzzy 

   0.0058     0.0053 75.8 78.3 Multivariate 
linear regression 

   0.0046     0.0038 91.1 92.6 
Multivariate 

nonlinear 
regression 

 
The reason for a better result by neuro-
Fuzzy model might be the uncertainty of 
input measurement values and outputs. It is 
believed that Fuzzy method has a better 
capacity in dealing with these problems. 
 
Conclusions 
- Increasing water pressure from 1 to 7 
bars causes five times increase in water 
flow volume. This dependency is also not 

linear. 
- In low normal stresses, water flow is 
inversely related to joint roughness. 
However, at high stress levels, higher JRC 
values cause more flow. This effect is 
more pronounced for bigger core sizes.  
- Water flow through joint was never 
dropped to zero even at high normal 
stresses. This is due to the fact that a joint 
never closes completely.  
- Among used methods in this study, 
Neuro-Fuzzy approach causes higher 
accuracies. Coefficient of correlation 
between predicted and measured lab results 
for training and testing stages are 99.3% 
and 98.3% respectively. This drops to 
97.1% and 95.7% for neural network 
method and to 92.6% and 91.1% for 
nonlinear multivariable regression 
analysis. For linear multivariable 
regression method these values are as low 
as 78.3% and 75.8% percent respectively.  
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